
Motif Reference Manual 1103

Section 4 - Mrm Clients
This page describes the format and contents of each reference page in Section 4,
which covers the Motif clients.

Name
Client – a brief description of the client.

Syntax
This section describes the command-line syntax for invoking the client. Anything
in bold should be typed exactly as shown. Items in italics are parameters that
should be replaced by actual values when you enter the command. Anything
enclosed in brackets is optional.

Availability
This section appears for functions that were added in Motif 2.0 or later.

Description
This section explains the operation of the client. In some cases, additional
descriptive sections appear later on in the reference page.

Options
This section lists available command-line options.

Environment
If present, this section lists shell environment variables used by the client. This
section does not list the DISPLAY and XENVIRONMENT variables, which are
used by all clients. These variables are used as follows:

DISPLAY
To get the default display name (specifically, the host, server/display, and
screen). The DISPLAY variable typically has the form:

hostname:server.screen

XENVIRONMENT
To get the name of a resource file containing host-specific resources. If this
variable is not set, the resource manager will look for a file called .Xde-
faults-hostname (where hostname is the name of a particular host) in the
user’s home directory.

Bugs
If present, this section lists any problems that could arise when using the client.

See Also
This section refers you to related clients, functions, or widget classes. The
numbers in parentheses following each reference refer to the sections of the book
in which they are found.

mwm Mrm Clients

1104 Motif Reference Manual

Name
mwm – the Motif Window Manager (mwm).

Syntax
mwm [options]

Description
The Motif Window Manager, mwm, provides all of the standard window manage-
ment functions. It allows you to move, resize, iconify/deiconify, maximize, and
close windows and icons, focus input to a window or icon, and refresh the dis-
play. mwm provides much of its functionality via a frame that (by default) is
placed around every window on the display. The mwm frame has the three-
dimensional appearance characteristic of the OSF/Motif graphical user interface.

The rest of this reference page describes how to customize mwm. It does not pro-
vide information on using mwm. For information on using the window manager,
see Volume 3, X Window System User’s Guide, Motif Edition.

Options
-display [host]:server[.screen]

Specifies the name of the display on which to run mwm. host is the
hostname of the physical display, server specifies the server
number, and screen specifies the screen number. Either or both of
the host and screen elements can be omitted. If host is omitted, the
local display is assumed. If screen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display) server are
necessary in all cases.

-multiscreen
Specifies that mwm should manage all screens on the display. The
default is to manage only screen 0. You can specify an alternate
screen by setting the DISPLAY environment variable or using the -
display option. You can also specify that mwm manage all screens
by assigning a value of True to the multiScreen resource variable.

-name app_name
Specifies the name under which resources for the window manager
should be found.

-screens screen_name[screen_name]...
Assigns resource names to the screens mwm is managing. (By
default, the screen number is used as the screen_name.) If mwm is
managing a single screen, only the first name in the list is used. If
mwm is managing multiple screens, the names are assigned to the
screens in order, starting with screen 0. If there are more screens

mwm Mrm Clients

1105 Motif Reference Manual

than names, resources for the remaining screens will be retrieved
using the first screen_name.

-xrm resourcestring
Specifies a resource name and value to override any defaults. This
option is very useful for setting resources that do not have explicit
command-line arguments.

Window Manager Components
The mwm window frame contains various components that perform different
functions. The title bar stretches across the top of the window and contains the
title area and the minimize, maximize, and window menu buttons. The title area
displays the window title and can be used to move the window. The minimize
button iconifies the window, while the maximize button enlarges the window to
fill the entire screen. The window menu button posts the Window Menu. The
resize border handles surround the window; they are used to resize the window in
a particular direction. A window can also have an optional matte decoration
between the client area and the window frame. The matte is not part of the win-
dow frame and it has no functionality. At times, mwm uses dialog boxes or feed-
back windows to communicate with the user.

An icon is a small graphic representation of a window. When a window is iconi-
fied using the minimize button, it is replaced on the screen by its icon. Iconifying
windows reduces clutter on the screen. mwm provides a separate window, call the
icon box, that can hold icons. Using the icon box keeps icons from cluttering the
screen.

By default, mwm uses an explicit keyboard selection policy, which means that
once a window has the keyboard focus, it keeps it until another window is explic-
itly given the focus. Windows can overlap, which means that they are arranged in
a global stacking order on the screen. A window that is higher in the stacking
order obscures windows below it in the stacking order if they overlap. Each
application has its own local stacking order; transient windows remain above
their parents by default in the local stacking order.

Customization
Like any X application, mwm uses resources to control its appearance and behav-
ior. The window manager builds its resource database just like any other X client.
Mwm is the resource class name for mwm. You can place mwm resources in your
regular resource file (.Xdefaults) in your home directory or you can create a file
called Mwm (also in your home directory) for mwm resources only. If you place
conflicting specifications in both files, the resources in.Xdefaults take prece-
dence.

mwm Mrm Clients

1106 Motif Reference Manual

The default operation of the mouse, the keyboard, and menus in mwm is control-
led by a system-wide resource description file, system.mwmrc. This file describes
the contents of the Window Menu and Root Menu, as well as the key and button
combinations that manage windows. To modify the behavior of mwm, you can
edit a copy of this file in your home directory. The version of the file in your
home directory should be called.mwmrc, unless you specify an alternate name
using the configFile resource.

An mwm resource description file is a standard text file. Items are separated by
blanks, tabs, and newlines. A line that begins with an exclamation mark (!) or a
number sign (#) is treated as a comment. If a line ends with a backslash (\), the
subsequent line is considered a continuation of that line.

Component Appearance Resources
mwm provides some resources that specify the appearance of particular window
manager components, such as the window frame, menus, and icons. Component
appearance resources can be specified for particular window manager compo-
nents or all components. To specify a resource for all components, use the fol-
lowing syntax:

Mwm*resource_name: resource_value

The window manager components have the following resource names associated
with them:

These resource names can be used to specify particular window manager compo-
nents in a resource specification. To specify a resource for a specific component,
use the following syntax:

Mwm*[component_name]*resource_name: resource_value

The title bar is a descendant of the client window frame, so you can use title to
specify the appearance of the title bar separately from the rest of the window
frame. You can also specify resources for individual menus by using menu, fol-
lowed by the name of the menu.

Component ResourceName
Menu menu

Icon icon

Client window frame client

Feedback/dialog box feedback

Title bar title

mwm Mrm Clients

1107 Motif Reference Manual

The following component appearance resources apply to all window manager
components. Unless a default value is specified, the default varies based on sys-
tem specifics such as the visual type of the screen:

background (class Background)
Specifies the background color.

backgroundPixmap (class BackgroundPixmap)
Specifies the background pixmap of the mwm decoration when the
window does not have the input focus.

bottomShadowColor (class Foreground)
Specifies the color to be used for the lower and right bevels of the
window manager decoration.

bottomShadowPixmap (class BottomShadowPixmap)
Specifies the pixmap to be used for the lower and right bevels of the
window manager decoration.

fontList (class FontList)
Specifies the font to be used in the window manager decoration.
The default is fixed.

foreground (class Foreground)
Specifies the foreground color.

saveUnder (class SaveUnder)
Specifies whether save unders are used for mwm components. The
default value is False, which means that save unders are not used on
any window manager frames.

topShadowColor (class Background)
Specifies the color to be used for the upper and left bevels of the
window manager decoration.

topShadowPixmap (class TopShadowPixmap)
Specifies the pixmap to be used for the upper and left bevels of the
window manager decoration.

The following component appearance resources apply to the window frame and
icons. Unless a default value is specified, the default varies based on system spe-
cifics such as the visual type of the screen:

activeBackground (class Background)
Specifies the background color of the mwm decoration when the
window has the input focus.

mwm Mrm Clients

1108 Motif Reference Manual

activeBackgroundPixmap (class ActiveBackgroundPixmap)
Specifies the background pixmap of the mwm decoration when the
window has the input focus.

activeBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the mwm decoration when the
window has the input focus.

activeBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the mwm decoration when
the window has the input focus.

activeForeground (class Foreground)
Specifies the foreground color of the mwm decoration when the
window has the input focus.

activeTopShadowColor (class Background)
Specifies the top shadow color of the mwm decoration when the
window has the input focus.

activeTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the mwm decoration when the
window has the input focus.

General Appearance and Behavior Resources
mwm also provides resources that control the appearance and behavior of the
window manager as a whole. These resources specify features such as the focus
policy, interactive window placement, and the icon box. To specify a general
appearance and behavior resource, use the following syntax:

Mwm*resource_name: resource_value

The following general appearance and behavior resources can be specified:

autoKeyFocus (class AutoKeyFocus)
If True (the default), when the focus window is withdrawn from
window management or is iconified, the focus bounces back to the
window that previously had the focus. This resource is available
only when keyboardFocusPolicy is explicit. If False, the input
focus is not set automatically. autoKeyFocus and startupKeyFocus
should both be True to work properly with tear-off menus.

autoRaiseDelay (class AutoRaiseDelay)
Specifies the amount of time (in milliseconds) that mwm will wait
before raising a window after it receives the input focus. The
default is 500. This resource is available only when focusAutoRaise
is True and the keyboardFocusPolicy is pointer.

mwm Mrm Clients

1109 Motif Reference Manual

bitmapDirectory (class BitmapDirectory)
Identifies the directory to be searched for bitmaps referenced by
mwm resources (if an absolute pathname to the bitmap file is not
given). The default is /usr/-include/-X11/-bitmaps, which is consid-
ered the standard location on many systems. Note, however, that the
location of the bitmap directory may vary in different environ-
ments. If a bitmap is not found in the specified directory, XBM-
LANGPATH is searched.

clientAutoPlace (class ClientAutoPlace)
Specifies the location of a window when the user has not specified
a location. If True (the default), windows are positioned with the
upper-left corners of the frames offset horizontally and vertically,
so that no two windows completely overlap. If False, the currently
configured position of the window is used. In either case, mwm
attempts to place the windows totally on screen.

colormapFocusPolicy (class ColormapFocusPolicy)
Specifies the colormap focus policy. Takes three possible values:
keyboard, pointer, and explicit. If keyboard (the default) is speci-
fied, the input focus window has the colormap focus. If explicit is
specified, a colormap selection action is done on a client window to
set the colormap focus to that window. If pointer is specified, the
client window containing the pointer has the colormap focus.

configFile (class ConfigFile)
Specifies the pathname for the mwm startup file. The default startup
file is.mwmrc.
mwm searches for the configuration file in the user’s home direc-
tory. If the configFile resource is not specified or the file does not
exist, mwm defaults to an implementation-specific standard direc-
tory (the default is /usr/lib/X11/system.mwmrc).

If the LANG environment variable is set, mwm looks for the config-
uration file in a $LANG subdirectory first. For example, if the
LANG environment variable is set to Fr (for French), mwm
searches for the configuration file in the directory $HOME/Fr
before it looks in $HOME. Similarly, if the configFile resource is
not specified or the file does not exist, mwm defaults to /usr/lib/
X11/$LANG/system.mwmrc before it reads /usr/lib/X11/sys-
tem.mwmrc.

If the configFile pathname does not begin with ~/, mwm considers it
to be relative to the current working directory.

mwm Mrm Clients

1110 Motif Reference Manual

deiconifyKeyFocus (class DeiconifyKeyFocus)
If True (the default), a window receives the input focus when it is
normalized (deiconified). This resource applies only when the
keyboardFocusPolicy is explicit.

doubleClickTime (class DoubleClickTime)
Specifies the maximum time (in milliseconds) between the two
clicks of a double click. The default is the display’s multi-click
time.

enableWarp (class EnableWarp)
If True (the default), causes mwm to warp the pointer to the center
of the selected window during resize and move operations invoked
using keyboard accelerators. (The cursor symbol disappears from
its current location and reappears at the center of the window.) If
False, mwm leaves the pointer at its original place on the screen,
unless the user explicitly moves it.

enforceKeyFocus (class EnforceKeyFocus)
If True (the default), the input focus is always explicitly set to
selected windows even if there is an indication that they are "glo-
bally active" input windows. (An example of a globally active win-
dow is a scrollbar that can be operated without setting the focus to
that client.) If the resource explicitly set to globally active win-
dows.

iconAutoPlace (class IconAutoPlace)
Specifies whether the window manager arranges icons in a particu-
lar area of the screen or places each icon where the window was
when it was iconified. If True (the default), icons are arranged in a
particular area of the screen, determined by the iconPlacement
resource. If False, an icon is placed at the location of the window
when it is iconified.

iconClick (class IconClick)
If True (the default), the Window Menu is displayed when the
pointer is clicked on an icon.

interactivePlacement (class InteractivePlacement)
If True, specifies that new windows are to be placed interactively
on the screen using the pointer. When a client is run, the pointer
shape changes to an upper-left corner cursor; move the pointer to
the location you want the window to appear and click the first but-
ton; the window is displayed in the selected location. If False (the

mwm Mrm Clients

1111 Motif Reference Manual

default), windows are placed according to the initial window con-
figuration attributes.

keyboardFocusPolicy (class KeyboardFocusPolicy)
If explicit focus is specified (the default), placing the pointer on a
window (including the frame) or icon and pressing the first pointer
button focuses keyboard input on the client. If pointer is specified,
the keyboard input focus is directed to the client window on which
the pointer rests (the pointer can also rest on the frame).

lowerOnIconify (class LowerOnIconify)
If True (the default), a window’s icon is placed on the bottom of the
stack when the window is iconified. If False, the icon is placed in
the stacking order at the same place as its associated window.

moveThreshold (class MoveThreshold)
Controls the sensitivity of dragging operations, such as those used
to move windows and icons on the display. Takes a value of the
number of pixels that the pointing device is moved while a button is
held down before the move operation is initiated. The default is 4.
This resource helps prevent a window or icon from moving when
you click or double click and inadvertently jostle the pointer while
a button is down.

multiScreen (class MultiScreen)
If False (the default), mwm manages only a single screen. If True,
mwm manages all screens on the display.

passButtons (class PassButtons)
Specifies whether button press events are passed to clients after the
events are used to invoke a window manager function in the client
context. If False (the default), button presses are not passed to the
client. If True, button presses are passed to the client. The window
manager function is done in either case.

passSelectButton (class PassSelectButton)
Specifies whether select button press events are passed to clients
after the events are used to invoke a window manager function in
the client context. If True (the default), button presses are passed
to the client window. If False, button presses are not passed to the
client. The window manager function is done in either case.

positionIsFrame (class PositionIsFrame)
Specifies how mwm should interpret window position information
from the WM_NORMAL_HINTS property and from configuration

mwm Mrm Clients

1112 Motif Reference Manual

requests. If True (the default), the information is interpreted as the
position of the mwm client window frame. If False, it is interpreted
as being the position of the client area of the window.

positionOnScreen (class PositionOnScreen)
If True (the default), specifies that windows should initially be
placed (if possible) so that they are not clipped by the edge of the
screen. If a window is larger than the size of the screen, at least the
upper-left corner of the window is placed is on the screen. If False,
windows are placed in the requested position even if totally off the
screen.

quitTimeout (class QuitTimeout)
Specifies the amount of time (in milliseconds) that mwm will wait
for a client to update the WM_COMMAND property after mwm
has sent the WM_SAVE_-YOURSELF message. The default is
1000. (See the f.kill function for additional information.)

raiseKeyFocus (class RaiseKeyFocus)
If True, specifies that a window raised by means of the
f.normalize_-and_raise function also receives the input focus. This
function is available only when the keyboardFocusPolicy is
explicit. The default is False.

screens (class Screens)
Assigns resource names to the screens mwm is managing. If mwm is
managing a single screen, only the first name in the list is used. If
mwm is managing multiple screens, the names are assigned to the
screens in order, starting with screen 0.

showFeedback (class ShowFeedback)
Specifies whether mwm feedback windows and confirmation dialog
boxes are displayed. (Feedback windows are used to display: win-
dow coordinates during interactive placement and subsequent
moves; and dimensions during resize operations. A typical confir-
mation dialog is the window displayed to allow the user to allow or
cancel a window manager restart operation.)

showFeedback accepts a list of options, each of which corresponds
to the type of feedback given in a particular circumstance. Depend-
ing on the syntax in which the options are entered, you can either
enable or disable a feedback option (as explained later).

The possible feedback options are: all, which specifies that mwm
show all types of feedback (this is the default); behavior, which

mwm Mrm Clients

1113 Motif Reference Manual

specifies that feedback is displayed to confirm a behavior switch;
kill, which specifies that feedback is displayed on receipt of a KILL
signal; move, which specifies that a box containing the coordinates
of a window or icon is displayed during a move operation; place-
ment, which specifies that a box containing the position and size of
a window is displayed during initial (interactive) placement; quit,
which specifies that a dialog box is displayed so that the user can
confirm (or cancel) the procedure to quit mwm; resize, which speci-
fies that a box containing the window size is displayed during a
resize operation; restart, which displays a dialog box so that the
user can confirm (or cancel) an mwm restart procedure; the none
option specifies that no feedback is shown.

To limit feedback to particular cases, you can use one of two syn-
taxes: with the first syntax, you disable feedback in specified cases
(all other default feedback is still used); with the second syntax, you
enable feedback only in specified cases. You supply this resource
with a list of options to be enabled or disabled. If the first item is
preceded by a minus sign, feedback is disabled for all options in the
list. If the first item is preceded by a plus sign (or no sign is used),
feedback is enabled only for options in the list.

startupKeyFocus (class StartupKeyFocus)
If True (the default), the input focus is transferred to a window
when the window is mapped (i.e., initially managed by the window
manager). This function is available only when keyboardFocusPol-
icy is explicit. startupKeyFocus and autoKeyFocus should both be
True to work properly with tear-off menus.

wMenuButtonClick (class WMenuButtonClick)
If True (the default), a pointer button click on the window menu
button displays the Window Menu and leaves it displayed.

wMenuButtonClick2 (class WMenuButtonClick2)
If True, double clicking on the window menu button removes the
client window, which means that f.kill is invoked.

Screen-Specific Resources
Some mwm resources can be applied on a per-screen basis. To specify a screen-
specific resource, use the following syntax:

Mwm*screen_number*resource_name: resource_value

mwm Mrm Clients

1114 Motif Reference Manual

Screen-specific specifications take precedence over specifications for all screens.
Screen-specific resources can be specified for all screens using the following
syntax:

Mwm*resource_name: resource_value

buttonBindings (class ButtonBindings)
Identifies the set of button bindings to be used for window manage-
ment functions; must correspond to a set of button bindings speci-
fied in the mwm startup file. Button bindings specified in the startup
file are merged with built-in default bindings. The default is
DefaultButtonBindings.

cleanText (class CleanText)
Specifies whether text that appears in mwm title and feedback win-
dows is displayed over the existing background pattern. If True (the
default), text is drawn with a clear (no stipple) background. (Only
the stippling in the area immediately around the text is cleared.)
This enhances readability, especially on monochrome systems
where a backgroundPixmap is specified. If False, text is drawn on
top of the existing background.

fadeNormalIcon (class FadeNormalIcon)
If True, an icon is greyed out when it has been normalized. The
default is False.

feedbackGeometry (class FeedbackGeometry)
Specifies the position of the small, rectangular feedback box that
displays coordinate and size information during move and resize
operations. By default, the feedback window appears in the center
of the screen. This resource takes the argument:

[=]±xoffset±yoffset

With the exception of the optional leading equal sign, this string is
identical to the second portion of the standard geometry string.
Note that feedbackGeometry allows you to specify location only.
The size of the feedback window is not configurable using this
resource. Available as of mwm version 1.2 and later.

frameBorderWidth (class FrameBorderWidth)
Specifies the width in pixels of a window frame border, without
resize handles. (The border width includes the three-dimensional
shadows.) The default is determined according to screen specifics.

frameStyle

mwm Mrm Clients

1115 Motif Reference Manual

In Motif 2.0 and later, specifies the frame appearance of decoration
windows and borders: the value WmRECESSED makes the win-
dow appear recessed into the border, the value WmSLAB gives a
flat window and border.

iconBoxGeometry (class IconBoxGeometry)
Specifies the initial position and size of the icon box. Takes as its
argument the standard geometry string:

widthxheight±xoff±yoff

where width and height are measured in icons. The default geome-
try string is 6x1+0-0, which places an icon box six icons wide by
one icon high in the lower-left corner of the screen.

You can omit either the dimensions or the x and y offsets from the
geometry string and the defaults apply. If the offsets are not pro-
vided, the iconPlacement resource is used to determine the initial
placement.

The actual screen size of the icon box depends on the iconImage-
Maximum and iconDecoration resources, which specify icon size
and padding. The default value for size is (6 × icon_width + pad-
ding) wide by (1 × icon_height + padding) high.

iconBoxName (class IconBoxName)
Specifies the name under which icon box resources are to be found.
The default is iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)
Specifies what scrollbars are displayed in the icon box. The
resource has three possible values: all, vertical, and horizontal. If all
is specified (the default), both vertical and horizontal scrollbars are
displayed at all times. vertical specifies that a single vertical scroll-
bar is displayed and sets the orientation of the icon box to horizon-
tal, regardless of the iconBoxGeometry specification. horizontal
specifies that a single horizontal scrollbar is displayed in the icon
box and sets the orientation of the icon box to vertical, regardless of
the iconBoxGeometry specification.

iconBoxTitle (class IconBoxTitle)
Specifies the name to be used in the title area of the icon box. The
default is Icons.

iconDecoration (class IconDecoration)

mwm Mrm Clients

1116 Motif Reference Manual

Specifies how much icon decoration is used. The resource value
takes four possible values (multiple values can also be supplied):
label, which specifies that only the label is displayed; image, which
specifies that only the image is displayed; and activelabel, which
specifies that a label (not truncated to the width of the icon) is used
when the icon has the focus.

The default decoration for icons in an icon box is label image,
which specifies that both the label and image parts are displayed.
The default decoration for individual icons on the screen proper is
activelabel label image.

iconImageMaximum (class IconImageMaximum)
Specifies the maximum size of the icon image. Takes a value of
widthxheight (e.g., 80×80). The maximum size supported is
128×128. The default is 50×50.

iconImageMinimum (class IconImageMinimum)
Specifies the minimum size of the icon image. Takes a value of
widthxheight (e.g., 36×48). The minimum size supported is 16×16
(which is also the default).

iconPlacement (class IconPlacement)
Specifies an icon placement scheme. Note that this resource is only
useful when useIconBox is False (the default). The iconPlacement
resource takes a value of the syntax:

primary_layout secondary_layout [tight]

There are four possible layout policies. top specifies that icons are
placed from the top of the screen to the bottom, bottom specifies a
bottom-to-top arrangement, left specifies that icons are placed from
the left to the right, and right specifies a right-to-left arrangement.
The optional argument tight specifies that there is no space between
icons.

The primary_layout specifies whether icons are placed in a row or a
column and the direction of placement. The secondary_layout spec-
ifies where to place new rows or columns. For example, a value of
top right specifies that icons should be placed from top to bottom
on the screen and that columns should be added from right to left on
the screen.

mwm Mrm Clients

1117 Motif Reference Manual

A horizontal (vertical) layout value should not be used for both the
primary_layout and the secondary_layout. For example, do not use
top for the primary_layout and bottom for the secondary_layout.

The default placement is left bottom (i.e., icons are placed left to
right on the screen, with the first row on the bottom of the screen,
and new rows are added from the bottom of the screen to the top of
the screen).

iconPlacementMargin (class IconPlacementMargin)
Sets the distance from the edge of the screen at which icons are
placed. The value should be greater than or equal to 0. A default
value is used if an invalid distance is specified. The default value is
equal to the space between icons as they are placed on the screen,
which is based on maximizing the number of icons in each row and
column.

keyBindings (class KeyBindings)
Identifies the set of key bindings to be used for window manage-
ment functions; must correspond to a set of key bindings specified
in the mwm startup file. Note that key bindings specified in the star-
tup file replace the built-in default bindings. The default is Default-
KeyBindings.

limitResize (class LimitResize)
If True (the default), the user is not allowed to resize a window to
greater than the maximum size.

maximumMaximumSize (class MaximumMaximumSize)
Specifies the maximum size of a client window (as set by the user
or client). Takes a value of widthxheight (e.g., 1024x1024) where
width and height are in pixels. The default is twice the screen width
and height.

moveOpaque (class MoveOpaque)
If False (the default), when you move a window or icon, its outline
is moved before it is redrawn in the new location. If True, the actual
(and thus, opaque) window or icon is moved. Available as of mwm
version 1.2 and later.

resizeBorderWidth (class ResizeBorderWidth)
Specifies the width in pixels of a window frame border, with resize
handles. (The border width includes the three-dimensional shad-
ows.) The default is determined according to screen specifics.

resizeCursors (class ResizeCursors)

mwm Mrm Clients

1118 Motif Reference Manual

If True (the default), the resize cursors are always displayed when
the pointer is in the window resize border.

transientDecoration (class TransientDecoration)
Specifies the amount of decoration mwm puts on transient win-
dows. The decoration specification is exactly the same as for the
clientDecoration (client-specific) resource. Transient windows are
identified by the WM_TRANSIENT_FOR property, which is
added by the client to indicate a relatively temporary window. The
default is menu title, which specifies that transient windows have
resize borders and a title bar with a window menu button. If the cli-
ent application also specifies which decorations the window man-
ager should provide, mwm uses only those features that both the
client and the transientDecoration resource specify.

transientFunctions (class TransientFunctions)
Specifies which window management functions are applicable (or
not applicable) to transient windows. The function specification is
exactly the same as for the clientFunctions (client-specific)
resource. The default is -minimize maximize. If the client applica-
tion also specifies which window management functions should be
applicable, mwm provides only those functions that both the client
and the transientFunctions resource specify.

useIconBox (class UseIconBox)
If True, icons are placed in an icon box. By default, the individual
icons are placed on the root window.

Client-Specific Resources
Some mwm resources can be set to apply to certain client applications or classes
of applications. To specify a client-specific resource, use the following syntax:

Mwm*client_name*resource_name: resource_value

Client-specific specifications take precedence over specifications for all clients.
Client- specific resources can be specified for all clients using the following syn-
tax:

Mwm*resource_name: resource_value

The class name defaults can be used to specify resources for clients that have an
unknown name and class.

The following client-specific resources can be specified:

clientDecoration (class ClientDecoration)

mwm Mrm Clients

1119 Motif Reference Manual

Specifies the amount of window frame decoration. The default
frame is composed of several component parts: the title bar, resize
handles, border, and the minimize, maximize, and window menu
buttons. You can limit the frame decoration for a client using the
clientDecoration resource.

clientDecoration accepts a list of options, each of which corre-
sponds to a part of the client frame. The options are: maximize,
minimize, menu, border, title, resize, all, which encompasses all
decorations previously listed, and none, which specifies that no
decorations are used.

Some decorations require the presence of others; if you specify
such a decoration, any decorations required with it are used auto-
matically. Specifically, if any of the command buttons are specified,
a title bar is also used; if resize handles or a title bar is specified, a
border is also used.

By default, a client window has all decoration. To specify only cer-
tain parts of the default frame, you can use one of two syntaxes:
with the first syntax, you disable certain frame features; with the
second syntax, you enable only certain features. You supply client-
Decoration with a list of options to be enabled or disabled. If the
first item is preceded by a minus sign, the features in the list are dis-
abled. If the first item is preceded by a plus sign (or no sign is
used), only those features listed are enabled.

clientFunctions (class ClientFunctions)
Specifies whether certain mwm functions can be invoked on a client
window. The only functions that can be controlled are those that are
executable using the pointer on the default window frame.
clientFunctions accepts a list of options, each of which corresponds
to an mwm function. The options are: resize, move, minimize, max-
imize, close, all, which encompasses all of the previously listed
functions, and none, which specifies that no default functions are
allowed.

By default, a client recognizes all functions. To limit the functions a
client recognizes, you can use one of two syntaxes: with the first
syntax, you disallow certain functions; with the second syntax, you
allow only certain functions. You supply clientFunctions with a list
of options (corresponding to functions) to be allowed or disallowed.
If the first item is preceded by a minus sign, the functions in the list
are disallowed. If the first option is preceded by a plus sign (or no

mwm Mrm Clients

1120 Motif Reference Manual

sign is used), only those functions listed are allowed.
A less than obvious repercussion of disallowing a particular func-
tion is that the client window frame is also altered to prevent your
invoking that function. For instance, if you disallow the f.resize
function for a client, the client’s frame does not include resize bor-
ders. In addition, the Size item on the Window Menu, which
invokes the f.resize function, no longer appears on the menu.

If the client application also specifies which window management
functions should be applicable, mwm provides only those functions
that both the client and the clientFunctions resource specify.

focusAutoRaise (class FocusAutoRaise)
If True, a window is raised when it receives the input focus. Other-
wise, directing focus to a window does not affect the stacking order.
The default depends on the value assigned to the keyboardFocus-
Policy resource. If the keyboardFocusPolicy is explicit, the default
for focusAutoRaise is True. If the keyboardFocusPolicy is pointer,
the default for focusAutoRaise is False.

iconImage (class IconImage)
Specifies the pathname of a bitmap file to be used as an icon image
for a client. The default is to display an icon image supplied by the
window manager. If the useClientIcon resource is set to True, an
icon image supplied by the client takes precedence over an icon
image supplied by the user.

iconImageBackground (class Background)
Specifies the background color of the icon image. The default is the
color specified by Mwm*background or Mwm*icon*background.

iconImageBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the icon image. The default is
the color specified by Mwm*icon*bottomShadowColor.

iconImageBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the icon image. The default
is the pixmap specified by Mwm*icon*bottomShadowPixmap.

iconImageForeground (class Foreground)
Specifies the foreground color of the icon image. The default varies
based on the icon background.

mwm Mrm Clients

1121 Motif Reference Manual

iconImageTopShadowColor (class Background)
Specifies the top shadow color of the icon image. The default is the
color specified by Mwm*icon*topShadowColor.

iconImageTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the icon image. The default is
the pixmap specified by Mwm*icon*topShadowPixmap.

matteBackground (class Background)
Specifies the background color of the matte. The default is the
color specified by Mwm*background or Mwm*client*background.
This resource is only relevant if matteWidth is positive.

matteBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the matte. The default is the
color specified by Mwm*bottomShadowColor or Mwm*cli-
ent*bottomShadowColor. This resource is only relevant if mat-
teWidth is positive.

matteBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the matte. The default is the
pixmap specified by Mwm*bottomShadowPixmap or Mwm*cli-
ent*bottomShadowPixmap. This resource is only relevant if mat-
teWidth is positive.

matteForeground (class Foreground)
Specifies the foreground color of the matte. The default is the color
specified by Mwm*foreground or Mwm*client*foreground. This
resource is only relevant if matteWidth is positive.

matteTopShadowColor (class Background)
Specifies the top shadow color of the matte. The default is the color
specified by Mwm*topShadowColor or Mwm*client*topShadow-
Color. This resource is only relevant if matteWidth is positive.

matteTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow pixmap of the matte. The default is the
pixmap specified by Mwm*topShadowPixmap or Mwm*cli-
ent*topShadowPixmap. This resource is only relevant if mat-
teWidth is positive.

matteWidth (class MatteWidth)
Specifies the width of the matte. The default is 0, which means no
matte is used.

maximumClientSize (class MaximumClientSize)

mwm Mrm Clients

1122 Motif Reference Manual

Specifies how a window is to be maximized, either to a specific size
(widthxheight), or as much as possible in a certain direction (verti-
cal or horizontal). If the value is of the form widthxheight, the width
and height are interpreted in the units used by the client. For exam-
ple, xterm measures width and height in font characters and lines.

If maximumClientSize is not specified, and the
WM_NORMAL_HINTS property is set, the default is obtained
from it. If WM_NORMAL_HINTS is not set, the default is the size
(including borders) that fills the screen. mwm also uses maximum-
MaximumSize to constrain the value in this case.

useClientIcon (class UseClientIcon)
If True, an icon image supplied by the client takes precedence over
an icon image supplied by the user. The default is False.

usePPosition (class UsePPosition)
Specifies whether mwm uses initial coordinates supplied by the cli-
ent application. If True, mwm always uses the program specified
position. If False, mwm never uses the program specified position.
The default is nonzero, which means that mwm will use any pro-
gram specified position except 0,0. Available as of mwm version
1.2 and later.

windowMenu (class WindowMenu)
Specifies a name for the Window Menu (which must be defined in
the startup file). The default is DefaultWindowMenu.

Functions
mwm supports a number of functions that can be bound to different key and but-
ton combinations and assigned to menus in the mwm resource description file
(system.mwmrc or.mwmrc). Most window manager functions can be used in key
bindings, button bindings, and menus. The function descriptions below note any
exceptions to this policy. Most window manager functions can also be specified
for three contexts: root, window, and icon. The root context means that the func-
tion is applied to the root window, window means that the function is applied to
the selected client window, and icon means that the function is applied to the
selected icon. The function descriptions below note any functions that cannot be
used in all three contexts.

When a function is specified with the context icon | window and you invoke the
function from the icon box, the function applies to the icon box itself, rather than
to any of the icons it contains.

mwm Mrm Clients

1123 Motif Reference Manual

A function is treated as f.nop if it is not a valid function name, if it is specified
inappropriately, or if it is invoked in an invalid way.

mwm recognizes the following functions:

f.beep
Causes a beep from the keyboard.

f.circle_down [icon | window]
Causes the window or icon on the top of the stack to be lowered to
the bottom of the stack. If the icon argument is specified, the func-
tion applies only to icons. If the window argument is specified, the
function applies only to windows.

f.circle_up [icon | window]
Causes the window or icon on the bottom of the stack to be raised
to the top. If the icon argument is specified, the function applies
only to icons. If the window argument is specified, the function
applies only to windows.

f.exec[command]
![command]

Executes command using the shell specified by the MWMSHELL
environment variable. If MWMSHELL is not set, the command is
executed using the shell specified by the SHELL environment vari-
able; otherwise, the command is executed using /bin/sh.

f.focus_color
Sets the colormap focus to a client window. If this function is
invoked in the root context, the default colormap (specified by X
for the screen where mwm is running) is installed and there is no
specific client window colormap focus. For the f.focus_color func-
tion to work, the colormapFocusPolicy should be specified as
explicit; otherwise the function is treated as f.nop.

f.focus_key
Sets the input focus to a window or icon. For the f.focus_key func-
tion to work, the keyboardFocusPolicy should be specified as
explicit. If keyboardFocusPolicy is not explicit or if the function is
invoked in the root context, it is treated as f.nop.

f.kill
Terminates a client. It sends the WM_DELETE_WINDOW mes-
sage to the selected window if the client application has requested it
through the WM_PROTOCOLS property. The application is sup-
posed to respond to the message by removing the indicated win-

mwm Mrm Clients

1124 Motif Reference Manual

dow. If the WM_SAVE_YOURSELF protocol is set up and the
WM_DELETE_WINDOW protocol is not, the client is sent a mes-
sage that indicates that the client needs to prepare to be terminated.
If the client does not have the WM_DELETE_WINDOW or
WM_SAVE_YOURSELF protocol set, the f.kill function causes a
client’s X connection to be terminated.

f.lower [-client | within | freeFamily]
Without arguments, lowers a window or icon to the bottom of the
stack. By default, the context in which the function is invoked indi-
cates to the window or icon to lower. If an application window has
one or more transient windows (e.g., dialog boxes), the transient
windows are lowered with the parent (within the global stack) and
remain on top of it. If the -client argument is specified, the function
is invoked on the named client. client must be the instance or class
name of a program. The within argument is used to lower a tran-
sient window within the application’s local window hierarchy; all
transients remain above the parent window and that window
remains in the same position in the global window stack. In prac-
tice, this function is only useful when there are two or more tran-
sient windows and you want to shuffle them. The freeFamily
argument is used to lower a transient below its parent in the applica-
tion’s local window hierarchy. Again, the parent is not moved in the
global window stack. However, if you use this function on the par-
ent, the entire family stack is lowered within the global stack.

f.maximize
Causes a window to be redisplayed at its maximum size. This func-
tion cannot be invoked in the context root or on a window that is
already maximized.

f.menu menu_name
Associates a cascading menu with a menu item or associates a
menu with a button or key binding. The menu_name argument
specifies the menu.

f.minimize
Causes a window to be minimized (i.e., iconified). When no icon
box is being used, icons are placed on the bottom of the stack,
which is generally in the lower-left corner of the screen. If an icon
box is being used, icons are placed inside the box. This function
cannot be invoked in the context root or on an iconified window.

mwm Mrm Clients

1125 Motif Reference Manual

f.move
Allows you to move a window interactively, using the pointer.

f.next_cmap
Installs the next colormap in the list of colormaps for the window
with the colormap focus.

f.next_key [icon | window | transient]
Without any arguments, this function advances the input focus to
the next window or icon in the stack. You can specify icon or win-
dow to make the function apply only to icons or windows, respec-
tively. Generally, the focus is moved to windows that do not have
an associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if only window is specified, focus is moved to
the last window in a transient group to have the focus. For this func-
tion to work, keyboardFocusPolicy must be explicit; otherwise, the
function is treated as f.nop.

f.nop
Specifies no operation.

f.normalize
Causes a client window to be displayed at its normal size. This
function cannot be invoked in the context root or on a window that
is already at its normal size.

f.normalize_and_raise
Causes the client window to be displayed at its normal size and
raised to the top of the stack. This function cannot be invoked in the
context root or on a window that is already at its normal size.

f.pack_icons
Rearranges icons in an optimal fashion based on the layout policy
being used, either on the root window or in the icon box.

f.pass_keys
Toggles processing of key bindings for window manager functions.
When key binding processing is disabled, all keys are passed to the
window with the keyboard input focus and no window manager
functions are invoked. If the f.pass_keys function is set up to be
invoked with a key binding, the binding can be used to toggle key
binding processing.

f.post_wmenu

Mrm Clients

Motif Reference Manual 1126

Displays the Window Menu. If a key is used to display the menu
and a window menu button is present, the upper-left corner of the
menu is placed at the lower-left corner of the command button. If
no window menu button is present, the menu is placed in the upper-
left corner of the window.

f.prev_cmap
This function installs the previous colormap in the list of colormaps
for the window with the colormap focus.

f.prev_key [icon | window | transient]
Without any arguments, this function moves the input focus to the
previous window or icon in the stack. You can specify icon or win-
dow to make the function apply only to icons or windows, respec-
tively. Generally, the focus is moved to windows that do not have
an associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if only window is specified, focus is moved to
the last window in a transient group to have the focus. For this func-
tion to work, keyboardFocusPolicy must be explicit; otherwise, the
function is treated as f.nop.

f.quit_mwm
Stops the mwm window manager. Note that this function does not
stop the X server. This function cannot be invoked from a non-root
menu.

f.raise [-client | within | freeFamily]
Without arguments, raises a window or icon to the top of the stack.
By default, the context in which the function is invoked indicates
the window or icon to raise. If an application window has one or
more transient windows (e.g., dialog boxes), the transient windows
are raised with the parent (within the global stack) and remain on
top of it. If the -client argument is specified, the function is invoked
on the named client. client must be the instance or class name of a
program. The within argument is used to raise a transient window
within the application’s local window hierarchy; all transients
remain above the parent window and that window remains in the
same position in the global window stack. In practice, this function
is only useful when there are two or more transient windows and
you want to shuffle them.

Mrm Clients

Motif Reference Manual 1127

The freeFamily argument raises a transient to the top of the applica-
tion’s local window hierarchy. The parent window is also raised to
the top of the global stack.

f.raise_lower [within | freeFamily]
Raises a primary application window to the top of the stack or low-
ers a window to the bottom of the stack, as appropriate to the con-
text. The within argument is intended to raise a transient window
within the application’s local window hierarchy. All transients
remain above the parent window and the parent window should
also remain in the same position in the global window stack. If the
transient is not obscured by another window in the local stack, the
transient window is lowered within the family. The preceding para-
graph describes how within should work. However, we have found
that the parent window does not always remain in the same position
in the global window stack. The freeFamily argument raises a tran-
sient to the top of the family stack and also raises the parent win-
dow to the top of the global stack. If the transient is not obscured by
another window, this function lowers the transient to the bottom of
the family stack and lowers the family in the global stack.

f.refresh
Redraws all windows.

f.refresh_win
Redraws a single window.

f.resize
Allows you to resize a window interactively, using the pointer.

f.restart
Restarts the mwm window manager. The function causes the current
mwm process to be stopped and a new mwm process to be started. It
cannot be invoked from a non-root menu.

f.restore
Causes the client window to be displayed at its previous size. If
invoked on an icon, f.restore causes the icon to be converted back
to a window at its previous size. Thus, if the window was maxi-
mized, it is restored to this state. If the window was previously at its
normal size, it is restored to this state. If invoked on a maximized
window, the window is restored to its normal size. This function

Mrm Clients

Motif Reference Manual 1128

cannot be invoked in the context root or on a window that is already
at its normal size.

f.restore_and_raise
Causes the client window to be displayed at its previous size and
raised to the top of the stack. This function cannot be invoked in the
context root or on a window that is already at its normal size.

f.screen [next | prev | back | screen_number]
Causes the pointer to be warped to another screen, which is deter-
mined by one of four mutually exclusive parameters. The next argu-
ment means skip to the next managed screen, prev means skip back
to the previous managed screen, back means skip to the last screen
visited, and screen_number specifies a particular screen. Screens
are numbered beginning at 0.

f.send_msg message_number
Sends a message of the type _MOTIF_WM_MESSAGES to a cli-
ent; the message type is indicated by the message_number argu-
ment. The message is sent only if the client’s
_MOTIF_WM_MESSAGES property includes message_number.
If a menu item is set up to invoke f.send_msg and the
message_number is not included in the client’s
_MOTIF_WM_MESSAGES property, the menu item label is
greyed out, which indicates that it is not available for selection.

f.separator
Creates a divider line in a menu. Any associated label is ignored.

f.set_behavior
Restarts mwm, toggling between the default behavior for the partic-
ular system and the user’s custom environment. In any case, a dia-
log box asks the user to confirm or cancel the action. By default this
function is invoked using the following key sequence: Shift Ctrl
Meta !.

f.title
Specifies the title of a menu. The title string is separated from the
menu items by a double divider line.

Event Specification

Mrm Clients

Motif Reference Manual 1129

In order to specify button bindings, key bindings, and menu accelerators, you
need to be able to specify events in the mwm resource description file. Use the
following syntax to specify button events for button bindings:

[modifier_key...]<button_event>

The acceptable values for modifier_key are: Ctrl, Shift, Alt, Meta, Lock, Mod1,
Mod2, Mod3, Mod4, and Mod5. mwm considers Alt and Meta to be equivalent.

 The acceptable values for button_event are:

Btn1Down Btn2Down Btn3Down Btn4Down Btn5Down
Btn1Up Btn2Up Btn3Up Btn4Up Btn5Up
Btn1Click Btn2Click Btn3Click Btn4Click Btn5Click
Btn1Click2 Btn2Click2 Btn3Click2 Btn4Click2 Btn5Click2

Use the following syntax to specify key events for key bindings and menu accel-
erators:

[modifier_key...]<Key>key_name

Any X11 keysym name is an acceptable value for key_name.

Button Bindings
The buttonBindings resource specifies the name of a set of button bindings that
control mouse behavior in mwm. You can create your own set of button bindings
or use one of the sets defined in system.mwmrc: DefaultButtonBindings, Explic-
itButtonBindings, or PointerButtonBindings. Use the following syntax to specify
a set of button bindings:

Buttons button_set_name
{

button context function
button context function
...
button context function

}

The context specifies where the pointer must be located for the button binding to
work. The context is also used for window manager functions that are context-
sensitive. The valid contexts for button bindings are root, window, icon, title,
border, frame, and app. The title context refers to the title area of the frame. bor-
der refers to the frame exclusive of the title bar. frame refers to the entire frame.
The app context refers to the application window proper. The window context
includes the application window and the frame. A context specification can

Mrm Clients

Motif Reference Manual 1130

include multiple contexts; use a vertical bar (|) to separate multiple context val-
ues.

Key Bindings
The keyBindings resource specifies the name of a set of key bindings that control
keyboard behavior in mwm. You can create your own set of key bindings or use
the default key bindings, DefaultKeyBindings, defined in system.mwmrc. Use the
following syntax to specify a set of key bindings:

Keys key_set_name
{

key context function
key context function
...
key context function

}

The context specifies where the keyboard focus must be for the key binding to
work. The context is also used for window manager functions that are context-
sensitive. The valid contexts for key bindings are root, window, icon, title, bor-
der, frame, and app. The title, border, frame, and app contexts are all equivalent
to window. A context specification can include multiple contexts; use a vertical
bar (|) to separate multiple context values.

Menus
The window manager functions f.post_wmenu and f.menu post menus. These
functions both take the name of a menu to post. You can create your own menus
or use the default menus defined in system.mwmrc: DefaultRootMenu and
DefaultWindowMenu. Use the following syntax to specify a menu:

Menu menu_name
{

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function
...
label [mnemonic] [accelerator] function

}

Each line in a menu specification indicates the label for the menu item, optional
keyboard mnemonics and accelerators, and the window manager function that is
performed. label can be a string or a bitmap file. If the string contains multiple

Mrm Clients

Motif Reference Manual 1131

words, it must be enclosed in quotation marks. A bitmap file specification is pre-
ceded by an at sign (@). A mnemonic is specified as _character. An accelerator
specification uses the key event specification syntax.

The context of a window manager function that is activated from a menu is based
on how the menu is posted. If it is posted from a button binding, the context of
the menu is the context of the button binding. If it is posted from a key binding,
the context of the menu is based on the location of the keyboard focus.

Environment
mwm uses the following environment variables:

HOME
The user’s home directory.

LANG
The language to be used for the mwm message catalog and the mwm
startup file.

XBMLANGPATH
Used to search for bitmap files.

XFILESEARCHPATH
Used to determine the location of system-wide class resource files.
If the LANG variable is set, the $LANG subdirectory is also
searched.

XUSERFILESEARCHPATH, XAPPLRESDIR
Used to determine the location of user-specific class resource files.
If the LANG variable is set, the $LANG subdirectory is also
searched.

MWMSHELL, SHELL
MWMSHELL specifies the shell to use when executing a com-
mand supplied as an argument to the f.exec function. If MWM-
SHELL is not set, SHELL is used.

Files
/usr/lib/X11/$LANG/system.mwmrc
/usr/lib/X11/system.mwmrc
/usr/lib/X11/app-defaults/Mwm
$HOME/Mwm
$HOME/$LANG/.mwmrc
$HOME/.mwmrc
$HOME/.motifbind

See Also
XmIsMotifWMRunning(1), XmInstallImage(1), VendorShell(2),
xmbind(3)

Mrm Clients

Motif Reference Manual 1132

Name
uil – the User Interface Language (UIL) compiler.

Syntax
uil [options] file

Description
The uil command invokes the User Interface Language (UIL) compiler. If the file
does not contain any errors, the compiler generates a User Interface Description
(UID) file that contains a compiled form of the input file. UIL is a specification
language that can be used to describe the initial state of a user interface that uses
the OSF/Motif widget set, as well as other widgets. The user interface for an
application is created at run-time using the Motif Resource Manager (Mrm)
library; the interface is based on compiled interface descriptions stored in one or
more UID files.

Options
-Ipathname

Specifies a search path for include files. By default, the current
directory and /usr/include are searched. Path names may be relative
or absolute. The paths specified with this option are searched in
order after the current directory and before /usr/include.

-m
When specified with the -v option, the UIL compiler includes
machine code in the listing file. The machine code provides binary
and text descriptions of the data that is stored in the UID file. This
option is useful for determining exactly how the compiler interprets
a particular statement and how much storage is used for the varia-
bles, declarations, and assignments.

-o ofile
Specifies the name of the UID file to output. The default filename is
a.uid. The customary suffix for UID files is .uid.

-s
Specifies that the UIL compiler set the locale before compiling any
files. Setting the locale determines the behavior of locale-dependent
routines like character string operations. Although setting the locale
is an implementation-dependent operation, on ANSI-C-based sys-
tems, the locale is set with the call:

setlocale (LC_ALL, ””)

See the setlocale() man page on your system for more information.

Mrm Clients

Motif Reference Manual 1133

-v lfile
Directs the UIL compiler to produce a listing of the compilation.
The file indicates the name of the output file. If this option is not
specified, the compiler does not generate a listing. On UNIX sys-
tems, a filename of /dev/tty usually causes the listing to be output
on the terminal where uil was invoked.

-w
Directs the compiler to suppress warning and informational mes-
sages and to print only error messages. The default behavior is to
print error, warning and informational messages.

-wmd wfile
Specifies a compiled Widget Meta-Language (WML) description
file that is loaded in place of the default WML description. The
default WML description file contains a description of all of the
Motif widgets. This option is normally used to debug a WML
description file without rebuilding the UIL compiler.

Environment
The LANG environment variable affects the way that the UIL compiler parses
and generates compound strings, fonts, font sets, and font tables (font lists). The
exact effect is described by the UIL reference pages for these types.

Example
% uil -o myfile.uid -v /dev/tty myfile.uil
% uil -I/project/include/uil -o mainui.uid mainui.uil

Bugs
If the LANG environment variable is set to an invalid value and the -s option is
specified, the UIL compiler crashes.

See Also
Uil(7).

Mrm Clients

Motif Reference Manual 1134

Name
xmbind – configure virtual key bindings.

Syntax
xmbind [options] [file]

Availability
Motif 1.2 and later.

Description
The xmbind command configures the virtual key bindings for Motif applications.
Since this action is performed by mwm on startup, xmbind is only needed when
mwm is not being used or when a user wants to change the bindings without
restarting mwm.

When a file is specified, its contents are used for the virtual bindings. Otherwise,
xmbind uses the .motifbind file in the user’s home directory. A sample specifica-
tion is shown below:

osfBackSpace: <Key>BackSpace
osfInsert: <Key>InsertChar
osfDelete: <Key>DeleteChar

If xmbind cannot find the .motifbind file, it loads the default virtual bindings for
the server. xmbind searches for a vendor-specific set of bindings located using the
file xmbind.alias. If this file exists in the user’s home directory, it is searched for
a pathname associated with the vendor string or the vendor string and vendor
release. If the search is unsuccessful, Motif continues looking for xmbind.alias in
the directory specified by XMBINDDIR or in /usr/lib/Xm/bindings if the variable
is not set. If this file exists, it is searched for a pathname as before. If either
search locates a pathname and the file exists, the bindings in that file are used. An
xmbind.alias file contains lines of the following form:

"vendor_string[vendor_release]"bindings_file

If xmbind still has not located any bindings, it loads fixed fallback default bind-
ings.

The Motif toolkit uses a mechanism called virtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to use
one set of keysyms in translation tables; applications and users can then custom-
ize the keysyms used in the translations based on the particular keyboard that is
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that repre-
sent keys on a particular keyboard. See the Introduction to Section 2, Motif and
Xt Widget Classes, for more information about virtual bindings.

Mrm Clients

Motif Reference Manual 1135

Options
-display[host]:server[.screen]

Specifies the name of the display on which to run xmbind. host is
the hostname of the physical display, server specifies the server
number, and screen specifies the screen number. Either or both of
the host and screen elements can be omitted. If host is omitted, the
local display is assumed. If screen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display) server are
necessary in all cases.

Environment
The XMBINDDIR environment variable affects the way that xmbind searches for
vendor-specific default virtual bindings.

See Also
XmTranslateKey(1).

Mrm Clients

Motif Reference Manual 1136

