
StarPU Handbook
for StarPU 1.3.9

Generated by Doxygen.

i

This manual documents the usage of StarPU version 1.3.9. Its contents was last updated on 2021-10-21.

Copyright © 2009–2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

ii

Generated by Doxygen

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 StarPU in a Nutshell . 3

1.2.1 Codelet and Tasks . 3
1.2.2 StarPU Data Management Library . 4

1.3 Application Taskification . 4
1.4 Glossary . 4
1.5 Research Papers . 4
1.6 StarPU Applications . 5
1.7 Further Reading . 5

I StarPU Basics 7

2 Building and Installing StarPU 9
2.1 Installing a Binary Package . 9
2.2 Installing from Source . 9

2.2.1 Optional Dependencies . 9
2.2.2 Getting Sources . 9
2.2.3 Configuring StarPU . 10
2.2.4 Building StarPU . 10
2.2.5 Installing StarPU . 10

2.3 Setting up Your Own Code . 10
2.3.1 Setting Flags for Compiling, Linking and Running Applications 10
2.3.2 Integrating StarPU in a Build System . 11
2.3.3 Running a Basic StarPU Application . 13
2.3.4 Running a Basic StarPU Application on Microsoft Visual C 13
2.3.5 Kernel Threads Started by StarPU . 13
2.3.6 Enabling OpenCL . 14

2.4 Benchmarking StarPU . 14
2.4.1 Task Size Overhead . 14
2.4.2 Data Transfer Latency . 14
2.4.3 Matrix-Matrix Multiplication . 14
2.4.4 Cholesky Factorization . 15
2.4.5 LU Factorization . 15
2.4.6 Simulated Benchmarks . 15

3 Basic Examples 17
3.1 Hello World . 17

3.1.1 Required Headers . 17
3.1.2 Defining A Codelet . 17
3.1.3 Submitting A Task . 17
3.1.4 Execution Of Hello World . 18
3.1.5 Passing Arguments To The Codelet . 18
3.1.6 Defining A Callback . 19
3.1.7 Where To Execute A Codelet . 19

3.2 Vector Scaling . 20

iv CONTENTS

3.2.1 Source Code of Vector Scaling . 20
3.2.2 Execution of Vector Scaling . 21

3.3 Vector Scaling on an Hybrid CPU/GPU Machine . 21
3.3.1 Definition of the CUDA Kernel . 21
3.3.2 Definition of the OpenCL Kernel . 21
3.3.3 Definition of the Main Code . 22
3.3.4 Execution of Hybrid Vector Scaling . 24

II StarPU Quick Programming Guide 25

4 Advanced Examples 27

5 Check List When Performance Are Not There 29
5.1 Check Task Size . 29
5.2 Configuration Which May Improve Performance . 29
5.3 Data Related Features Which May Improve Performance . 29
5.4 Task Related Features Which May Improve Performance . 29
5.5 Scheduling Related Features Which May Improve Performance 30
5.6 CUDA-specific Optimizations . 30
5.7 OpenCL-specific Optimizations . 31
5.8 Detecting Stuck Conditions . 31
5.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations 31
5.10 How To Reduce The Memory Footprint Of Internal Data Structures 32
5.11 How To Reuse Memory . 32
5.12 Performance Model Calibration . 32
5.13 Profiling . 35
5.14 Overhead Profiling . 35

III StarPU Inside 37

6 Tasks In StarPU 39
6.1 Task Granularity . 39
6.2 Task Submission . 39
6.3 Task Priorities . 39
6.4 Task Dependencies . 39

6.4.1 Sequential Consistency . 39
6.4.2 Tasks And Tags Dependencies . 40

6.5 Setting Many Data Handles For a Task . 40
6.6 Setting a Variable Number Of Data Handles For a Task . 41
6.7 Using Multiple Implementations Of A Codelet . 41
6.8 Enabling Implementation According To Capabilities . 41
6.9 Insert Task Utility . 42
6.10 Getting Task Children . 44
6.11 Parallel Tasks . 44

6.11.1 Fork-mode Parallel Tasks . 44
6.11.2 SPMD-mode Parallel Tasks . 45
6.11.3 Parallel Tasks Performance . 45
6.11.4 Combined Workers . 45
6.11.5 Concurrent Parallel Tasks . 45
6.11.6 Synchronization Tasks . 46

7 Data Management 47
7.1 Data Interface . 47

7.1.1 Variable Data Interface . 47
7.1.2 Vector Data Interface . 47
7.1.3 Matrix Data Interface . 47
7.1.4 Block Data Interface . 48

Generated by Doxygen

CONTENTS v

7.1.5 BCSR Data Interface . 48
7.1.6 CSR Data Interface . 49
7.1.7 Data Interface with Variable Size . 49

7.2 Data Management . 49
7.3 Data Prefetch . 50
7.4 Partitioning Data . 50
7.5 Asynchronous Partitioning . 51
7.6 Manual Partitioning . 52
7.7 Handles data buffer pointers . 53
7.8 Defining A New Data Filter . 53
7.9 Data Reduction . 53
7.10 Commute Data Access . 54
7.11 Concurrent Data Accesses . 55
7.12 Temporary Buffers . 55

7.12.1 Temporary Data . 55
7.12.2 Scratch Data . 55

7.13 The Multiformat Interface . 56
7.14 Defining A New Data Interface . 57

7.14.1 Data registration . 57
7.14.2 Data allocation . 59
7.14.3 Data copy . 59
7.14.4 Data pack/unpack . 60

7.15 Specifying A Target Node For Task Data . 61

8 Scheduling 63
8.1 Task Scheduling Policies . 63

8.1.1 Non Performance Modelling Policies . 63
8.1.2 Performance Model-Based Task Scheduling Policies . 63
8.1.3 Modularized Schedulers . 64

8.2 Task Distribution Vs Data Transfer . 65
8.3 Energy-based Scheduling . 65
8.4 Static Scheduling . 66
8.5 Heteroprio . 66

9 Scheduling Contexts 69
9.1 General Ideas . 69
9.2 Creating A Context . 69

9.2.1 Creating A Context With The Default Behavior . 70
9.3 Creating A Context To Partition a GPU . 70
9.4 Modifying A Context . 70
9.5 Submitting Tasks To A Context . 70
9.6 Deleting A Context . 71
9.7 Emptying A Context . 71

10 Scheduling Context Hypervisor 73
10.1 What Is The Hypervisor . 73
10.2 Start the Hypervisor . 73
10.3 Interrogate The Runtime . 73
10.4 Trigger the Hypervisor . 73
10.5 Resizing Strategies . 74
10.6 Defining A New Hypervisor Policy . 75

11 How To Define a New Scheduling Policy 77
11.1 Introduction . 77
11.2 Helper functions for defining a scheduling policy (Basic or modular) 77
11.3 Defining A New Basic Scheduling Policy . 78
11.4 Defining A New Modular Scheduling Policy . 79

11.4.1 Interface . 79
11.4.2 Building a Modularized Scheduler . 80

Generated by Doxygen

vi CONTENTS

11.4.3 Management of parallel task . 82
11.4.4 Writing a Scheduling Component . 82

11.5 Graph-based Scheduling . 83
11.6 Debugging Scheduling . 84

12 Debugging Tools 85
12.1 TroubleShooting In General . 85
12.2 Using The Gdb Debugger . 85
12.3 Using Other Debugging Tools . 86
12.4 Using The Temanejo Task Debugger . 86

13 Online Performance Tools 89
13.1 On-line Performance Feedback . 89

13.1.1 Enabling On-line Performance Monitoring . 89
13.1.2 Per-task Feedback . 89
13.1.3 Per-codelet Feedback . 89
13.1.4 Per-worker Feedback . 89
13.1.5 Bus-related Feedback . 90
13.1.6 MPI-related Feedback . 91

13.2 Task And Worker Profiling . 91
13.3 Performance Model Example . 91

14 Offline Performance Tools 95
14.1 Off-line Performance Feedback . 95

14.1.1 Generating Traces With FxT . 95
14.1.2 Limiting The Scope Of The Trace . 97

14.2 Performance Of Codelets . 98
14.3 Data trace and tasks length . 102
14.4 Trace Statistics . 103
14.5 Theoretical Lower Bound On Execution Time . 105
14.6 Theoretical Lower Bound On Execution Time Example . 105
14.7 Trace visualization with StarVZ . 105
14.8 Memory Feedback . 107
14.9 Data Statistics . 108

15 Frequently Asked Questions 109
15.1 How To Initialize A Computation Library Once For Each Worker? 109
15.2 Using The Driver API . 109
15.3 On-GPU Rendering . 110
15.4 Using StarPU With MKL 11 (Intel Composer XE 2013) . 111
15.5 Thread Binding on NetBSD . 111
15.6 StarPU permanently eats 100% of all CPUs . 111
15.7 Interleaving StarPU and non-StarPU code . 111
15.8 When running with CUDA or OpenCL devices, I am seeing less CPU cores 111
15.9 StarPU does not see my CUDA device . 112
15.10StarPU does not see my OpenCL device . 112
15.11I keep getting a "Incorrect performance model file" error . 113

IV StarPU Extensions 115

16 Out Of Core 117
16.1 Introduction . 117
16.2 Use a new disk memory . 117
16.3 Data Registration . 118
16.4 Using Wont Use . 118
16.5 Examples: disk_copy . 118
16.6 Examples: disk_compute . 120
16.7 Performances . 122

Generated by Doxygen

CONTENTS vii

16.8 Feedback Figures . 122
16.9 Disk functions . 122

17 MPI Support 123
17.1 Building with MPI support . 123
17.2 Example Used In This Documentation . 123
17.3 About Not Using The MPI Support . 124
17.4 Simple Example . 124
17.5 How to Initialize StarPU-MPI . 125
17.6 Point To Point Communication . 125
17.7 Exchanging User Defined Data Interface . 126
17.8 MPI Insert Task Utility . 128
17.9 Pruning MPI Task Insertion . 129
17.10Temporary Data . 130
17.11Per-node Data . 130
17.12Priorities . 131
17.13MPI Cache Support . 131
17.14MPI Data Migration . 131
17.15MPI Collective Operations . 132
17.16Make StarPU-MPI Progression Thread Execute Tasks . 133
17.17Debugging MPI . 133
17.18More MPI examples . 134
17.19Using the NewMadeleine communication library . 134
17.20MPI Master Slave Support . 135

18 FFT Support 137
18.1 Compilation . 137

19 MIC Xeon Phi Support 139
19.1 Compilation . 139
19.2 Porting Applications To MIC Xeon Phi . 139
19.3 Launching Programs . 140

20 Native Fortran Support 141
20.1 Implementation Details and Specificities . 141

20.1.1 Prerequisites . 141
20.1.2 Configuration . 141
20.1.3 Examples . 141
20.1.4 Compiling a Native Fortran Application . 141

20.2 Fortran Translation for Common StarPU API Idioms . 142
20.3 Uses, Initialization and Shutdown . 143
20.4 Fortran Flavor of StarPU's Variadic Insert_task . 143
20.5 Functions and Subroutines Expecting Data Structures Arguments 143
20.6 Additional Notes about the Native Fortran Support . 144

20.6.1 Using StarPU with Older Fortran Compilers . 144
20.6.2 Valid API Mixes and Language Mixes . 144

21 SOCL OpenCL Extensions 145

22 SimGrid Support 147
22.1 Preparing Your Application For Simulation . 147
22.2 Calibration . 147
22.3 Simulation . 148
22.4 Simulation On Another Machine . 148
22.5 Simulation Examples . 148
22.6 Simulations On Fake Machines . 148
22.7 Tweaking Simulation . 149
22.8 MPI Applications . 149
22.9 Debugging Applications . 149

Generated by Doxygen

viii CONTENTS

22.10Memory Usage . 149

23 The StarPU OpenMP Runtime Support (SORS) 151
23.1 Implementation Details and Specificities . 151

23.1.1 Main Thread . 151
23.1.2 Extended Task Semantics . 151

23.2 Configuration . 151
23.3 Initialization and Shutdown . 151
23.4 Parallel Regions and Worksharing . 152

23.4.1 Parallel Regions . 152
23.4.2 Parallel For . 152
23.4.3 Sections . 153
23.4.4 Single . 153

23.5 Tasks . 154
23.5.1 Explicit Tasks . 154
23.5.2 Data Dependencies . 155
23.5.3 TaskWait and TaskGroup . 155

23.6 Synchronization Support . 156
23.6.1 Simple Locks . 156
23.6.2 Nestable Locks . 156
23.6.3 Critical Sections . 156
23.6.4 Barriers . 157

24 Clustering a Machine 159
24.1 General Ideas . 159
24.2 Creating Clusters . 159
24.3 Example Of Constraining OpenMP . 160
24.4 Creating Custom Clusters . 160
24.5 Clusters With Scheduling . 162

25 Interoperability Support 163
25.1 StarPU Resource Management . 163

25.1.1 Linking a program with the starpurm module . 163
25.1.2 Initialization and Shutdown . 163
25.1.3 Default Context . 164
25.1.4 Temporary Contexts . 164

V StarPU Reference API 165

26 Execution Configuration Through Environment Variables 167
26.1 Configuring Workers . 167
26.2 Configuring The Scheduling Engine . 170
26.3 Extensions . 171
26.4 Miscellaneous And Debug . 172
26.5 Configuring The Hypervisor . 176

27 Compilation Configuration 177
27.1 Common Configuration . 177
27.2 Configuring Workers . 178
27.3 Extension Configuration . 179
27.4 Advanced Configuration . 179

28 Module Index 183
28.1 Modules . 183

29 Deprecated List 185

30 Module Documentation a.k.a StarPU’s API 187
30.1 Versioning . 187

Generated by Doxygen

CONTENTS ix

30.1.1 Detailed Description . 187
30.1.2 Macro Definition Documentation . 187
30.1.3 Function Documentation . 187

30.2 Initialization and Termination . 188
30.2.1 Detailed Description . 188
30.2.2 Data Structure Documentation . 188
30.2.3 Macro Definition Documentation . 193
30.2.4 Function Documentation . 193

30.3 Standard Memory Library . 196
30.3.1 Detailed Description . 196
30.3.2 Macro Definition Documentation . 196
30.3.3 Function Documentation . 197

30.4 Toolbox . 201
30.4.1 Detailed Description . 201
30.4.2 Macro Definition Documentation . 201

30.5 Threads . 204
30.5.1 Detailed Description . 205
30.5.2 Macro Definition Documentation . 205
30.5.3 Function Documentation . 208

30.6 Bitmap . 214
30.6.1 Detailed Description . 214
30.6.2 Function Documentation . 214

30.7 Workers’ Properties . 217
30.7.1 Detailed Description . 218
30.7.2 Data Structure Documentation . 218
30.7.3 Macro Definition Documentation . 220
30.7.4 Enumeration Type Documentation . 220
30.7.5 Function Documentation . 221

30.8 Data Management . 227
30.8.1 Detailed Description . 228
30.8.2 Macro Definition Documentation . 228
30.8.3 Typedef Documentation . 229
30.8.4 Enumeration Type Documentation . 229
30.8.5 Function Documentation . 230

30.9 Data Interfaces . 237
30.9.1 Detailed Description . 241
30.9.2 Data Structure Documentation . 241
30.9.3 Macro Definition Documentation . 251
30.9.4 Enumeration Type Documentation . 259
30.9.5 Function Documentation . 260

30.10Data Partition . 274
30.10.1 Detailed Description . 276
30.10.2 Data Structure Documentation . 276
30.10.3 Function Documentation . 277

30.11Out Of Core . 285
30.11.1 Detailed Description . 285
30.11.2 Data Structure Documentation . 285
30.11.3 Macro Definition Documentation . 287
30.11.4 Function Documentation . 287
30.11.5 Variable Documentation . 288

30.12Codelet And Tasks . 289
30.12.1 Detailed Description . 290
30.12.2 Data Structure Documentation . 290
30.12.3 Macro Definition Documentation . 303
30.12.4 Typedef Documentation . 306
30.12.5 Enumeration Type Documentation . 307
30.12.6 Function Documentation . 308

30.13Task Insert Utility . 312

Generated by Doxygen

x CONTENTS

30.13.1 Detailed Description . 313
30.13.2 Data Structure Documentation . 313
30.13.3 Macro Definition Documentation . 313
30.13.4 Function Documentation . 317

30.14Explicit Dependencies . 321
30.14.1 Detailed Description . 321
30.14.2 Typedef Documentation . 321
30.14.3 Function Documentation . 321

30.15Performance Model . 325
30.15.1 Detailed Description . 326
30.15.2 Data Structure Documentation . 326
30.15.3 Enumeration Type Documentation . 330
30.15.4 Function Documentation . 330
30.15.5 Variable Documentation . 333

30.16Profiling . 334
30.16.1 Detailed Description . 334
30.16.2 Data Structure Documentation . 334
30.16.3 Macro Definition Documentation . 336
30.16.4 Function Documentation . 336

30.17Theoretical Lower Bound on Execution Time . 339
30.17.1 Detailed Description . 339
30.17.2 Function Documentation . 339

30.18CUDA Extensions . 341
30.18.1 Detailed Description . 341
30.18.2 Macro Definition Documentation . 341
30.18.3 Function Documentation . 342

30.19OpenCL Extensions . 345
30.19.1 Detailed Description . 346
30.19.2 Data Structure Documentation . 346
30.19.3 Macro Definition Documentation . 346
30.19.4 Function Documentation . 347

30.20OpenMP Runtime Support . 352
30.20.1 Detailed Description . 354
30.20.2 Data Structure Documentation . 354
30.20.3 Macro Definition Documentation . 356
30.20.4 Enumeration Type Documentation . 356
30.20.5 Function Documentation . 357

30.21MIC Extensions . 376
30.21.1 Detailed Description . 376
30.21.2 Macro Definition Documentation . 376
30.21.3 Typedef Documentation . 376
30.21.4 Function Documentation . 376

30.22Miscellaneous Helpers . 377
30.22.1 Detailed Description . 377
30.22.2 Macro Definition Documentation . 377
30.22.3 Function Documentation . 377

30.23FxT Support . 380
30.23.1 Detailed Description . 380
30.23.2 Data Structure Documentation . 380
30.23.3 Function Documentation . 381

30.24FFT Support . 383
30.24.1 Detailed Description . 383
30.24.2 Function Documentation . 383

30.25MPI Support . 385
30.25.1 Detailed Description . 387
30.25.2 Macro Definition Documentation . 387
30.25.3 Typedef Documentation . 389
30.25.4 Function Documentation . 389

Generated by Doxygen

CONTENTS xi

30.26Task Bundles . 402
30.26.1 Detailed Description . 402
30.26.2 Typedef Documentation . 402
30.26.3 Function Documentation . 402

30.27Task Lists . 404
30.27.1 Detailed Description . 404
30.27.2 Data Structure Documentation . 404
30.27.3 Function Documentation . 404

30.28Parallel Tasks . 407
30.28.1 Detailed Description . 407
30.28.2 Function Documentation . 407

30.29Running Drivers . 409
30.29.1 Detailed Description . 409
30.29.2 Data Structure Documentation . 409
30.29.3 Function Documentation . 409

30.30Expert Mode . 411
30.30.1 Detailed Description . 411
30.30.2 Function Documentation . 411

30.31Scheduling Contexts . 412
30.31.1 Detailed Description . 413
30.31.2 Macro Definition Documentation . 413
30.31.3 Function Documentation . 415

30.32Scheduling Policy . 420
30.32.1 Detailed Description . 421
30.32.2 Data Structure Documentation . 421
30.32.3 Macro Definition Documentation . 423
30.32.4 Function Documentation . 423

30.33Tree . 429
30.33.1 Detailed Description . 429
30.33.2 Data Structure Documentation . 429

30.34Scheduling Context Hypervisor - Building a new resizing policy 430
30.34.1 Detailed Description . 431
30.34.2 Data Structure Documentation . 431
30.34.3 Macro Definition Documentation . 433
30.34.4 Function Documentation . 435

30.35Scheduling Context Hypervisor - Regular usage . 440
30.35.1 Detailed Description . 440
30.35.2 Function Documentation . 441
30.35.3 Variable Documentation . 444

30.36Scheduling Context Hypervisor - Linear Programming . 445
30.36.1 Detailed Description . 445
30.36.2 Function Documentation . 445

30.37Modularized Scheduler Interface . 449
30.37.1 Detailed Description . 453
30.37.2 Data Structure Documentation . 453
30.37.3 Macro Definition Documentation . 457
30.37.4 Enumeration Type Documentation . 459
30.37.5 Function Documentation . 459

30.38Clustering Machine . 466
30.38.1 Detailed Description . 466
30.38.2 Macro Definition Documentation . 466
30.38.3 Enumeration Type Documentation . 467
30.38.4 Function Documentation . 468

30.39Interoperability Support . 469
30.39.1 Detailed Description . 470
30.39.2 Enumeration Type Documentation . 471
30.39.3 Function Documentation . 471

30.40Master Slave Extension . 480

Generated by Doxygen

xii CONTENTS

30.40.1 Detailed Description . 480
30.41Random Functions . 481

30.41.1 Detailed Description . 481
30.42Sink . 482

30.42.1 Detailed Description . 482

31 File Index 483
31.1 File List . 483

32 File Documentation 485
32.1 starpu.h File Reference . 485
32.2 starpu_bitmap.h File Reference . 486
32.3 starpu_bound.h File Reference . 486
32.4 starpu_clusters.h File Reference . 487
32.5 starpu_config.h File Reference . 487

32.5.1 Macro Definition Documentation . 490
32.6 starpu_cublas.h File Reference . 490
32.7 starpu_cublas_v2.h File Reference . 490
32.8 starpu_cusparse.h File Reference . 490
32.9 starpu_cuda.h File Reference . 491
32.10starpu_data.h File Reference . 491
32.11starpu_data_filters.h File Reference . 493
32.12starpu_data_interfaces.h File Reference . 495
32.13starpu_deprecated_api.h File Reference . 499
32.14starpu_disk.h File Reference . 499
32.15starpu_driver.h File Reference . 500
32.16starpu_expert.h File Reference . 500
32.17starpu_fxt.h File Reference . 500
32.18starpu_hash.h File Reference . 501
32.19starpu_helper.h File Reference . 501
32.20starpu_heteroprio.h File Reference . 502

32.20.1 Function Documentation . 502
32.21starpu_mic.h File Reference . 503
32.22starpu_mod.f90 File Reference . 503
32.23starpu_mpi.h File Reference . 504
32.24starpu_mpi_lb.h File Reference . 506
32.25starpu_mpi_ms.h File Reference . 506
32.26starpu_opencl.h File Reference . 507
32.27starpu_openmp.h File Reference . 508
32.28starpu_perfmodel.h File Reference . 511
32.29starpu_profiling.h File Reference . 512
32.30starpu_rand.h File Reference . 513
32.31starpu_sched_component.h File Reference . 513
32.32starpu_sched_ctx.h File Reference . 517
32.33starpu_sched_ctx_hypervisor.h File Reference . 519

32.33.1 Function Documentation . 519
32.34starpu_scheduler.h File Reference . 520
32.35starpu_simgrid_wrap.h File Reference . 521
32.36starpu_sink.h File Reference . 521
32.37starpu_stdlib.h File Reference . 521
32.38starpu_task.h File Reference . 522

32.38.1 Macro Definition Documentation . 524
32.39starpu_task_bundle.h File Reference . 524
32.40starpu_task_dep.h File Reference . 524
32.41starpu_task_list.h File Reference . 525
32.42starpu_task_util.h File Reference . 526
32.43starpu_thread.h File Reference . 527

32.43.1 Data Structure Documentation . 529
32.44starpu_thread_util.h File Reference . 530

Generated by Doxygen

CONTENTS 1

32.45starpu_tree.h File Reference . 531
32.46starpu_util.h File Reference . 531
32.47starpu_worker.h File Reference . 532
32.48starpufft.h File Reference . 534
32.49sc_hypervisor.h File Reference . 535
32.50sc_hypervisor_config.h File Reference . 536

32.50.1 Data Structure Documentation . 537
32.51sc_hypervisor_lp.h File Reference . 537
32.52sc_hypervisor_monitoring.h File Reference . 538

32.52.1 Data Structure Documentation . 538
32.53sc_hypervisor_policy.h File Reference . 540
32.54starpurm.h File Reference . 541

33 Deprecated List 545

VI Appendix 547

34 Full Source Code for the ’Scaling a Vector’ Example 549
34.1 Main Application . 549
34.2 CPU Kernel . 550
34.3 CUDA Kernel . 551
34.4 OpenCL Kernel . 551

34.4.1 Invoking the Kernel . 551
34.4.2 Source of the Kernel . 552

35 The GNU Free Documentation License 553
35.1 ADDENDUM: How to use this License for your documents . 557

Index 558

Generated by Doxygen

2 CONTENTS

Generated by Doxygen

Chapter 1

Introduction

1.1 Motivation

The use of specialized hardware such as accelerators or coprocessors offers an interesting approach to overcome
the physical limits encountered by processor architects. As a result, many machines are now equipped with one or
several accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of efforts have been devoted
to offload computation onto such accelerators, very little attention as been paid to portability concerns on the one
hand, and to the possibility of having heterogeneous accelerators and processors to interact on the other hand.
StarPU is a runtime system that offers support for heterogeneous multicore architectures, it not only offers a unified
view of the computational resources (i.e. CPUs and accelerators at the same time), but it also takes care of efficiently
mapping and executing tasks onto an heterogeneous machine while transparently handling low-level issues such
as data transfers in a portable fashion.

1.2 StarPU in a Nutshell

StarPU is a software tool aiming to allow programmers to exploit the computing power of the available CPUs and
GPUs, while relieving them from the need to specially adapt their programs to the target machine and processing
units.
At the core of StarPU is its runtime support library, which is responsible for scheduling application-provided tasks on
heterogeneous CPU/GPU machines. In addition, StarPU comes with programming language support, in the form
of an OpenCL front-end (SOCL OpenCL Extensions).
StarPU's runtime and programming language extensions support a task-based programming model. Applications
submit computational tasks, with CPU and/or GPU implementations, and StarPU schedules these tasks and asso-
ciated data transfers on available CPUs and GPUs. The data that a task manipulates are automatically transferred
among accelerators and the main memory, so that programmers are freed from the scheduling issues and technical
details associated with these transfers.
StarPU takes particular care of scheduling tasks efficiently, using well-known algorithms from the literature (Task
Scheduling Policies). In addition, it allows scheduling experts, such as compiler or computational library developers,
to implement custom scheduling policies in a portable fashion (How To Define A New Scheduling Policy).
The remainder of this section describes the main concepts used in StarPU.
A video is available on the StarPU website https://starpu.gitlabpages.inria.fr/ that presents
these concepts in 26 minutes.
Some tutorials are also available on https://starpu.gitlabpages.inria.fr/tutorials/

1.2.1 Codelet and Tasks

One of the StarPU primary data structures is the codelet. A codelet describes a computational kernel that can
possibly be implemented on multiple architectures such as a CPU, a CUDA device or an OpenCL device.
Another important data structure is the task. Executing a StarPU task consists in applying a codelet on a data set,
on one of the architectures on which the codelet is implemented. A task thus describes the codelet that it uses, but
also which data are accessed, and how they are accessed during the computation (read and/or write). StarPU tasks
are asynchronous: submitting a task to StarPU is a non-blocking operation. The task structure can also specify a
callback function that is called once StarPU has properly executed the task. It also contains optional fields that the

https://starpu.gitlabpages.inria.fr/
https://starpu.gitlabpages.inria.fr/tutorials/

4 Introduction

application may use to give hints to the scheduler (such as priority levels).
By default, task dependencies are inferred from data dependency (sequential coherency) by StarPU. The application
can however disable sequential coherency for some data, and dependencies can be specifically expressed. A task
may be identified by a unique 64-bit number chosen by the application which we refer as a tag. Task dependencies
can be enforced either by the means of callback functions, by submitting other tasks, or by expressing dependencies
between tags (which can thus correspond to tasks that have not yet been submitted).

1.2.2 StarPU Data Management Library

Because StarPU schedules tasks at runtime, data transfers have to be done automatically and “just-in-time'' between
processing units, relieving application programmers from explicit data transfers. Moreover, to avoid unnecessary
transfers, StarPU keeps data where it was last needed, even if was modified there, and it allows multiple copies of
the same data to reside at the same time on several processing units as long as it is not modified.

1.3 Application Taskification

TODO

1.4 Glossary

A codelet records pointers to various implementations of the same theoretical function.
A memory node can be either the main RAM, GPU-embedded memory or a disk memory.
A bus is a link between memory nodes.
A data handle keeps track of replicates of the same data (registered by the application) over various memory
nodes. The data management library manages to keep them coherent.
The home memory node of a data handle is the memory node from which the data was registered (usually the main
memory node).
A task represents a scheduled execution of a codelet on some data handles.
A tag is a rendez-vous point. Tasks typically have their own tag, and can depend on other tags. The value is chosen
by the application.
A worker execute tasks. There is typically one per CPU computation core and one per accelerator (for which a
whole CPU core is dedicated).
A driver drives a given kind of workers. There are currently CPU, CUDA, and OpenCL drivers. They usually start
several workers to actually drive them.
A performance model is a (dynamic or static) model of the performance of a given codelet. Codelets can have
execution time performance model as well as energy consumption performance models.
A data interface describes the layout of the data: for a vector, a pointer for the start, the number of elements and
the size of elements ; for a matrix, a pointer for the start, the number of elements per row, the offset between rows,
and the size of each element ; etc. To access their data, codelet functions are given interfaces for the local memory
node replicates of the data handles of the scheduled task.
Partitioning data means dividing the data of a given data handle (called father) into a series of children data
handles which designate various portions of the former.
A filter is the function which computes children data handles from a father data handle, and thus describes how the
partitioning should be done (horizontal, vertical, etc.)
Acquiring a data handle can be done from the main application, to safely access the data of a data handle from its
home node, without having to unregister it.

1.5 Research Papers

Research papers about StarPU can be found at https://starpu.gitlabpages.inria.fr/publications/.
A good overview is available in the research report at http://hal.archives-ouvertes.fr/inria-00467677.

Generated by Doxygen

https://starpu.gitlabpages.inria.fr/publications/
http://hal.archives-ouvertes.fr/inria-00467677

1.6 StarPU Applications 5

1.6 StarPU Applications

You can first have a look at the chapters Basic Examples and Advanced Examples. A tutorial is also installed in the
directory share/doc/starpu/tutorial/.
Many examples are also available in the StarPU sources in the directory examples/. Simple examples include:

incrementer/ Trivial incrementation test.

basic_examples/ Simple documented Hello world and vector/scalar product (as shown in Basic Examples),
matrix product examples (as shown in Performance Model Example), an example using the blocked matrix
data interface, an example using the variable data interface, and an example using different formats on CPUs
and GPUs.

matvecmult/ OpenCL example from NVidia, adapted to StarPU.

axpy/ AXPY CUBLAS operation adapted to StarPU.

native_fortran/ Example of using StarPU's native Fortran support.

fortran90/ Example of Fortran 90 bindings, using C marshalling wrappers.

fortran/ Example of Fortran 77 bindings, using C marshalling wrappers.

More advanced examples include:

filters/ Examples using filters, as shown in Partitioning Data.

lu/ LU matrix factorization, see for instance xlu_implicit.c

cholesky/ Cholesky matrix factorization, see for instance cholesky_implicit.c.

1.7 Further Reading

The documentation chapters include

• Part 1: StarPU Basics

– Building and Installing StarPU

– Basic Examples

• Part 2: StarPU Quick Programming Guide

– Advanced Examples

– Check List When Performance Are Not There

• Part 3: StarPU Inside

– Tasks In StarPU

– Data Management

– Scheduling

– Scheduling Contexts

– Scheduling Context Hypervisor

– How To Define A New Scheduling Policy

– Debugging Tools

– Online Performance Tools

– Offline Performance Tools

– Frequently Asked Questions

• Part 4: StarPU Extensions

– Out Of Core

Generated by Doxygen

6 Introduction

– MPI Support

– FFT Support

– MIC Xeon Phi Support

– The StarPU Native Fortran Support

– SOCL OpenCL Extensions

– SimGrid Support

– The StarPU OpenMP Runtime Support (SORS)

– Clustering A Machine

• Part 5: StarPU Reference API

– Execution Configuration Through Environment Variables

– Compilation Configuration

– Module Documentation

– File Documentation

– Deprecated List

• Part: Appendix

– Full source code for the ’Scaling a Vector’ example

– The GNU Free Documentation License

Make sure to have had a look at those too!

Generated by Doxygen

Part I

StarPU Basics

Chapter 2

Building and Installing StarPU

2.1 Installing a Binary Package

One of the StarPU developers being a Debian Developer, the packages are well integrated and very uptodate. To
see which packages are available, simply type:

$ apt-cache search starpu

To install what you need, type for example:

$ sudo apt-get install libstarpu-1.3 libstarpu-dev

2.2 Installing from Source

StarPU can be built and installed by the standard means of the GNU autotools. The following chapter is intended to
briefly remind how these tools can be used to install StarPU.

2.2.1 Optional Dependencies

The hwloc (http://www.open-mpi.org/software/hwloc) topology discovery library is not mandatory
to use StarPU but strongly recommended. It allows for topology aware scheduling, which improves performance.
hwloc is available in major free operating system distributions, and for most operating systems. Make sure to not
only install a hwloc or libhwloc package, but also hwloc-devel or libhwloc-dev so as to have hwloc
headers etc.
If libhwloc is installed in a standard location, no option is required, it will be detected automatically, otherwise
--with-hwloc=<directory> should be used to specify its location.
If libhwloc is not available on your system, the option --without-hwloc should be explicitely given when calling
the script configure.

2.2.2 Getting Sources

StarPU's sources can be obtained from the download page of the StarPU website (https://starpu.←↩
gitlabpages.inria.fr/files/).
All releases and the development tree of StarPU are freely available on StarPU SCM server under the LGPL license.
Some releases are available under the BSD license.
The latest release can be downloaded from the StarPU download page (https://starpu.gitlabpages.←↩
inria.fr/files/).
The latest nightly snapshot can be downloaded from the StarPU website (https://starpu.gitlabpages.←↩
inria.fr/files/testing/).
And finally, current development version is also accessible via git. It should only be used if you need the very latest
changes (i.e. less than a day old!).

$ git clone git@gitlab.inria.fr:starpu/starpu.git

http://www.open-mpi.org/software/hwloc
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/testing/
https://starpu.gitlabpages.inria.fr/files/testing/

10 Building and Installing StarPU

2.2.3 Configuring StarPU

Running autogen.sh is not necessary when using the tarball releases of StarPU. However when using the source
code from the git repository, you first need to generate the script configure and the different Makefiles. This
requires the availability of autoconf and automake >= 2.60.

$./autogen.sh

You then need to configure StarPU. Details about options that are useful to give to configure are given in
Compilation Configuration.

$./configure

If configure does not detect some software or produces errors, please make sure to post the contents of the file
config.log when reporting the issue.
By default, the files produced during the compilation are placed in the source directory. As the compilation generates
a lot of files, it is advised to put them all in a separate directory. It is then easier to cleanup, and this allows to
compile several configurations out of the same source tree. To do so, simply enter the directory where you want the
compilation to produce its files, and invoke the script configure located in the StarPU source directory.

$ mkdir build
$ cd build
$../configure

By default, StarPU will be installed in /usr/local/bin, /usr/local/lib, etc. You can specify an installa-
tion prefix other than /usr/local using the option -prefix, for instance:

$../configure --prefix=$HOME/starpu

2.2.4 Building StarPU
$ make

Once everything is built, you may want to test the result. An extensive set of regression tests is provided with Star←↩
PU. Running the tests is done by calling make check. These tests are run every night and the result from the
main profile is publicly available (https://starpu.gitlabpages/files/testing/master/).

$ make check

2.2.5 Installing StarPU

In order to install StarPU at the location which was specified during configuration:

$ make install

If you have let StarPU install in /usr/local/, you additionally need to run

$ sudo ldconfig

so the libraries can be found by the system.
Libtool interface versioning information are included in libraries names (libstarpu-1.3.so, libstarpumpi-1.←↩
3.so and libstarpufft-1.3.so).

2.3 Setting up Your Own Code

2.3.1 Setting Flags for Compiling, Linking and Running Applications

StarPU provides a pkg-config executable to obtain relevant compiler and linker flags. As compiling and linking
an application against StarPU may require to use specific flags or libraries (for instance CUDA or libspe2).
If StarPU was not installed at some standard location, the path of StarPU's library must be specified in the envi-
ronment variable PKG_CONFIG_PATH to allow pkg-config to find it. For example if StarPU was installed in
$STARPU_PATH:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig

Generated by Doxygen

https://starpu.gitlabpages/files/testing/master/

2.3 Setting up Your Own Code 11

The flags required to compile or link against StarPU are then accessible with the following commands:

$ pkg-config --cflags starpu-1.3 # options for the compiler
$ pkg-config --libs starpu-1.3 # options for the linker

Note that it is still possible to use the API provided in the version 1.0 of StarPU by calling pkg-config with
the starpu-1.0 package. Similar packages are provided for starpumpi-1.0 and starpufft-1.0. It is
also possible to use the API provided in the version 0.9 of StarPU by calling pkg-config with the libstarpu
package. Similar packages are provided for libstarpumpi and libstarpufft.
Make sure that pkg-config -libs starpu-1.3 actually produces some output before going further: PK←↩
G_CONFIG_PATH has to point to the place where starpu-1.3.pc was installed during make install.
Also pass the option -static if the application is to be linked statically.
It is also necessary to set the environment variable LD_LIBRARY_PATH to locate dynamic libraries at runtime.

$ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH

And it is useful to get access to the StarPU tools:

$ export PATH=$PATH:$STARPU_PATH/bin

It is then useful to check that StarPU executes correctly and finds your hardware:

$ starpu_machine_display

If it does not, please check the output of lstopo from hwloc and report the issue to the hwloc project, since
this is what StarPU uses to detect the hardware.

A tool is provided to help setting all the environment variables needed by StarPU. Once StarPU is installed in a
specific directory, calling the script bin/starpu_env will set in your current environment the variables STAR←↩
PU_PATH, LD_LIBRARY_PATH, PKG_CONFIG_PATH, PATH and MANPATH.

$ source $STARPU_PATH/bin/starpu_env

2.3.2 Integrating StarPU in a Build System

2.3.2.1 Integrating StarPU in a Make Build System

When using a Makefile, the following lines can be added to set the options for the compiler and the linker:

CFLAGS += $$(pkg-config --cflags starpu-1.3)
LDLIBS += $$(pkg-config --libs starpu-1.3)

If you have a test-starpu.c file containing for instance:

#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(
STARPU_CPU_WORKER));

printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(
STARPU_CUDA_WORKER));

printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(
STARPU_OPENCL_WORKER));

starpu_shutdown();

return 0;
}

You can build it with make test-starpu and run it with ./test-starpu

Generated by Doxygen

12 Building and Installing StarPU

2.3.2.2 Integrating StarPU in a CMake Build System

This section shows a minimal example integrating StarPU in an existing application's CMake build system.
Let's assume we want to build an executable from the following source code using CMake:

#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(

STARPU_CPU_WORKER));
printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(

STARPU_CUDA_WORKER));
printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(
STARPU_OPENCL_WORKER));

starpu_shutdown();

return 0;
}

The CMakeLists.txt file below uses the Pkg-Config support from CMake to autodetect the StarPU installation
and library dependences (such as libhwloc) provided that the PKG_CONFIG_PATH variable is set, and is
sufficient to build a statically-linked executable. This example has been successfully tested with CMake 3.2, though
it may work with earlier CMake 3.x versions.

{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)

find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.3)
if (STARPU_FOUND)

include_directories (${STARPU_INCLUDE_DIRS})
link_directories (${STARPU_STATIC_LIBRARY_DIRS})
link_libraries (${STARPU_STATIC_LIBRARIES})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()

add_executable(hello_starpu hello_starpu.c)

The following CMakeLists.txt implements an alternative, more complex strategy, still relying on Pkg-Config,
but also taking into account additional flags. While more complete, this approach makes CMake's build types
(Debug, Release, ...) unavailable because of the direct affectation to variable CMAKE_C_FLAGS. If both the full
flags support and the build types support are needed, the CMakeLists.txt below may be altered to work
with CMAKE_C_FLAGS_RELEASE, CMAKE_C_FLAGS_DEBUG, and others as needed. This example has been
successfully tested with CMake 3.2, though it may work with earlier CMake 3.x versions.

{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)

find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.3)

This section must appear before ’add_executable’
if (STARPU_FOUND)

CFLAGS other than -I
foreach(CFLAG ${STARPU_CFLAGS_OTHER})

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")
endforeach()

Static LDFLAGS other than -L
foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})

set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
endforeach()

-L directories
link_directories(${STARPU_STATIC_LIBRARY_DIRS})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()

add_executable(hello_starpu hello_starpu.c)

Generated by Doxygen

2.3 Setting up Your Own Code 13

This section must appear after ’add_executable’
if (STARPU_FOUND)

-I directories
target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})

Static -l libs
target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})

endif()

2.3.3 Running a Basic StarPU Application

Basic examples using StarPU are built in the directory examples/basic_examples/ (and installed in $ST←↩
ARPU_PATH/lib/starpu/examples/). You can for example run the example vector_scal.

$./examples/basic_examples/vector_scal
BEFORE: First element was 1.000000
AFTER: First element is 3.140000

When StarPU is used for the first time, the directory $STARPU_HOME/.starpu/ is created, performance models
will be stored in this directory (STARPU_HOME).
Please note that buses are benchmarked when StarPU is launched for the first time. This may take a few minutes,
or less if libhwloc is installed. This step is done only once per user and per machine.

2.3.4 Running a Basic StarPU Application on Microsoft Visual C

Batch files are provided to run StarPU applications under Microsoft Visual C. They are installed in $STARPU_P←↩
ATH/bin/msvc.
To execute a StarPU application, you first need to set the environment variable STARPU_PATH.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_open.bat starpu_simple.c

The batch script will run Microsoft Visual C with a basic project file to run the given application.
The batch script starpu_clean.bat can be used to delete all compilation generated files.
The batch script starpu_exec.bat can be used to compile and execute a StarPU application from the com-
mand prompt.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c

MSVC StarPU Execution
...
/out:hello_world.exe
...
Hello world (params = {1, 2.00000})
Callback function got argument 0000042
c:\....>

2.3.5 Kernel Threads Started by StarPU

StarPU automatically binds one thread per CPU core. It does not use SMT/hyperthreading because kernels are
usually already optimized for using a full core, and using hyperthreading would make kernel calibration rather ran-
dom.
Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU.
While StarPU tasks are executing, the application is not supposed to do computations in the threads it starts itself,
tasks should be used instead.
If the application needs to reserve some cores for its own computations, it can do so with the field starpu_conf←↩
::reserve_ncpus, get the core IDs with starpu_get_next_bindid(), and bind to them with starpu_bind_thread_on().
Another option is for the application to pause StarPU by calling starpu_pause(), then to perform its own computa-
tions, and then to resume StarPU by calling starpu_resume() so that StarPU can execute tasks.

Generated by Doxygen

14 Building and Installing StarPU

2.3.6 Enabling OpenCL

When both CUDA and OpenCL drivers are enabled, StarPU will launch an OpenCL worker for NVIDIA GPUs only if
CUDA is not already running on them. This design choice was necessary as OpenCL and CUDA can not run at the
same time on the same NVIDIA GPU, as there is currently no interoperability between them.
To enable OpenCL, you need either to disable CUDA when configuring StarPU:

$./configure --disable-cuda

or when running applications:

$ STARPU_NCUDA=0 ./application

OpenCL will automatically be started on any device not yet used by CUDA. So on a machine running 4 GPUS, it is
therefore possible to enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing so:

$ STARPU_NCUDA=2 ./application

2.4 Benchmarking StarPU

Some interesting benchmarks are installed among examples in $STARPU_PATH/lib/starpu/examples/.
Make sure to try various schedulers, for instance STARPU_SCHED=dmda.

2.4.1 Task Size Overhead

This benchmark gives a glimpse into how long a task should be (in µs) for StarPU overhead to be low enough
to keep efficiency. Running tasks_size_overhead.sh generates a plot of the speedup of tasks of various
sizes, depending on the number of CPUs being used.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

sp
e
e
d

u
p

number of cores

linear
4096
2048
1024

512
256
128

64
32
16

9
4

2.4.2 Data Transfer Latency

local_pingpong performs a ping-pong between the first two CUDA nodes, and prints the measured latency.

2.4.3 Matrix-Matrix Multiplication

sgemm and dgemm perform a blocked matrix-matrix multiplication using BLAS and cuBLAS. They output the ob-
tained GFlops.

Generated by Doxygen

2.4 Benchmarking StarPU 15

2.4.4 Cholesky Factorization

cholesky_∗ perform a Cholesky factorization (single precision). They use different dependency primitives.

2.4.5 LU Factorization

lu_∗ perform an LU factorization. They use different dependency primitives.

2.4.6 Simulated Benchmarks

It can also be convenient to try simulated benchmarks, if you want to give a try at CPU-GPU scheduling without
actually having a GPU at hand. This can be done by using the SimGrid version of StarPU: first install the SimGrid
simulator from http://simgrid.gforge.inria.fr/ (we tested with SimGrid from 3.11 to 3.16, and 3.18
to 3.25. SimGrid versions 3.25 and above need to be configured with -Denable_msg=ON. Other versions may have
compatibility issues, 3.17 notably does not build at all. MPI simulation does not work with version 3.22). Then
configure StarPU with --enable-simgrid and rebuild and install it, and then you can simulate the performance for a
few virtualized systems shipped along StarPU: attila, mirage, idgraf, and sirocco.
For instance:

$ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
$ export STARPU_HOSTNAME=attila
$ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960*20)) -nblocks 20

Will show the performance of the cholesky factorization with the attila system. It will be interesting to try with different
matrix sizes and schedulers.
Performance models are available for cholesky_∗, lu_∗, ∗gemm, with block sizes 320, 640, or 960 (plus 1440
for sirocco), and for stencil with block size 128x128x128, 192x192x192, and 256x256x256.
Read the chapter SimGrid Support for more information on the SimGrid support.

Generated by Doxygen

http://simgrid.gforge.inria.fr/

16 Building and Installing StarPU

Generated by Doxygen

Chapter 3

Basic Examples

3.1 Hello World

This section shows how to implement a simple program that submits a task to StarPU.

3.1.1 Required Headers

The header starpu.h should be included in any code using StarPU.

#include <starpu.h>

3.1.2 Defining A Codelet

A codelet is a structure that represents a computational kernel. Such a codelet may contain an implementation
of the same kernel on different architectures (e.g. CUDA, x86, ...). For compatibility, make sure that the whole
structure is properly initialized to zero, either by using the function starpu_codelet_init(), or by letting the compiler
implicitly do it as examplified below.
The field starpu_codelet::nbuffers specifies the number of data buffers that are manipulated by the codelet: here
the codelet does not access or modify any data that is controlled by our data management library.
We create a codelet which may only be executed on CPUs. When a CPU core will execute a codelet, it will call the
function cpu_func, which must have the following prototype:

void (*cpu_func)(void *buffers[], void *cl_arg);

In this example, we can ignore the first argument of this function which gives a description of the input and output
buffers (e.g. the size and the location of the matrices) since there is none. We also ignore the second argument
which is a pointer to optional arguments for the codelet.

void cpu_func(void *buffers[], void *cl_arg)
{

printf("Hello world\n");
}

struct starpu_codelet cl =
{

.cpu_funcs = { cpu_func },

.nbuffers = 0
};

3.1.3 Submitting A Task

Before submitting any tasks to StarPU, starpu_init() must be called. The NULL argument specifies that we use the
default configuration. Tasks can then be submitted until the termination of StarPU – done by a call to starpu_←↩
shutdown().
In the example below, a task structure is allocated by a call to starpu_task_create(). This function allocates and fills
the task structure with its default settings, it does not submit the task to StarPU.
The field starpu_task::cl is a pointer to the codelet which the task will execute: in other words, the codelet structure
describes which computational kernel should be offloaded on the different architectures, and the task structure is a
wrapper containing a codelet and the piece of data on which the codelet should operate.

18 Basic Examples

If the field starpu_task::synchronous is non-zero, task submission will be synchronous: the function starpu_task←↩
_submit() will not return until the task has been executed. Note that the function starpu_shutdown() does not
guarantee that asynchronous tasks have been executed before it returns, starpu_task_wait_for_all() can be used
to this effect, or data can be unregistered (starpu_data_unregister()), which will implicitly wait for all the tasks
scheduled to work on it, unless explicitly disabled thanks to starpu_data_set_default_sequential_consistency_flag()
or starpu_data_set_sequential_consistency_flag().

int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined above */

/* starpu_task_submit will be a blocking call. If unset,
starpu_task_wait() needs to be called after submitting the task. */
task->synchronous = 1;

/* submit the task to StarPU */
starpu_task_submit(task);

/* terminate StarPU */
starpu_shutdown();

return 0;
}

3.1.4 Execution Of Hello World
$ make hello_world
cc $(pkg-config --cflags starpu-1.3) hello_world.c -o hello_world $(pkg-config --libs starpu-1.3)
$./hello_world
Hello world

3.1.5 Passing Arguments To The Codelet

The optional field starpu_task::cl_arg field is a pointer to a buffer (of size starpu_task::cl_arg_size) with some pa-
rameters for the kernel described by the codelet. For instance, if a codelet implements a computational kernel that
multiplies its input vector by a constant, the constant could be specified by the means of this buffer, instead of regis-
tering it as a StarPU data. It must however be noted that StarPU avoids making copy whenever possible and rather
passes the pointer as such, so the buffer which is pointed at must be kept allocated until the task terminates, and if
several tasks are submitted with various parameters, each of them must be given a pointer to their own buffer.

struct params
{

int i;
float f;

};

void cpu_func(void *buffers[], void *cl_arg)
{

struct params *params = cl_arg;

printf("Hello world (params = {%i, %f})\n", params->i, params->f);
}

As said before, the field starpu_codelet::nbuffers specifies the number of data buffers which are manipulated by the
codelet. It does not count the argument — the parameter cl_arg of the function cpu_func — since it is not
managed by our data management library, but just contains trivial parameters.
Be aware that this may be a pointer to a copy of the actual buffer, and not the pointer given by the programmer: if
the codelet modifies this buffer, there is no guarantee that the initial buffer will be modified as well: this for instance
implies that the buffer cannot be used as a synchronization medium. If synchronization is needed, data has to be
registered to StarPU, see Vector Scaling.

int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined above */

Generated by Doxygen

3.1 Hello World 19

struct params params = { 1, 2.0f };
task->cl_arg = ¶ms;
task->cl_arg_size = sizeof(params);

/* starpu_task_submit will be a blocking call */
task->synchronous = 1;

/* submit the task to StarPU */
starpu_task_submit(task);

/* terminate StarPU */
starpu_shutdown();

return 0;
}

$ make hello_world
cc $(pkg-config --cflags starpu-1.3) hello_world.c -o hello_world $(pkg-config --libs starpu-1.3)
$./hello_world
Hello world (params = {1, 2.000000})

3.1.6 Defining A Callback

Once a task has been executed, an optional callback function starpu_task::callback_func is called when defined.
While the computational kernel could be offloaded on various architectures, the callback function is always executed
on a CPU. The pointer starpu_task::callback_arg is passed as an argument of the callback function. The prototype
of a callback function must be:

void (*callback_function)(void *);

void callback_func(void *callback_arg)
{

printf("Callback function (arg %x)\n", callback_arg);
}

int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined above */

task->callback_func = callback_func;
task->callback_arg = 0x42;

/* starpu_task_submit will be a blocking call */
task->synchronous = 1;

/* submit the task to StarPU */
starpu_task_submit(task);

/* terminate StarPU */
starpu_shutdown();

return 0;
}

$ make hello_world
cc $(pkg-config --cflags starpu-1.3) hello_world.c -o hello_world $(pkg-config --libs starpu-1.3)
$./hello_world
Hello world
Callback function (arg 42)

3.1.7 Where To Execute A Codelet
struct starpu_codelet cl =
{

.where = STARPU_CPU,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.nbuffers = 0
};

We create a codelet which may only be executed on the CPUs. The optional field starpu_codelet::where is a
bitmask which defines where the codelet may be executed. Here, the value STARPU_CPU means that only CPUs

Generated by Doxygen

20 Basic Examples

can execute this codelet. When the optional field starpu_codelet::where is unset, its value is automatically set based
on the availability of the different fields XXX_funcs.
TODO: explain starpu_codelet::cpu_funcs_name

3.2 Vector Scaling

The previous example has shown how to submit tasks. In this section, we show how StarPU tasks can manipulate
data.
The full source code for this example is given in Full source code for the ’Scaling a Vector’ example.

3.2.1 Source Code of Vector Scaling

Programmers can describe the data layout of their application so that StarPU is responsible for enforcing data
coherency and availability across the machine. Instead of handling complex (and non-portable) mechanisms to
perform data movements, programmers only declare which piece of data is accessed and/or modified by a task,
and StarPU makes sure that when a computational kernel starts somewhere (e.g. on a GPU), its data are available
locally.
Before submitting those tasks, the programmer first needs to declare the different pieces of data to StarPU using
the functions starpu_∗_data_register. To ease the development of applications for StarPU, it is possible
to describe multiple types of data layout. A type of data layout is called an interface. There are different predefined
interfaces available in StarPU: here we will consider the vector interface.
The following lines show how to declare an array of NX elements of type float using the vector interface:

float vector[NX];

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (

uintptr_t)vector, NX, sizeof(vector[0]));

The first argument, called the data handle, is an opaque pointer which designates the array within StarPU. This is
also the structure which is used to describe which data is used by a task. The second argument is the node number
where the data originally resides. Here it is STARPU_MAIN_RAM since the array vector is in the main memory.
Then comes the pointer vector where the data can be found in main memory, the number of elements in the
vector and the size of each element. The following shows how to construct a StarPU task that will manipulate the
vector and a constant factor.

float factor = 3.14;
struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined below */
task->handles[0] = vector_handle; /* First parameter of the codelet */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
task->synchronous = 1;

starpu_task_submit(task);

Since the factor is a mere constant float value parameter, it does not need a preliminary registration, and can just
be passed through the pointer starpu_task::cl_arg like in the previous example. The vector parameter is described
by its handle. starpu_task::handles should be set with the handles of the data, the access modes for the data are
defined in the field starpu_codelet::modes (STARPU_R for read-only, STARPU_W for write-only and STARPU_RW
for read and write access).
The definition of the codelet can be written as follows:

void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* CPU copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

for (i = 0; i < n; i++)
val[i] *= *factor;

}

struct starpu_codelet cl =

Generated by Doxygen

3.3 Vector Scaling on an Hybrid CPU/GPU Machine 21

{
.cpu_funcs = { scal_cpu_func },
.cpu_funcs_name = { "scal_cpu_func" },
.nbuffers = 1,
.modes = { STARPU_RW }

};

The first argument is an array that gives a description of all the buffers passed in the array starpu_task::handles.
The size of this array is given by the field starpu_codelet::nbuffers. For the sake of genericity, this array contains
pointers to the different interfaces describing each buffer. In the case of the vector interface, the location of the
vector (resp. its length) is accessible in the starpu_vector_interface::ptr (resp. starpu_vector_interface::nx) of this
interface. Since the vector is accessed in a read-write fashion, any modification will automatically affect future
accesses to this vector made by other tasks.
The second argument of the function scal_cpu_func contains a pointer to the parameters of the codelet (given
in starpu_task::cl_arg), so that we read the constant factor from this pointer.

3.2.2 Execution of Vector Scaling
$ make vector_scal
cc $(pkg-config --cflags starpu-1.3) vector_scal.c -o vector_scal $(pkg-config --libs starpu-1.3)
$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

3.3 Vector Scaling on an Hybrid CPU/GPU Machine

Contrary to the previous examples, the task submitted in this example may not only be executed by the CPUs, but
also by a CUDA device.

3.3.1 Definition of the CUDA Kernel

The CUDA implementation can be written as follows. It needs to be compiled with a CUDA compiler such as nvcc,
the NVIDIA CUDA compiler driver. It must be noted that the vector pointer returned by STARPU_VECTOR_GET←↩
_PTR is here a pointer in GPU memory, so that it can be passed as such to the kernel call vector_mult_cuda.

#include <starpu.h>

static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}

extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(n, val, *factor)
;

cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);

cudaStreamSynchronize(starpu_cuda_get_local_stream());
}

3.3.2 Definition of the OpenCL Kernel

The OpenCL implementation can be written as follows. StarPU provides tools to compile a OpenCL kernel stored
in a file.

__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)

Generated by Doxygen

22 Basic Examples

{
val[i] *= factor;

}
}

Contrary to CUDA and CPU, STARPU_VECTOR_GET_DEV_HANDLE has to be used, which returns a cl_mem
(which is not a device pointer, but an OpenCL handle), which can be passed as such to the OpenCL kernel. The
difference is important when using partitioning, see Partitioning Data.

#include <starpu.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);

{ /* OpenCL specific code */
id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);

err = starpu_opencl_load_kernel(&kernel, &queue, &programs,
"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}

{ /* OpenCL specific code */
size_t global=n;
size_t local;
size_t s;
cl_device_id device;

starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, &

s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

{ /* OpenCL specific code */
clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);

starpu_opencl_release_kernel(kernel);
}

}

3.3.3 Definition of the Main Code

The CPU implementation is the same as in the previous section.
Here is the source of the main application. You can notice that the fields starpu_codelet::cuda_funcs and starpu←↩
_codelet::opencl_funcs are set to define the pointers to the CUDA and OpenCL implementations of the task.

/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>

Generated by Doxygen

3.3 Vector Scaling on an Hybrid CPU/GPU Machine 23

#define NX 2048

extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);

static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};

#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif

int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;

fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);

/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("

examples/basic_examples/vector_scal_opencl_kernel.cl", &programs, NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an adress on a GPU for instance.

* - the third argument is the adress of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM,

(uintptr_t)vector, NX, sizeof(vector[0]));

float factor = 3.14;

/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;

task->cl = &cl;

/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;

/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);

/* execute the task on any eligible computational ressource */
starpu_task_submit(task);

/* StarPU does not need to manipulate the array anymore so we can stop

Generated by Doxygen

24 Basic Examples

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif

/* terminate StarPU, no task can be submitted after */
starpu_shutdown();

fprintf(stderr, "AFTER First element is %f\n", vector[0]);

return 0;
}

3.3.4 Execution of Hybrid Vector Scaling

The Makefile given at the beginning of the section must be extended to give the rules to compile the CUDA source
code. Note that the source file of the OpenCL kernel does not need to be compiled now, it will be compiled at
run-time when calling the function starpu_opencl_load_opencl_from_file().

CFLAGS += $(shell pkg-config --cflags starpu-1.3)
LDLIBS += $(shell pkg-config --libs starpu-1.3)
CC = gcc

vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

%.o: %.cu
nvcc $(CFLAGS) $< -c $@

clean:
rm -f vector_scal *.o

$ make

and to execute it, with the default configuration:

$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or for example, by disabling CPU devices:

$ STARPU_NCPU=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or by disabling CUDA devices (which may permit to enable the use of OpenCL, see Enabling OpenCL) :

$ STARPU_NCUDA=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

Generated by Doxygen

Part II

StarPU Quick Programming Guide

Chapter 4

Advanced Examples

TODO

28 Advanced Examples

Generated by Doxygen

Chapter 5

Check List When Performance Are Not There

TODO: improve!
To achieve good performance, we give below a list of features which should be checked.
For a start, you can use Offline Performance Tools to get a Gantt chart which will show roughly where time is spent,
and focus correspondingly.

5.1 Check Task Size

Make sure that your tasks are not too small, as the StarPU runtime overhead is not completely zero. As explained
in Task Size Overhead, you can run the script tasks_size_overhead.sh to get an idea of the scalability of
tasks depending on their duration (in µs), on your own system.
Typically, 10µs-ish tasks are definitely too small, the CUDA overhead itself is much bigger than this.
1ms-ish tasks may be a good start, but will not necessarily scale to many dozens of cores, so it's better to try to get
10ms-ish tasks.
Tasks durations can easily be observed when performance models are defined (see Performance Model Exam-
ple) by using the tools starpu_perfmodel_plot or starpu_perfmodel_display (see Performance
Of Codelets)
When using parallel tasks, the problem is even worse since StarPU has to synchronize the tasks execution.

5.2 Configuration Which May Improve Performance

If you do not plan to use support for GPUs or out-of-core, i.e. not use StarPU's ability to manage data coherency be-
tween several memory nodes, the configure option --enable-maxnodes=1 allows to considerably reduce Star←↩
PU's memory management overhead.
The configure option --enable-fast disables all assertions. This makes StarPU more performant for really small
tasks by disabling all sanity checks. Only use this for measurements and production, not for development, since this
will drop all basic checks.

5.3 Data Related Features Which May Improve Performance

link to Data Management
link to Data Prefetch

5.4 Task Related Features Which May Improve Performance

link to Task Granularity
link to Task Submission
link to Task Priorities

30 Check List When Performance Are Not There

5.5 Scheduling Related Features Which May Improve Performance

link to Task Scheduling Policies
link to Task Distribution Vs Data Transfer
link to Energy-based Scheduling
link to Static Scheduling

5.6 CUDA-specific Optimizations

For proper overlapping of asynchronous GPU data transfers, data has to be pinned by CUDA. Data allocated with
starpu_malloc() is always properly pinned. If the application registers to StarPU some data which has not been
allocated with starpu_malloc(), starpu_memory_pin() should be called to pin the data memory.
Due to CUDA limitations, StarPU will have a hard time overlapping its own communications and the codelet compu-
tations if the application does not use a dedicated CUDA stream for its computations instead of the default stream,
which synchronizes all operations of the GPU. The function starpu_cuda_get_local_stream() returns a stream which
can be used by all CUDA codelet operations to avoid this issue. For instance:

func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

as well as the use of cudaMemcpyAsync(), etc. for each CUDA operation one needs to use a version that takes
the a stream parameter.
If the kernel uses its own non-default stream, one can synchronize this stream with the StarPU-provided stream this
way:

cudaEvent_t event;
call_kernel_with_its_own_stream()
cudaEventCreateWithFlags(&event, cudaEventDisableTiming);
cudaEventRecord(event, get_kernel_stream());
cudaStreamWaitEvent(starpu_cuda_get_local_stream(), event, 0);
cudaEventDestroy(event);

This code makes the StarPU-provided stream wait for a new event, which will be triggered by the completion of the
kernel.
Unfortunately, some CUDA libraries do not have stream variants of kernels. This will seriously lower the potential
for overlapping. If some CUDA calls are made without specifying this local stream, synchronization needs to be
explicited with cudaDeviceSynchronize() around these calls, to make sure that they get properly synchronized with
the calls using the local stream. Notably, cudaMemcpy() and cudaMemset() are actually asynchronous and
need such explicit synchronization! Use cudaMemcpyAsync() and cudaMemsetAsync() instead.
Calling starpu_cublas_init() will ensure StarPU to properly call the CUBLAS library functions. Some libraries like
Magma may however change the current stream of CUBLAS v1, one then has to call cublasSetKernel←↩
Stream(starpu_cuda_get_local_stream()) at the beginning of the codelet to make sure that CUBLAS is really
using the proper stream. When using CUBLAS v2, starpu_cublas_get_local_handle() can be called to queue CU←↩
BLAS kernels with the proper configuration.
Similarly, calling starpu_cusparse_init() makes StarPU create CUSPARSE handles on each CUDA device, starpu←↩
_cusparse_get_local_handle() can then be used to queue CUSPARSE kernels with the proper configuration.
If the kernel can be made to only use this local stream or other self-allocated streams, i.e. the whole kernel
submission can be made asynchronous, then one should enable asynchronous execution of the kernel. This means
setting the flag STARPU_CUDA_ASYNC in the corresponding field starpu_codelet::cuda_flags, and dropping the
cudaStreamSynchronize() call at the end of the cuda_func function, so that it returns immediately after
having queued the kernel to the local stream. That way, StarPU will be able to submit and complete data transfers
while kernels are executing, instead of only at each kernel submission. The kernel just has to make sure that StarPU
can use the local stream to synchronize with the kernel startup and completion.
Using the flag STARPU_CUDA_ASYNC also permits to enable concurrent kernel execution, on cards which support
it (Kepler and later, notably). This is enabled by setting the environment variable STARPU_NWORKER_PER_C←↩
UDA to the number of kernels to be executed concurrently. This is useful when kernels are small and do not feed
the whole GPU with threads to run.
Concerning memory allocation, you should really not use cudaMalloc()/ cudaFree() within the kernel,
since cudaFree() introduces a awfully lot of synchronizations within CUDA itself. You should instead add a
parameter to the codelet with the STARPU_SCRATCH mode access. You can then pass to the task a handle

Generated by Doxygen

5.7 OpenCL-specific Optimizations 31

registered with the desired size but with the NULL pointer, the handle can even be shared between tasks, StarPU
will allocate per-task data on the fly before task execution, and reuse the allocated data between tasks.
See examples/pi/pi_redux.c for an example of use.

5.7 OpenCL-specific Optimizations

If the kernel can be made to only use the StarPU-provided command queue or other self-allocated queues, i.e.
the whole kernel submission can be made asynchronous, then one should enable asynchronous execution of the
kernel. This means setting the flag STARPU_OPENCL_ASYNC in the corresponding field starpu_codelet::opencl←↩
_flags and dropping the clFinish() and starpu_opencl_collect_stats() calls at the end of the kernel, so that it
returns immediately after having queued the kernel to the provided queue. That way, StarPU will be able to submit
and complete data transfers while kernels are executing, instead of only at each kernel submission. The kernel just
has to make sure that StarPU can use the command queue it has provided to synchronize with the kernel startup
and completion.

5.8 Detecting Stuck Conditions

It may happen that for some reason, StarPU does not make progress for a long period of time. Reason are some-
times due to contention inside StarPU, but sometimes this is due to external reasons, such as a stuck MPI or CUDA
driver.
export STARPU_WATCHDOG_TIMEOUT=10000 (STARPU_WATCHDOG_TIMEOUT)
allows to make StarPU print an error message whenever StarPU does not terminate any task for 10ms, but lets the
application continue normally. In addition to that,
export STARPU_WATCHDOG_CRASH=1 (STARPU_WATCHDOG_CRASH)
raises SIGABRT in this condition, thus allowing to catch the situation in gdb.
It can also be useful to type handle SIGABRT nopass in gdb to be able to let the process continue, after
inspecting the state of the process.

5.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations

By default, StarPU makes sure to use at most 90% of the memory of GPU devices, moving data in and out of the
device as appropriate, as well as using prefetch and writeback optimizations.
The environment variables STARPU_LIMIT_CUDA_MEM, STARPU_LIMIT_CUDA_devid_MEM, STARPU_LIMI←↩
T_OPENCL_MEM, and STARPU_LIMIT_OPENCL_devid_MEM can be used to control how much (in MiB) of the
GPU device memory should be used at most by StarPU (the default value is to use 90% of the available memory).
By default, the usage of the main memory is not limited, as the default mechanims do not provide means to evict
main memory when it gets too tight. This also means that by default StarPU will not cache buffer allocations in main
memory, since it does not know how much of the system memory it can afford.
The environment variable STARPU_LIMIT_CPU_MEM can be used to specify how much (in MiB) of the main
memory should be used at most by StarPU for buffer allocations. This way, StarPU will be able to cache buffer
allocations (which can be a real benefit if a lot of buffers are involved, or if allocation fragmentation can become a
problem), and when using Out Of Core, StarPU will know when it should evict data out to the disk.
It should be noted that by default only buffer allocations automatically done by StarPU are accounted here, i.e.
allocations performed through starpu_malloc_on_node() which are used by the data interfaces (matrix, vector, etc.).
This does not include allocations performed by the application through e.g. malloc(). It does not include allocations
performed through starpu_malloc() either, only allocations performed explicitly with the STARPU_MALLOC_CO←↩
UNT flag, i.e. by calling

starpu_malloc_flags(STARPU_MALLOC_COUNT)

are taken into account. If the application wants to make StarPU aware of its own allocations, so that StarPU
knows precisely how much data is allocated, and thus when to evict allocation caches or data out to the disk,
starpu_memory_allocate() can be used to specify an amount of memory to be accounted for. starpu_memory←↩
_deallocate() can be used to account freed memory back. Those can for instance be used by data interfaces
with dynamic data buffers: instead of using starpu_malloc_on_node(), they would dynamically allocate data with
malloc()/realloc(), and notify StarPU of the delta by calling starpu_memory_allocate() and starpu_←↩
memory_deallocate().

Generated by Doxygen

32 Check List When Performance Are Not There

starpu_memory_get_total() and starpu_memory_get_available() can be used to get an estimation of how much
memory is available. starpu_memory_wait_available() can also be used to block until an amount of memory be-
comes available, but it may be preferrable to call

starpu_memory_allocate(STARPU_MEMORY_WAIT)

to reserve this amount immediately.

5.10 How To Reduce The Memory Footprint Of Internal Data Structures

It is possible to reduce the memory footprint of the task and data internal structures of StarPU by describing the
shape of your machine and/or your application when calling configure.
To reduce the memory footprint of the data internal structures of StarPU, one can set the --enable-maxcpus, --
enable-maxnumanodes, --enable-maxcudadev, --enable-maxopencldev and --enable-maxnodes configure pa-
rameters to give StarPU the architecture of the machine it will run on, thus tuning the size of the structures to the
machine.
To reduce the memory footprint of the task internal structures of StarPU, one can set the --enable-maxbuffers
configure parameter to give StarPU the maximum number of buffers that a task can use during an execution.
For example, in the Cholesky factorization (dense linear algebra application), the GEMM task uses up to 3 buffers,
so it is possible to set the maximum number of task buffers to 3 to run a Cholesky factorization on StarPU.
The size of the various structures of StarPU can be printed by tests/microbenchs/display_←↩
structures_size.
It is also often useless to submit ∗all∗ the tasks at the same time. Task submission can be blocked when a reason-
able given number of tasks have been submitted, by setting the environment variables STARPU_LIMIT_MIN_SU←↩
BMITTED_TASKS and STARPU_LIMIT_MAX_SUBMITTED_TASKS.
export STARPU_LIMIT_MAX_SUBMITTED_TASKS=10000 export STARPU_LIMIT_MIN_SUBM←↩
ITTED_TASKS=9000
will make StarPU block submission when 10000 tasks are submitted, and unblock submission when only 9000 tasks
are still submitted, i.e. 1000 tasks have completed among the 10000 which were submitted when submission was
blocked. Of course this may reduce parallelism if the threshold is set too low. The precise balance depends on the
application task graph.
An idea of how much memory is used for tasks and data handles can be obtained by setting the environment
variable STARPU_MAX_MEMORY_USE to 1.

5.11 How To Reuse Memory

When your application needs to allocate more data than the available amount of memory usable by StarPU (given by
starpu_memory_get_available()), the allocation cache system can reuse data buffers used by previously executed
tasks. For this system to work with MPI tasks, you need to submit tasks progressively instead of as soon as possible,
because in the case of MPI receives, the allocation cache check for reusing data buffers will be done at submission
time, not at execution time.
There is two options to control the task submission flow. The first one is by controlling the number of submitted tasks
during the whole execution. This can be done whether by setting the environment variables STARPU_LIMIT_M←↩
AX_SUBMITTED_TASKS and STARPU_LIMIT_MIN_SUBMITTED_TASKS to tell StarPU when to stop submitting
tasks and when to wake up and submit tasks again, or by explicitely calling starpu_task_wait_for_n_submitted() in
your application code for finest grain control (for example, between two iterations of a submission loop).
The second option is to control the memory size of the allocation cache. This can be done in the application by
using jointly starpu_memory_get_available() and starpu_memory_wait_available() to submit tasks only when there
is enough memory space to allocate the data needed by the task, i.e when enough data are available for reuse in
the allocation cache.

5.12 Performance Model Calibration

Most schedulers are based on an estimation of codelet duration on each kind of processing unit. For this to be
possible, the application programmer needs to configure a performance model for the codelets of the application
(see Performance Model Example for instance). History-based performance models use on-line calibration. StarPU

Generated by Doxygen

5.12 Performance Model Calibration 33

will automatically calibrate codelets which have never been calibrated yet, and save the result in $STARPU_HO←↩
ME/.starpu/sampling/codelets. The models are indexed by machine name.
By default, StarPU stores separate performance models according to the hostname of the system. To avoid having to
calibrate performance models for each node of a homogeneous cluster for instance, the model can be shared by us-
ing export STARPU_HOSTNAME=some_global_name (STARPU_HOSTNAME), where some_global←↩
_name is the name of the cluster for instance, which thus overrides the hostname of the system.
By default, StarPU stores separate performance models for each GPU. To avoid having to calibrate perfor-
mance models for each GPU of a homogeneous set of GPU devices for instance, the model can be shared
by setting export STARPU_PERF_MODEL_HOMOGENEOUS_CUDA=1 (STARPU_PERF_MODEL_HOMOG←↩
ENEOUS_CUDA), export STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL=1 (STARPU_PERF_MOD←↩
EL_HOMOGENEOUS_OPENCL), export STARPU_PERF_MODEL_HOMOGENEOUS_MIC=1 (STARPU_P←↩
ERF_MODEL_HOMOGENEOUS_MIC), export STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS=1 (S←↩
TARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS) depending on your GPU device type.
To force continuing calibration, use export STARPU_CALIBRATE=1 (STARPU_CALIBRATE). This may be
necessary if your application has not-so-stable performance. StarPU will force calibration (and thus ignore the
current result) until 10 (_STARPU_CALIBRATION_MINIMUM) measurements have been made on each archi-
tecture, to avoid bad scheduling decisions just because the first measurements were not so good.
Note that StarPU will not record the very first measurement for a given codelet and a given size, because it would
most often be hit by computation library loading or initialization. StarPU will also throw measurements away if it
notices that after computing an average execution time, it notices that most subsequent tasks have an execution
time largely outside the computed average ("Too big deviation for model..." warning messages). By looking at the
details of the message and their reported measurements, it can highlight that your computation library really has
non-stable measurements, which is probably an indication of an issue in the computation library, or the execution
environment (e.g. rogue daemons).
Details on the current performance model status can be obtained with the tool starpu_perfmodel_←↩
display: the option -l lists the available performance models, and the option -s allows to choose the per-
formance model to be displayed. The result looks like:

$ starpu_perfmodel_display -s starpu_slu_lu_model_11
performance model for cpu_impl_0
hash size flops mean dev n
914f3bef 1048576 0.000000e+00 2.503577e+04 1.982465e+02 8
3e921964 65536 0.000000e+00 5.527003e+02 1.848114e+01 7
e5a07e31 4096 0.000000e+00 1.717457e+01 5.190038e+00 14
...

which shows that for the LU 11 kernel with a 1MiB matrix, the average execution time on CPUs was about 25ms,
with a 0.2ms standard deviation, over 8 samples. It is a good idea to check this before doing actual performance
measurements.
A graph can be drawn by using the tool starpu_perfmodel_plot:

$ starpu_perfmodel_plot -s starpu_slu_lu_model_11
4096 16384 65536 262144 1048576 4194304
$ gnuplot starpu_starpu_slu_lu_model_11.gp
$ gv starpu_starpu_slu_lu_model_11.eps

Generated by Doxygen

34 Check List When Performance Are Not There

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
 (

m
s
)

Total data size

Model for codelet starpu_slu_lu_model_11.averell1

Average cpu_impl_0
Average cuda_0_impl_0
Average cuda_1_impl_0

If a kernel source code was modified (e.g. performance improvement), the calibration information is stale and
should be dropped, to re-calibrate from start. This can be done by using export STARPU_CALIBRATE=2
(STARPU_CALIBRATE).
Note: history-based performance models get calibrated only if a performance-model-based scheduler is chosen.
The history-based performance models can also be explicitly filled by the application without execution, if e.g. the
application already has a series of measurements. This can be done by using starpu_perfmodel_update_history(),
for instance:

static struct starpu_perfmodel perf_model =
{

.type = STARPU_HISTORY_BASED,

.symbol = "my_perfmodel",
};

struct starpu_codelet cl =
{

.cuda_funcs = { cuda_func1, cuda_func2 },

.nbuffers = 1,

.modes = {STARPU_W},

.model = &perf_model
};

void feed(void)
{

struct my_measure *measure;
struct starpu_task task;
starpu_task_init(&task);

task.cl = &cl;

for (measure = &measures[0]; measure < measures[last]; measure++)
{

starpu_data_handle_t handle;
starpu_vector_data_register(&handle, -1, 0, measure->size, sizeof(float)

);
task.handles[0] = handle;
starpu_perfmodel_update_history(&perf_model, &task,

STARPU_CUDA_DEFAULT + measure->cudadev, 0, measure->implementation, measure->time);
starpu_task_clean(&task);
starpu_data_unregister(handle);

}
}

Generated by Doxygen

5.13 Profiling 35

Measurement has to be provided in milliseconds for the completion time models, and in Joules for the energy
consumption models.

5.13 Profiling

A quick view of how many tasks each worker has executed can be obtained by setting export STARPU_WO←↩
RKER_STATS=1 (STARPU_WORKER_STATS). This is a convenient way to check that execution did happen on
accelerators, without penalizing performance with the profiling overhead. STARPU_WORKER_STATS_FILE can
be defined to specify a filename in which to display statistics, by default statistics are printed on the standard error
stream.
A quick view of how much data transfers have been issued can be obtained by setting export STARPU_BUS←↩
_STATS=1 (STARPU_BUS_STATS). STARPU_BUS_STATS_FILE can be defined to specify a filename in which
to display statistics, by default statistics are printed on the standard error stream.
More detailed profiling information can be enabled by using export STARPU_PROFILING=1 (STARPU_P←↩
ROFILING) or by calling starpu_profiling_status_set() from the source code. Statistics on the execution can then
be obtained by using export STARPU_BUS_STATS=1 and export STARPU_WORKER_STATS=1 . More
details on performance feedback are provided in the next chapter.

5.14 Overhead Profiling

Offline Performance Tools can already provide an idea of to what extent and which part of StarPU brings an overhead
on the execution time. To get a more precise analysis of which parts of StarPU bring the most overhead, gprof
can be used.
First, recompile and reinstall StarPU with gprof support:

../configure --enable-perf-debug --disable-shared --disable-build-tests --disable-build-examples

Make sure not to leave a dynamic version of StarPU in the target path: remove any remaining libstarpu-∗.so
Then relink your application with the static StarPU library, make sure that running ldd on your application does not
mention any libstarpu (i.e. it's really statically-linked).

gcc test.c -o test $(pkg-config --cflags starpu-1.3) $(pkg-config --libs starpu-1.3)

Now you can run your application, this will create a file gmon.out in the current directory, it can be processed by
running gprof on your application:

gprof ./test

This will dump an analysis of the time spent in StarPU functions.

Generated by Doxygen

36 Check List When Performance Are Not There

Generated by Doxygen

Part III

StarPU Inside

Chapter 6

Tasks In StarPU

6.1 Task Granularity

Like any other runtime, StarPU has some overhead to manage tasks. Since it does smart scheduling and data man-
agement, this overhead is not always neglectable. The order of magnitude of the overhead is typically a couple of
microseconds, which is actually quite smaller than the CUDA overhead itself. The amount of work that a task should
do should thus be somewhat bigger, to make sure that the overhead becomes neglectible. The offline performance
feedback can provide a measure of task length, which should thus be checked if bad performance are observed. To
get a grasp at the scalability possibility according to task size, one can run tests/microbenchs/tasks_←↩
size_overhead.sh which draws curves of the speedup of independent tasks of very small sizes. To determine
what task size your application is actually using, one can use starpu_fxt_data_trace, see Data trace and
tasks length .
The choice of scheduler also has impact over the overhead: for instance, the scheduler dmda takes time to make a
decision, while eager does not. tasks_size_overhead.sh can again be used to get a grasp at how much
impact that has on the target machine.

6.2 Task Submission

To let StarPU make online optimizations, tasks should be submitted asynchronously as much as possible. Ideally, all
tasks should be submitted, and mere calls to starpu_task_wait_for_all() or starpu_data_unregister() be done to wait
for termination. StarPU will then be able to rework the whole schedule, overlap computation with communication,
manage accelerator local memory usage, etc.

6.3 Task Priorities

By default, StarPU will consider the tasks in the order they are submitted by the application. If the application
programmer knows that some tasks should be performed in priority (for instance because their output is needed by
many other tasks and may thus be a bottleneck if not executed early enough), the field starpu_task::priority should
be set to provide the priority information to StarPU.

6.4 Task Dependencies

6.4.1 Sequential Consistency

By default, task dependencies are inferred from data dependency (sequential coherency) by StarPU. The application
can however disable sequential coherency for some data, and dependencies can be specifically expressed.
Setting (or unsetting) sequential consistency can be done at the data level by calling starpu_data_set_sequential←↩
_consistency_flag() for a specific data or starpu_data_set_default_sequential_consistency_flag() for all datas.
Setting (or unsetting) sequential consistency can also be done at task level by setting the field starpu_task←↩
::sequential_consistency to 0.
Sequential consistency can also be set (or unset) for each handle of a specific task, this is done by using the field
starpu_task::handles_sequential_consistency. When set, its value should be a array with the number of elements

40 Tasks In StarPU

being the number of handles for the task, each element of the array being the sequential consistency for the i-th
handle of the task. The field can easily be set when calling starpu_task_insert() with the flag STARPU_HANDLE←↩
S_SEQUENTIAL_CONSISTENCY

char *seq_consistency = malloc(cl.nbuffers * sizeof(char));
seq_consistency[0] = 1;
seq_consistency[1] = 1;
seq_consistency[2] = 0;
ret = starpu_task_insert(&cl,

STARPU_RW, handleA, STARPU_RW, handleB, STARPU_RW, handleC,
STARPU_HANDLES_SEQUENTIAL_CONSISTENCY, seq_consistency,
0);

free(seq_consistency);

The internal algorithm used by StarPU to set up implicit dependency is as follows:

if (sequential_consistency(task) == 1)
for(i=0 ; i<STARPU_TASK_GET_NBUFFERS(task) ; i++)

if (sequential_consistency(i-th data, task) == 1)
if (sequential_consistency(i-th data) == 1)

create_implicit_dependency(...)

6.4.2 Tasks And Tags Dependencies

One can explicitely set dependencies between tasks using starpu_task_declare_deps() or starpu_task_declare←↩
_deps_array(). Dependencies between tasks can be expressed through tags associated to a tag with the field
starpu_task::tag_id and using the function starpu_tag_declare_deps() or starpu_tag_declare_deps_array().
The termination of a task can be delayed through the function starpu_task_end_dep_add() which specifies the
number of calls to the function starpu_task_end_dep_release() needed to trigger the task termination. One can
also use starpu_task_declare_end_deps() or starpu_task_declare_end_deps_array() to delay the termination of a
task until the termination of other tasks.

6.5 Setting Many Data Handles For a Task

The maximum number of data a task can manage is fixed by the macro STARPU_NMAXBUFS which has a default
value which can be changed through the configure option --enable-maxbuffers.
However, it is possible to define tasks managing more data by using the field starpu_task::dyn_handles when
defining a task and the field starpu_codelet::dyn_modes when defining the corresponding codelet.

enum starpu_data_access_mode modes[STARPU_NMAXBUFS+1] =
{

STARPU_R, STARPU_R, ...
};

struct starpu_codelet dummy_big_cl =
{

.cuda_funcs = { dummy_big_kernel },

.opencl_funcs = { dummy_big_kernel },

.cpu_funcs = { dummy_big_kernel },

.cpu_funcs_name = { "dummy_big_kernel" },

.nbuffers = STARPU_NMAXBUFS+1,

.dyn_modes = modes
};

task = starpu_task_create();
task->cl = &dummy_big_cl;
task->dyn_handles = malloc(task->cl->nbuffers * sizeof(starpu_data_handle_t));
for(i=0 ; i<task->cl->nbuffers ; i++)
{

task->dyn_handles[i] = handle;
}
starpu_task_submit(task);

starpu_data_handle_t *handles = malloc(dummy_big_cl.nbuffers * sizeof(
starpu_data_handle_t));

for(i=0 ; i<dummy_big_cl.nbuffers ; i++)
{

handles[i] = handle;
}
starpu_task_insert(&dummy_big_cl,

STARPU_VALUE, &dummy_big_cl.nbuffers, sizeof(dummy_big_cl.nbuffers
),

STARPU_DATA_ARRAY, handles, dummy_big_cl.nbuffers,
0);

The whole code for this complex data interface is available in the file examples/basic_examples/dynamic←↩
_handles.c.

Generated by Doxygen

6.6 Setting a Variable Number Of Data Handles For a Task 41

6.6 Setting a Variable Number Of Data Handles For a Task

Normally, the number of data handles given to a task is set with starpu_codelet::nbuffers. This field can however be
set to STARPU_VARIABLE_NBUFFERS, in which case starpu_task::nbuffers must be set, and starpu_task::modes
(or starpu_task::dyn_modes, see Setting Many Data Handles For a Task) should be used to specify the modes for
the handles.

6.7 Using Multiple Implementations Of A Codelet

One may want to write multiple implementations of a codelet for a single type of device and let StarPU choose which
one to run. As an example, we will show how to use SSE to scale a vector. The codelet can be written as follows:

#include <xmmintrin.h>

void scal_sse_func(void *buffers[], void *cl_arg)
{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
unsigned int n_iterations = n/4;
if (n % 4 != 0)

n_iterations++;

__m128 *VECTOR = (__m128*) vector;
__m128 factor __attribute__((aligned(16)));
factor = _mm_set1_ps(*(float *) cl_arg);

unsigned int i;
for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
}

struct starpu_codelet cl =
{

.cpu_funcs = { scal_cpu_func, scal_sse_func },

.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Schedulers which are multi-implementation aware (only dmda and pheft for now) will use the performance models
of all the provided implementations, and pick the one which seems to be the fastest.

6.8 Enabling Implementation According To Capabilities

Some implementations may not run on some devices. For instance, some CUDA devices do not support double
floating point precision, and thus the kernel execution would just fail; or the device may not have enough shared
memory for the implementation being used. The field starpu_codelet::can_execute permits to express this. For
instance:

static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */
props = starpu_cuda_get_device_properties(workerid);
if (props->major >= 2 || props->minor >= 3)
/* At least compute capability 1.3, supports doubles */
return 1;

/* Old card, does not support doubles */
return 0;

}

struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { gpu_func }

.nbuffers = 1,

.modes = { STARPU_RW }
};

This can be essential e.g. when running on a machine which mixes various models of CUDA devices, to take benefit
from the new models without crashing on old models.

Generated by Doxygen

42 Tasks In StarPU

Note: the function starpu_codelet::can_execute is called by the scheduler each time it tries to match a task with a
worker, and should thus be very fast. The function starpu_cuda_get_device_properties() provides a quick access
to CUDA properties of CUDA devices to achieve such efficiency.
Another example is to compile CUDA code for various compute capabilities, resulting with two CUDA functions, e.g.
scal_gpu_13 for compute capability 1.3, and scal_gpu_20 for compute capability 2.0. Both functions can
be provided to StarPU by using starpu_codelet::cuda_funcs, and starpu_codelet::can_execute can then be used to
rule out the scal_gpu_20 variant on a CUDA device which will not be able to execute it:

static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */
if (nimpl == 0)
/* Trying to execute the 1.3 capability variant, we assume it is ok in all cases. */
return 1;

/* Trying to execute the 2.0 capability variant, check that the card can do it. */
props = starpu_cuda_get_device_properties(workerid);
if (props->major >= 2 || props->minor >= 0)
/* At least compute capability 2.0, can run it */
return 1;

/* Old card, does not support 2.0, will not be able to execute the 2.0 variant. */
return 0;

}

struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { scal_gpu_13, scal_gpu_20 },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Another example is having specialized implementations for some given common sizes, for instance here we have a
specialized implementation for 1024x1024 matrices:

static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
{

const struct cudaDeviceProp *props;
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
return 1;

/* Cuda device */
switch (nimpl)
{

case 0:
/* Trying to execute the generic capability variant. */
return 1;

case 1:
{
/* Trying to execute the size == 1024 specific variant. */
struct starpu_matrix_interface *interface = starpu_data_get_interface_on_node
(task->handles[0]);
return STARPU_MATRIX_GET_NX(interface) == 1024 && STARPU_MATRIX_GET_NY
(interface == 1024);

}
}

}

struct starpu_codelet cl =
{

.can_execute = can_execute,

.cpu_funcs = { cpu_func },

.cpu_funcs_name = { "cpu_func" },

.cuda_funcs = { potrf_gpu_generic, potrf_gpu_1024 },

.nbuffers = 1,

.modes = { STARPU_RW }
};

Note that the most generic variant should be provided first, as some schedulers are not able to try the different
variants.

6.9 Insert Task Utility

StarPU provides the wrapper function starpu_task_insert() to ease the creation and submission of tasks.
Here the implementation of a codelet:

Generated by Doxygen

6.9 Insert Task Utility 43

void func_cpu(void *descr[], void *_args)
{

int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
int ifactor;
float ffactor;

starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

*x0 = *x0 * ifactor;

*x1 = *x1 * ffactor;
}

struct starpu_codelet mycodelet =
{

.cpu_funcs = { func_cpu },

.cpu_funcs_name = { "func_cpu" },

.nbuffers = 2,

.modes = { STARPU_RW, STARPU_RW }
};

And the call to the function starpu_task_insert():

starpu_task_insert(&mycodelet,
STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
STARPU_RW, data_handles[0],
STARPU_RW, data_handles[1],
0);

The call to starpu_task_insert() is equivalent to the following code:

struct starpu_task *task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
char *arg_buffer;
size_t arg_buffer_size;
starpu_codelet_pack_args(&arg_buffer, &arg_buffer_size,

STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

task->cl_arg = arg_buffer;
task->cl_arg_size = arg_buffer_size;
int ret = starpu_task_submit(task);

Here a similar call using STARPU_DATA_ARRAY.

starpu_task_insert(&mycodelet,
STARPU_DATA_ARRAY, data_handles, 2,
STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

If some part of the task insertion depends on the value of some computation, the macro STARPU_DATA_AC←↩
QUIRE_CB can be very convenient. For instance, assuming that the index variable i was registered as handle
A_handle[i]:

/* Compute which portion we will work on, e.g. pivot */
starpu_task_insert(&which_index, STARPU_W, i_handle, 0);

/* And submit the corresponding task */
STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R,

starpu_task_insert(&work, STARPU_RW, A_handle[i], 0));

The macro STARPU_DATA_ACQUIRE_CB submits an asynchronous request for acquiring data i for the main
application, and will execute the code given as third parameter when it is acquired. In other words, as soon as the
value of i computed by the codelet which_index can be read, the portion of code passed as third parameter of
STARPU_DATA_ACQUIRE_CB will be executed, and is allowed to read from i to use it e.g. as an index. Note that
this macro is only avaible when compiling StarPU with the compiler gcc.
StarPU also provides a utility function starpu_codelet_unpack_args() to retrieve the STARPU_VALUE arguments
passed to the task. There is several ways of calling this function starpu_codelet_unpack_args().

void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;

starpu_codelet_unpack_args(_args, &ifactor, &ffactor);
}

Generated by Doxygen

44 Tasks In StarPU

void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;

starpu_codelet_unpack_args(_args, &ifactor, 0);
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

}

void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
char buffer[100];

starpu_codelet_unpack_args_and_copyleft(_args, buffer, 100,
&ifactor, 0);

starpu_codelet_unpack_args(buffer, &ffactor);
}

6.10 Getting Task Children

It may be interesting to get the list of tasks which depend on a given task, notably when using implicit dependencies,
since this list is computed by StarPU. starpu_task_get_task_succs() provides it. For instance:

struct starpu_task *tasks[4];
ret = starpu_task_get_task_succs(task, sizeof(tasks)/sizeof(*tasks), tasks);

6.11 Parallel Tasks

StarPU can leverage existing parallel computation libraries by the means of parallel tasks. A parallel task is a
task which is run by a set of CPUs (called a parallel or combined worker) at the same time, by using an existing
parallel CPU implementation of the computation to be achieved. This can also be useful to improve the load balance
between slow CPUs and fast GPUs: since CPUs work collectively on a single task, the completion time of tasks on
CPUs become comparable to the completion time on GPUs, thus relieving from granularity discrepancy concerns.
hwloc support needs to be enabled to get good performance, otherwise StarPU will not know how to better group
cores.
Two modes of execution exist to accomodate with existing usages.

6.11.1 Fork-mode Parallel Tasks

In the Fork mode, StarPU will call the codelet function on one of the CPUs of the combined worker. The codelet
function can use starpu_combined_worker_get_size() to get the number of threads it is allowed to start to achieve
the computation. The CPU binding mask for the whole set of CPUs is already enforced, so that threads created by
the function will inherit the mask, and thus execute where StarPU expected, the OS being in charge of choosing
how to schedule threads on the corresponding CPUs. The application can also choose to bind threads by hand,
using e.g. sched_getaffinity to know the CPU binding mask that StarPU chose.
For instance, using OpenMP (full source is available in examples/openmp/vector_scal.c):

void scal_cpu_func(void *buffers[], void *_args)
{

unsigned i;
float *factor = _args;
struct starpu_vector_interface *vector = buffers[0];
unsigned n = STARPU_VECTOR_GET_NX(vector);
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

#pragma omp parallel for num_threads(starpu_combined_worker_get_size())
for (i = 0; i < n; i++)

val[i] *= *factor;
}

static struct starpu_codelet cl =
{

.modes = { STARPU_RW },

.where = STARPU_CPU,

.type = STARPU_FORKJOIN,

.max_parallelism = INT_MAX,

.cpu_funcs = {scal_cpu_func},

.cpu_funcs_name = {"scal_cpu_func"},

.nbuffers = 1,
};

Generated by Doxygen

6.11 Parallel Tasks 45

Other examples include for instance calling a BLAS parallel CPU implementation (see examples/mult/xgemm.←↩
c).

6.11.2 SPMD-mode Parallel Tasks

In the SPMD mode, StarPU will call the codelet function on each CPU of the combined worker. The codelet function
can use starpu_combined_worker_get_size() to get the total number of CPUs involved in the combined worker, and
thus the number of calls that are made in parallel to the function, and starpu_combined_worker_get_rank() to get
the rank of the current CPU within the combined worker. For instance:

static void func(void *buffers[], void *args)
{

unsigned i;
float *factor = _args;
struct starpu_vector_interface *vector = buffers[0];
unsigned n = STARPU_VECTOR_GET_NX(vector);
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

/* Compute slice to compute */
unsigned m = starpu_combined_worker_get_size();
unsigned j = starpu_combined_worker_get_rank();
unsigned slice = (n+m-1)/m;

for (i = j * slice; i < (j+1) * slice && i < n; i++)
val[i] *= *factor;

}

static struct starpu_codelet cl =
{

.modes = { STARPU_RW },

.type = STARPU_SPMD,

.max_parallelism = INT_MAX,

.cpu_funcs = { func },

.cpu_funcs_name = { "func" },

.nbuffers = 1,
}

Of course, this trivial example will not really benefit from parallel task execution, and was only meant to be simple
to understand. The benefit comes when the computation to be done is so that threads have to e.g. exchange
intermediate results, or write to the data in a complex but safe way in the same buffer.

6.11.3 Parallel Tasks Performance

To benefit from parallel tasks, a parallel-task-aware StarPU scheduler has to be used. When exposed to codelets
with a flag STARPU_FORKJOIN or STARPU_SPMD, the schedulers pheft (parallel-heft) and peager (parallel
eager) will indeed also try to execute tasks with several CPUs. It will automatically try the various available combined
worker sizes (making several measurements for each worker size) and thus be able to avoid choosing a large
combined worker if the codelet does not actually scale so much.
This is however for now only proof of concept, and has not really been optimized yet.

6.11.4 Combined Workers

By default, StarPU creates combined workers according to the architecture structure as detected by hwloc. It
means that for each object of the hwloc topology (NUMA node, socket, cache, ...) a combined worker will be
created. If some nodes of the hierarchy have a big arity (e.g. many cores in a socket without a hierarchy of shared
caches), StarPU will create combined workers of intermediate sizes. The variable STARPU_SYNTHESIZE_ARI←↩
TY_COMBINED_WORKER permits to tune the maximum arity between levels of combined workers.
The combined workers actually produced can be seen in the output of the tool starpu_machine_display
(the environment variable STARPU_SCHED has to be set to a combined worker-aware scheduler such as pheft
or peager).

6.11.5 Concurrent Parallel Tasks

Unfortunately, many environments and librairies do not support concurrent calls.
For instance, most OpenMP implementations (including the main ones) do not support concurrent pragma omp
parallel statements without nesting them in another pragma omp parallel statement, but StarPU does
not yet support creating its CPU workers by using such pragma.

Generated by Doxygen

46 Tasks In StarPU

Other parallel libraries are also not safe when being invoked concurrently from different threads, due to the use of
global variables in their sequential sections for instance.
The solution is then to use only one combined worker at a time. This can be done by setting the field starpu_conf←↩
::single_combined_worker to 1, or setting the environment variable STARPU_SINGLE_COMBINED_WORKER to
1. StarPU will then run only one parallel task at a time (but other CPU and GPU tasks are not affected and can
be run concurrently). The parallel task scheduler will however still try varying combined worker sizes to look for the
most efficient ones.

6.11.6 Synchronization Tasks

For the application conveniency, it may be useful to define tasks which do not actually make any computation, but
wear for instance dependencies between other tasks or tags, or to be submitted in callbacks, etc.
The obvious way is of course to make kernel functions empty, but such task will thus have to wait for a worker to
become ready, transfer data, etc.
A much lighter way to define a synchronization task is to set its starpu_task::cl field to NULL. The task will thus be
a mere synchronization point, without any data access or execution content: as soon as its dependencies become
available, it will terminate, call the callbacks, and release dependencies.
An intermediate solution is to define a codelet with its starpu_codelet::where field set to STARPU_NOWHERE, for
instance:

struct starpu_codelet cl =
{

.where = STARPU_NOWHERE,

.nbuffers = 1,

.modes = { STARPU_R },
}

task = starpu_task_create();
task->cl = &cl;
task->handles[0] = handle;
starpu_task_submit(task);

will create a task which simply waits for the value of handle to be available for read. This task can then be
depended on, etc.

Generated by Doxygen

Chapter 7

Data Management

TODO: intro which mentions consistency among other things

7.1 Data Interface

StarPU provides several data interfaces for programmers to describe the data layout of their application. There are
predefined interfaces already available in StarPU. Users can define new data interfaces as explained in Defining A
New Data Interface. All functions provided by StarPU are documented in Data Interfaces. You will find a short list
below.

7.1.1 Variable Data Interface

A variable is a given-size byte element, typically a scalar. Here an example of how to register a variable data to
StarPU by using starpu_variable_data_register().

float var = 42.0;
starpu_data_handle_t var_handle;
starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (

uintptr_t)&var, sizeof(var));

7.1.2 Vector Data Interface

A vector is a fixed number of elements of a given size. Here an example of how to register a vector data to StarPU
by using starpu_vector_data_register().

float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (

uintptr_t)vector, NX, sizeof(vector[0]));

Vectors can be partitioned into pieces by using starpu_vector_filter_block(). They can also be partitioned with some
overlapping by using starpu_vector_filter_block_shadow(). By default StarPU uses the same size for each piece. If
different sizes are desired, starpu_vector_filter_list() or starpu_vector_filter_list_long() can be used instead. To just
divide in two pieces, starpu_vector_filter_divide_in_2() can be used.

7.1.3 Matrix Data Interface

To register 2-D matrices with a potential padding, one can use the matrix data interface. Here an example of how
to register a matrix data to StarPU by using starpu_matrix_data_register().

float *matrix;
starpu_data_handle_t matrix_handle;
matrix = (float*)malloc(width * height * sizeof(float));
starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (

uintptr_t)matrix, width, width, height, sizeof(float));

2D matrices can be partitioned into 2D matrices along the x dimension by using starpu_matrix_filter_block(), and
along the y dimension by using starpu_matrix_filter_vertical_block(). They can also be partitioned with some over-
lapping by using starpu_matrix_filter_block_shadow() and starpu_matrix_filter_vertical_block_shadow().

48 Data Management

7.1.4 Block Data Interface

To register 3-D matrices with potential paddings on Y and Z dimensions, one can use the block data interface. Here
an example of how to register a block data to StarPU by using starpu_block_data_register().

float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*sizeof(float));
starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (

uintptr_t)block, nx, nx*ny, nx, ny, nz, sizeof(float));

3D matrices can be partitioned along the x dimension by using starpu_block_filter_block(), or along the y dimension
by using starpu_block_filter_vertical_block, or along the z dimension by using starpu_block_filter_depth_block. They
can also be partitioned with some overlapping by using starpu_block_filter_block_shadow(), starpu_block_filter_←↩
vertical_block_shadow(), or starpu_block_filter_depth_block_shadow().

7.1.5 BCSR Data Interface

BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data can be registered to StarPU using
the bcsr data interface. Here an example on how to do so by using starpu_bcsr_data_register().

/*
* We use the following matrix:

* +----------------+

* | 0 1 0 0 |

* | 2 3 0 0 |

* | 4 5 8 9 |

* | 6 7 10 11 |

* +----------------+

* nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]

* colind = [0, 0, 1]

* rowptr = [0, 1, 3]

* r = c = 2

*/

/* Size of the blocks */
int R = 2;
int C = 2;

int NROWS = 2;
int NNZ_BLOCKS = 3; /* out of 4 */
int NZVAL_SIZE = (R*C*NNZ_BLOCKS);

int nzval[NZVAL_SIZE] =
{

0, 1, 2, 3, /* First block */
4, 5, 6, 7, /* Second block */
8, 9, 10, 11 /* Third block */

};
uint32_t colind[NNZ_BLOCKS] =
{

0, /* block-column index for first block in nzval */
0, /* block-column index for second block in nzval */
1 /* block-column index for third block in nzval */

};
uint32_t rowptr[NROWS+1] =
{

0, / * block-index in nzval of the first block of the first row. */
1, / * block-index in nzval of the first block of the second row. */
NNZ_BLOCKS /* number of blocks, to allow an easier element’s access for the kernels */

};

starpu_data_handle_t bcsr_handle;
starpu_bcsr_data_register(&bcsr_handle,

STARPU_MAIN_RAM,
NNZ_BLOCKS,
NROWS,
(uintptr_t) nzval,
colind,
rowptr,
0, /* firstentry */
R,
C,
sizeof(nzval[0]));

StarPU provides an example on how to deal with such matrices in examples/spmv.
BCSR data handles can be partitioned into its dense matrix blocks by using starpu_bcsr_filter_canonical_block(),
or split into other BCSR data handles by using starpu_bcsr_filter_vertical_block() (but only split along the leading
dimension is supported, i.e. along adjacent nnz blocks)

Generated by Doxygen

7.2 Data Management 49

7.1.6 CSR Data Interface

TODO
CSR data handles can be partitioned into vertical CSR matrices by using starpu_csr_filter_vertical_block().

7.1.7 Data Interface with Variable Size

Tasks are actually allowed to change the size of data interfaces.
The simplest case is just changing the amount of data actually used within the allocated buffer. This is for instance
implemented for the matrix interface: one can set the new NX/NY values with STARPU_MATRIX_SET_NX(), STA←↩
RPU_MATRIX_SET_NY(), and STARPU_MATRIX_SET_LD() at the end of the task implementation. Data transfers
achieved by StarPU will then use these values instead of the whole allocated size. The values of course need to
be set within the original allocation. To reserve room for increasing the NX/NY values, one can use starpu_←↩
matrix_data_register_allocsize() instead of starpu_matrix_data_register(), to specify the allocation size to be used
instead of the default NX∗NY∗ELEMSIZE. To support this, the data interface has to implement the starpu_data_←↩
interface_ops::alloc_footprint and starpu_data_interface_ops::alloc_compare methods, for proper StarPU allocation
management.
A more involved case is changing the amount of allocated data. The task implementation can just reallocate the
buffer during its execution, and set the proper new values in the interface structure, e.g. nx, ny, ld, etc. so that the
StarPU core knows the new data layout. The starpu_data_interface_ops structure however then needs to have the
starpu_data_interface_ops::dontcache field set to 1, to prevent StarPU from trying to perform any cached allocation,
since the allocated size will vary. An example is available in tests/datawizard/variable_size.c. The
example uses its own data interface so as to contain some simulation information for data growth, but the principle
can be applied for any data interface.
The principle is to use starpu_malloc_on_node_flags to make the new allocation, and use starpu_←↩
free_on_node_flags to release any previous allocation. The flags have to be precisely like in the example:

unsigned workerid = starpu_worker_get_id_check();
unsigned dst_node = starpu_worker_get_memory_node(workerid);
interface->ptr = starpu_malloc_on_node_flags(dst_node, size + increase,

STARPU_MALLOC_PINNED | STARPU_MALLOC_COUNT | STARPU_MEMORY_OVERFLOW
);

starpu_free_on_node_flags(dst_node, old, size, STARPU_MALLOC_PINNED
| STARPU_MALLOC_COUNT | STARPU_MEMORY_OVERFLOW);

interface->size += increase;

so that the allocated area has the expected properties and the allocation is accounted for properly.
Depending on the interface (vector, CSR, etc.) you may have to fix several members of the data interface: e.g. both
nx and allocsize for vectors, and store the pointer both in ptr and dev_handle.
Some interfaces make a distinction between the actual number of elements stored in the data and the actually
allocated buffer. For instance, the vector interface uses the nx field for the former, and the allocsize for the
latter. This allows for lazy reallocation to avoid reallocating the buffer everytime to exactly match the actual number
of elements. Computations and data transfers will use nx field, while allocation functions will use the allocsize.
One just has to make sure that allocsize is always bigger or equal to nx.
Important note: one can not change the size of a partitioned data.

7.2 Data Management

When the application allocates data, whenever possible it should use the starpu_malloc() function, which will ask
CUDA or OpenCL to make the allocation itself and pin the corresponding allocated memory, or to use the starpu←↩
_memory_pin() function to pin memory allocated by other ways, such as local arrays. This is needed to permit
asynchronous data transfer, i.e. permit data transfer to overlap with computations. Otherwise, the trace will show
that the DriverCopyAsync state takes a lot of time, this is because CUDA or OpenCL then reverts to syn-
chronous transfers.
The application can provide its own allocation function by calling starpu_malloc_set_hooks(). StarPU will then use
them for all data handle allocations in the main memory.
By default, StarPU leaves replicates of data wherever they were used, in case they will be re-used by other tasks,
thus saving the data transfer time. When some task modifies some data, all the other replicates are invalidated,
and only the processing unit which ran this task will have a valid replicate of the data. If the application knows that
this data will not be re-used by further tasks, it should advise StarPU to immediately replicate it to a desired list of
memory nodes (given through a bitmask). This can be understood like the write-through mode of CPU caches.

Generated by Doxygen

50 Data Management

starpu_data_set_wt_mask(img_handle, 1<<0);

will for instance request to always automatically transfer a replicate into the main memory (node 0), as bit 0 of the
write-through bitmask is being set.

starpu_data_set_wt_mask(img_handle, ~0U);

will request to always automatically broadcast the updated data to all memory nodes.
Setting the write-through mask to ∼0U can also be useful to make sure all memory nodes always have a copy of
the data, so that it is never evicted when memory gets scarse.
Implicit data dependency computation can become expensive if a lot of tasks access the same piece of data. If no
dependency is required on some piece of data (e.g. because it is only accessed in read-only mode, or because write
accesses are actually commutative), use the function starpu_data_set_sequential_consistency_flag() to disable
implicit dependencies on this data.
In the same vein, accumulation of results in the same data can become a bottleneck. The use of the mode STA←↩
RPU_REDUX permits to optimize such accumulation (see Data Reduction). To a lesser extent, the use of the flag
STARPU_COMMUTE keeps the bottleneck (see Commute Data Access), but at least permits the accumulation to
happen in any order.
Applications often need a data just for temporary results. In such a case, registration can be made without an initial
value, for instance this produces a vector data:

starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));

StarPU will then allocate the actual buffer only when it is actually needed, e.g. directly on the GPU without allocating
in main memory.
In the same vein, once the temporary results are not useful any more, the data should be thrown away. If the handle
is not to be reused, it can be unregistered:

starpu_data_unregister_submit(handle);

actual unregistration will be done after all tasks working on the handle terminate.
If the handle is to be reused, instead of unregistering it, it can simply be invalidated:

starpu_data_invalidate_submit(handle);

the buffers containing the current value will then be freed, and reallocated only when another task writes some value
to the handle.

7.3 Data Prefetch

The scheduling policies heft, dmda and pheft perform data prefetch (see STARPU_PREFETCH): as soon as
a scheduling decision is taken for a task, requests are issued to transfer its required data to the target processing
unit, if needed, so that when the processing unit actually starts the task, its data will hopefully be already available
and it will not have to wait for the transfer to finish.
The application may want to perform some manual prefetching, for several reasons such as excluding initial data
transfers from performance measurements, or setting up an initial statically-computed data distribution on the ma-
chine before submitting tasks, which will thus guide StarPU toward an initial task distribution (since StarPU will try
to avoid further transfers).
This can be achieved by giving the function starpu_data_prefetch_on_node() the handle and the desired target
memory node. The starpu_data_idle_prefetch_on_node() variant can be used to issue the transfer only when the
bus is idle.
Conversely, one can advise StarPU that some data will not be useful in the close future by calling starpu_data_←↩
wont_use(). StarPU will then write its value back to its home node, and evict it from GPUs when room is needed.

7.4 Partitioning Data

An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:

#define NX 1048576
#define PARTS 16
int vector[NX];
starpu_data_handle_t handle;

Generated by Doxygen

7.5 Asynchronous Partitioning 51

/* Declare data to StarPU */
starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)

vector, NX, sizeof(vector[0]));

/* Partition the vector in PARTS sub-vectors */
struct starpu_data_filter f =
{

.filter_func = starpu_vector_filter_block,

.nchildren = PARTS
};
starpu_data_partition(handle, &f);

The task submission then uses the function starpu_data_get_sub_data() to retrieve the sub-handles to be passed
as tasks parameters.

/* Submit a task on each sub-vector */
for (i=0; i<starpu_data_get_nb_children(handle); i++)
{

/* Get subdata number i (there is only 1 dimension) */
starpu_data_handle_t sub_handle = starpu_data_get_sub_data(

handle, 1, i);
struct starpu_task *task = starpu_task_create();

task->handles[0] = sub_handle;
task->cl = &cl;
task->synchronous = 1;
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);
}

Partitioning can be applied several times, see examples/basic_examples/mult.c and examples/filters/.
Wherever the whole piece of data is already available, the partitioning will be done in-place, i.e. without allocating
new buffers but just using pointers inside the existing copy. This is particularly important to be aware of when using
OpenCL, where the kernel parameters are not pointers, but cl_mem handles. The kernel thus needs to be also
passed the offset within the OpenCL buffer:

void opencl_func(void *buffers[], void *cl_arg)
{

cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);

...
clSetKernelArg(kernel, 0, sizeof(vector), &vector);
clSetKernelArg(kernel, 1, sizeof(offset), &offset);
...

}

And the kernel has to shift from the pointer passed by the OpenCL driver:

__kernel void opencl_kernel(__global int *vector, unsigned offset)
{

block = (__global void *)block + offset;
...

}

When the sub-data is not of the same type as the original data, the starpu_data_filter::get_child_ops field needs to
be set appropriately for StarPU to know which type should be used.
StarPU provides various interfaces and filters for matrices, vectors, etc., but applications can also write their own
data interfaces and filters, see examples/interface and examples/filters/custom_mf for an exam-
ple, and see Defining A New Data Interface and Defining A New Data Filter for documentation.

7.5 Asynchronous Partitioning

The partitioning functions described in the previous section are synchronous: starpu_data_partition() and starpu←↩
_data_unpartition() both wait for all the tasks currently working on the data. This can be a bottleneck for the
application.
An asynchronous API also exists, it works only on handles with sequential consistency. The principle is to first plan
the partitioning, which returns data handles of the partition, which are not functional yet. When submitting tasks,
one can mix using the handles of the partition, of the whole data. One can even partition recursively and mix using
handles at different levels of the recursion. Of course, StarPU will have to introduce coherency synchronization.

Generated by Doxygen

52 Data Management

fmultiple_submit_implicit is a complete example using this technique. One can also look at
fmultiple_submit_readonly which contains the explicit coherency synchronization which are auto-
matically introduced by StarPU for fmultiple_submit_implicit.
In short, we first register a matrix and plan the partitioning:

starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)
matrix, NX, NX, NY, sizeof(matrix[0]));

struct starpu_data_filter f_vert =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = PARTS
};
starpu_data_partition_plan(handle, &f_vert, vert_handle);

starpu_data_partition_plan() returns the handles for the partition in vert_handle.
One can then submit tasks working on the main handle, and tasks working on vert_handle handles. Between
using the main handle and vert_handle handles, StarPU will automatically call starpu_data_partition_submit()
and starpu_data_unpartition_submit().
All this code is asynchronous, just submitting which tasks, partitioning and unpartitioning will be done at runtime.
Planning several partitioning of the same data is also possible, StarPU will unpartition and repartition as needed
when mixing accesses of different partitions. If data access is done in read-only mode, StarPU will allow the different
partitioning to coexist. As soon as a data is accessed in read-write mode, StarPU will automatically unpartition
everything and activate only the partitioning leading to the data being written to.
For instance, for a stencil application, one can split a subdomain into its interior and halos, and then just submit a
task updating the whole subdomain, then submit MPI sends/receives to update the halos, then submit again a task
updating the whole subdomain, etc. and StarPU will automatically partition/unpartition each time.

7.6 Manual Partitioning

One can also handle partitioning by hand, by registering several views on the same piece of data. The idea is then
to manage the coherency of the various views through the common buffer in the main memory. fmultiple_←↩
manual is a complete example using this technique.
In short, we first register the same matrix several times:

starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)
matrix, NX, NX, NY, sizeof(matrix[0]));

for (i = 0; i < PARTS; i++)
starpu_matrix_data_register(&vert_handle[i], STARPU_MAIN_RAM

, (uintptr_t)&matrix[0][i*(NX/PARTS)], NX, NX/PARTS, NY, sizeof(matrix[0][0]));

Since StarPU is not aware that the two handles are actually pointing to the same data, we have a danger of
inadvertently submitting tasks to both views, which will bring a mess since StarPU will not guarantee any coherency
between the two views. To make sure we don't do this, we invalidate the view that we will not use:

for (i = 0; i < PARTS; i++)
starpu_data_invalidate(vert_handle[i]);

Then we can safely work on handle.
When we want to switch to the vertical slice view, all we need to do is bring coherency between them by running an
empty task on the home node of the data:

struct starpu_codelet cl_switch =
{

.where = STARPU_NOWHERE,

.nbuffers = 3,

.specific_nodes = 1,

.nodes = { STARPU_MAIN_RAM, STARPU_MAIN_RAM, STARPU_MAIN_RAM },
};

ret = starpu_task_insert(&cl_switch, STARPU_RW, handle,
STARPU_W, vert_handle[0],
STARPU_W, vert_handle[1],
0);

The execution of the switch task will get back the matrix data into the main memory, and thus the vertical slices
will get the updated value there.
Again, we prefer to make sure that we don't accidentally access the matrix through the whole-matrix handle:

starpu_data_invalidate_submit(handle);

Generated by Doxygen

7.7 Handles data buffer pointers 53

Note: when enabling a set of handles in this way, the set must not have any overlapping, i.e. the handles of the set
must not have any part of data in common, otherwise StarPU will not properly handle concurrent accesses between
them.
And now we can start using vertical slices, etc.

7.7 Handles data buffer pointers

A simple understanding of starpu handles is that it's a collection of buffers on each memory node of the machine,
which contain the same data. The picture is however made more complex with the OpenCL support and with
partitioning.
When partitioning a handle, the data buffers of the subhandles will indeed be inside the data buffers of the main
handle (to save transferring data back and forth between the main handle and the subhandles). But in OpenCL,
a cl_mem is not a pointer, but an opaque value on which pointer arithmetic can not be used. That is why data
interfaces contain three members: dev_handle, offset, and ptr. The dev_handle member is what the
allocation function returned, and one can not do arithmetic on it. The offset member is the offset inside the
allocated area, most often it will be 0 because data start at the beginning of the allocated area, but when the handle
is partitioned, the subhandles will have varying offset values, for each subpiece. The ptr member, in the non-
OpenCL case, i.e. when pointer arithmetic can be used on dev_handle, is just the sum of dev_handle and
offset, provided for convenience.
This means that:

• computation kernels can use ptr in non-OpenCL implementations.

• computation kernels have to use dev_handle and offset in the OpenCL implementation.

• allocation methods of data interfaces have to store the value returned by starpu_malloc_on_node in dev_←↩
handle and ptr, and set offset to 0.

• partitioning filters have to copy over dev_handle without modifying it, set in the child different values of
offset, and set ptr accordingly as the sum of dev_handle and offset.

7.8 Defining A New Data Filter

StarPU provides a series of predefined filters in Data Partition, but additional filters can be defined by the application.
The principle is that the filter function just fills the memory location of the i-th subpart of a data. Examples are
provided in src/datawizard/interfaces/∗_filters.c, and see starpu_data_filter::filter_func for the
details. The starpu_filter_nparts_compute_chunk_size_and_offset() helper can be used to compute the division of
pieces of data.

7.9 Data Reduction

In various cases, some piece of data is used to accumulate intermediate results. For instances, the dot product of
a vector, maximum/minimum finding, the histogram of a photograph, etc. When these results are produced along
the whole machine, it would not be efficient to accumulate them in only one place, incurring data transmission each
and access concurrency.
StarPU provides a mode STARPU_REDUX, which permits to optimize this case: it will allocate a buffer on each
worker (lazily), and accumulate intermediate results there. When the data is eventually accessed in the normal
mode STARPU_R, StarPU will collect the intermediate results in just one buffer.
For this to work, the user has to use the function starpu_data_set_reduction_methods() to declare how to initialize
these buffers, and how to assemble partial results.
For instance, cg uses that to optimize its dot product: it first defines the codelets for initialization and reduction:

struct starpu_codelet bzero_variable_cl =
{

.cpu_funcs = { bzero_variable_cpu },

.cpu_funcs_name = { "bzero_variable_cpu" },

.cuda_funcs = { bzero_variable_cuda },

.nbuffers = 1,
}

static void accumulate_variable_cpu(void *descr[], void *cl_arg)

Generated by Doxygen

54 Data Management

{
double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);

*v_dst = *v_dst + *v_src;
}

static void accumulate_variable_cuda(void *descr[], void *cl_arg)
{

double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

struct starpu_codelet accumulate_variable_cl =
{

.cpu_funcs = { accumulate_variable_cpu },

.cpu_funcs_name = { "accumulate_variable_cpu" },

.cuda_funcs = { accumulate_variable_cuda },

.nbuffers = 1,
}

and attaches them as reduction methods for its handle dtq:

starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
starpu_data_set_reduction_methods(dtq_handle, &accumulate_variable_cl, &

bzero_variable_cl);

and dtq_handle can now be used in mode STARPU_REDUX for the dot products with partitioned vectors:

for (b = 0; b < nblocks; b++)
starpu_task_insert(&dot_kernel_cl,

STARPU_REDUX, dtq_handle,
STARPU_R, starpu_data_get_sub_data(v1, 1, b),
STARPU_R, starpu_data_get_sub_data(v2, 1, b),
0);

During registration, we have here provided NULL, i.e. there is no initial value to be taken into account during
reduction. StarPU will thus only take into account the contributions from the tasks dot_kernel_cl. Also, it will
not allocate any memory for dtq_handle before tasks dot_kernel_cl are ready to run.
If another dot product has to be performed, one could unregister dtq_handle, and re-register it. But one can also
call starpu_data_invalidate_submit() with the parameter dtq_handle, which will clear all data from the handle,
thus resetting it back to the initial status register(NULL).
The example cg also uses reduction for the blocked gemv kernel, leading to yet more relaxed dependencies and
more parallelism.
STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI case. This will however not produce
any MPI communication, but just pass STARPU_REDUX to the underlying starpu_task_insert(). It is up to the
application to call starpu_mpi_redux_data(), which posts tasks which will reduce the partial results among MPI
nodes into the MPI node which owns the data. For instance, some hypothetical application which collects partial
results into data res, then uses it for other computation, before looping again with a new reduction:

for (i = 0; i < 100; i++)
{

starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A, STARPU_R, B,

STARPU_REDUX, res, 0);
starpu_mpi_redux_data(MPI_COMM_WORLD, res);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R,

res, 0);
}

7.10 Commute Data Access

By default, the implicit dependencies computed from data access use the sequential semantic. Notably, write
accesses are always serialized in the order of submission. In some applicative cases, the write contributions can
actually be performed in any order without affecting the eventual result. In this case it is useful to drop the strictly
sequential semantic, to improve parallelism by allowing StarPU to reorder the write accesses. This can be done
by using the STARPU_COMMUTE data access flag. Accesses without this flag will however properly be serialized
against accesses with this flag. For instance:

starpu_task_insert(&cl1, STARPU_R, h, STARPU_RW, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle1, STARPU_RW|STARPU_COMMUTE

, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle2, STARPU_RW|STARPU_COMMUTE

, handle, 0);
starpu_task_insert(&cl3, STARPU_R, g, STARPU_RW, handle, 0);

Generated by Doxygen

7.11 Concurrent Data Accesses 55

The two tasks running cl2 will be able to commute: depending on whether the value of handle1 or handle2
becomes available first, the corresponding task running cl2 will start first. The task running cl1 will however
always be run before them, and the task running cl3 will always be run after them.
If a lot of tasks use the commute access on the same set of data and a lot of them are ready at the same time, it
may become interesting to use an arbiter, see Concurrent Data Accesses.

7.11 Concurrent Data Accesses

When several tasks are ready and will work on several data, StarPU is faced with the classical Dining Philosophers
problem, and has to determine the order in which it will run the tasks.
Data accesses usually use sequential ordering, so data accesses are usually already serialized, and thus by default
StarPU uses the Dijkstra solution which scales very well in terms of overhead: tasks will just acquire data one by
one by data handle pointer value order.
When sequential ordering is disabled or the STARPU_COMMUTE flag is used, there may be a lot of concurrent
accesses to the same data, and the Dijkstra solution gets only poor parallelism, typically in some pathological cases
which do happen in various applications. In this case, one can use a data access arbiter, which implements the
classical centralized solution for the Dining Philosophers problem. This is more expensive in terms of overhead
since it is centralized, but it opportunistically gets a lot of parallelism. The centralization can also be avoided by
using several arbiters, thus separating sets of data for which arbitration will be done. If a task accesses data from
different arbiters, it will acquire them arbiter by arbiter, in arbiter pointer value order.
See the tests/datawizard/test_arbiter.cpp example.
Arbiters however do not support the STARPU_REDUX flag yet.

7.12 Temporary Buffers

There are two kinds of temporary buffers: temporary data which just pass results from a task to another, and scratch
data which are needed only internally by tasks.

7.12.1 Temporary Data

Data can sometimes be entirely produced by a task, and entirely consumed by another task, without the need for
other parts of the application to access it. In such case, registration can be done without prior allocation, by using
the special memory node number -1, and passing a zero pointer. StarPU will actually allocate memory only when
the task creating the content gets scheduled, and destroy it on unregistration.
In addition to this, it can be tedious for the application to have to unregister the data, since it will not use its content
anyway. The unregistration can be done lazily by using the function starpu_data_unregister_submit(), which will
record that no more tasks accessing the handle will be submitted, so that it can be freed as soon as the last task
accessing it is over.
The following code examplifies both points: it registers the temporary data, submits three tasks accessing it, and
records the data for automatic unregistration.

starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
starpu_task_insert(&produce_data, STARPU_W, handle, 0);
starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W,

result_handle, 0);
starpu_data_unregister_submit(handle);

The application may also want to see the temporary data initialized on the fly before being used by the task. This can
be done by using starpu_data_set_reduction_methods() to set an initialization codelet (no redux codelet is needed).

7.12.2 Scratch Data

Some kernels sometimes need temporary data to achieve the computations, i.e. a workspace. The application
could allocate it at the start of the codelet function, and free it at the end, but this would be costly. It could also
allocate one buffer per worker (similarly to How To Initialize A Computation Library Once For Each Worker?), but
this would make them systematic and permanent. A more optimized way is to use the data access mode STA←↩
RPU_SCRATCH, as examplified below, which provides per-worker buffers without content consistency. The buffer
is registered only once, using memory node -1, i.e. the application didn't allocate memory for it, and StarPU will
allocate it on demand at task execution.

Generated by Doxygen

56 Data Management

starpu_vector_data_register(&workspace, -1, 0, sizeof(float));
for (i = 0; i < N; i++)

starpu_task_insert(&compute, STARPU_R, input[i], STARPU_SCRATCH
, workspace, STARPU_W, output[i], 0);

StarPU will make sure that the buffer is allocated before executing the task, and make this allocation per-worker: for
CPU workers, notably, each worker has its own buffer. This means that each task submitted above will actually have
its own workspace, which will actually be the same for all tasks running one after the other on the same worker.
Also, if for instance memory becomes scarce, StarPU will notice that it can free such buffers easily, since the content
does not matter.
The example examples/pi uses scratches for some temporary buffer.

7.13 The Multiformat Interface

It may be interesting to represent the same piece of data using two different data structures: one only used on
CPUs, and one only used on GPUs. This can be done by using the multiformat interface. StarPU will be able to
convert data from one data structure to the other when needed. Note that the scheduler dmda is the only one
optimized for this interface. The user must provide StarPU with conversion codelets:

#define NX 1024
struct point array_of_structs[NX];
starpu_data_handle_t handle;

/*
* The conversion of a piece of data is itself a task, though it is created,

* submitted and destroyed by StarPU internals and not by the user. Therefore,

* we have to define two codelets.

* Note that for now the conversion from the CPU format to the GPU format has to

* be executed on the GPU, and the conversion from the GPU to the CPU has to be

* executed on the CPU.

*/
#ifdef STARPU_USE_OPENCL
void cpu_to_opencl_opencl_func(void *buffers[], void *args);
struct starpu_codelet cpu_to_opencl_cl =
{

.where = STARPU_OPENCL,

.opencl_funcs = { cpu_to_opencl_opencl_func },

.nbuffers = 1,

.modes = { STARPU_RW }
};

void opencl_to_cpu_func(void *buffers[], void *args);
struct starpu_codelet opencl_to_cpu_cl =
{

.where = STARPU_CPU,

.cpu_funcs = { opencl_to_cpu_func },

.cpu_funcs_name = { "opencl_to_cpu_func" },

.nbuffers = 1,

.modes = { STARPU_RW }
};
#endif

struct starpu_multiformat_data_interface_ops format_ops =
{
#ifdef STARPU_USE_OPENCL

.opencl_elemsize = 2 * sizeof(float),

.cpu_to_opencl_cl = &cpu_to_opencl_cl,

.opencl_to_cpu_cl = &opencl_to_cpu_cl,
#endif

.cpu_elemsize = 2 * sizeof(float),

...
};

starpu_multiformat_data_register(handle, STARPU_MAIN_RAM, &
array_of_structs, NX, &format_ops);

Kernels can be written almost as for any other interface. Note that STARPU_MULTIFORMAT_GET_CPU_PTR
shall only be used for CPU kernels. CUDA kernels must use STARPU_MULTIFORMAT_GET_CUDA_PTR, and
OpenCL kernels must use STARPU_MULTIFORMAT_GET_OPENCL_PTR. STARPU_MULTIFORMAT_GET_NX
may be used in any kind of kernel.

static void
multiformat_scal_cpu_func(void *buffers[], void *args)
{

struct point *aos;
unsigned int n;

Generated by Doxygen

7.14 Defining A New Data Interface 57

aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
...

}

extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
{

unsigned int n;
struct struct_of_arrays *soa;

soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(
buffers[0]);

n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);

...
}

A full example may be found in examples/basic_examples/multiformat.c.

7.14 Defining A New Data Interface

This section proposes an example how to define your own interface, when the StarPU-provided interface do not fit
your needs. Here we take a dumb example of an array of complex numbers represented by two arrays of double
values.
Let's thus define a new data interface to manage arrays of complex numbers:

/* interface for complex numbers */
struct starpu_complex_interface
{

double *real;
double *imaginary;
int nx;

};

That structure stores enough to describe one buffer of such kind of data. It is used for the buffer stored in the main
memory, another instance is used for the buffer stored in a GPU, etc. A data handle is thus a collection of such
structures, to remember each buffer on each memory node.
Note: one should not take pointers into such structures, because StarPU needs to be able to copy over the content
of it to various places, for instance to efficiently migrate a data buffer from one data handle to another data handle.

7.14.1 Data registration

Registering such a data to StarPU is easily done using the function starpu_data_register(). The last parameter of
the function, interface_complex_ops, will be described below.

void starpu_complex_data_register(starpu_data_handle_t *handle,
unsigned home_node, double *real, double *imaginary, int nx)

{
struct starpu_complex_interface complex =
{

.real = real,

.imaginary = imaginary,

.nx = nx
};

if (interface_complex_ops.interfaceid == STARPU_UNKNOWN_INTERFACE_ID
)

{
interface_complex_ops.interfaceid = starpu_data_interface_get_next_id

();
}

starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
}

The struct starpu_complex_interface complex is here used just to store the parameters that the
user provided to starpu_complex_data_register. starpu_data_register() will first allocate the handle,
and then pass the starpu_complex_interface structure to the starpu_data_interface_ops::register_data←↩
_handle method, which records them within the data handle (it is called once per node by starpu_data_register()):

static void complex_register_data_handle(starpu_data_handle_t handle, unsigned
home_node, void *data_interface)

{
struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)

Generated by Doxygen

58 Data Management

data_interface;

unsigned node;
for (node = 0; node < STARPU_MAXNODES; node++)
{

struct starpu_complex_interface *local_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

local_interface->nx = complex_interface->nx;
if (node == home_node)
{

local_interface->real = complex_interface->real;
local_interface->imaginary = complex_interface->imaginary;

}
else
{

local_interface->real = NULL;
local_interface->imaginary = NULL;

}
}

}

If the application provided a home node, the corresponding pointers will be recorded for that node. Others have
no buffer allocated yet. Possibly the interface needs some dynamic allocation (e.g. to store an array of dimensions
that can have variable size). The corresponding deallocation will then be done in starpu_data_interface_ops←↩
::unregister_data_handle.
Different operations need to be defined for a data interface through the type starpu_data_interface_ops. We only
define here the basic operations needed to run simple applications. The source code for the different functions can
be found in the file examples/interface/complex_interface.c, the details of the hooks to be provided
are documented in starpu_data_interface_ops .

static struct starpu_data_interface_ops interface_complex_ops =
{

.register_data_handle = complex_register_data_handle,

.allocate_data_on_node = complex_allocate_data_on_node,

.copy_methods = &complex_copy_methods,

.get_size = complex_get_size,

.footprint = complex_footprint,

.interfaceid = STARPU_UNKNOWN_INTERFACE_ID,

.interface_size = sizeof(struct starpu_complex_interface),
};

Convenience functions can defined to access the different fields of the complex interface from a StarPU data handle
after a starpu_data_acquire() call:

double *starpu_complex_get_real(starpu_data_handle_t handle)
{

struct starpu_complex_interface *complex_interface =
(struct starpu_complex_interface *) starpu_data_get_interface_on_node

(handle, STARPU_MAIN_RAM);
return complex_interface->real;

}

double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
int starpu_complex_get_nx(starpu_data_handle_t handle);

Similar functions need to be defined to access the different fields of the complex interface from a void ∗ pointer
to be used within codelet implemetations.

#define STARPU_COMPLEX_GET_REAL(interface) (((struct starpu_complex_interface *)(interface))->real)
#define STARPU_COMPLEX_GET_IMAGINARY(interface) (((struct starpu_complex_interface

*)(interface))->imaginary)
#define STARPU_COMPLEX_GET_NX(interface) (((struct starpu_complex_interface *)(interface))->nx)

Complex data interfaces can then be registered to StarPU.

double real = 45.0;
double imaginary = 12.0;
starpu_complex_data_register(&handle1, STARPU_MAIN_RAM, &real, &imaginary, 1);
starpu_task_insert(&cl_display, STARPU_R, handle1, 0);

and used by codelets.

void display_complex_codelet(void *descr[], void *_args)
{

int nx = STARPU_COMPLEX_GET_NX(descr[0]);
double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
int i;

Generated by Doxygen

7.14 Defining A New Data Interface 59

for(i=0 ; i<nx ; i++)
{

fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
}

}

The whole code for this complex data interface is available in the directory examples/interface/.

7.14.2 Data allocation

To be able to run tasks on GPUs etc. StarPU needs to know how to allocate a buffer for the interface. In our
example, two allocations are needed in the allocation complex_allocate_data_on_node() method: one for the real
part and one for the imaginary part.

static starpu_ssize_t complex_allocate_data_on_node(void *data_interface, unsigned node)
{

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
data_interface;

double *addr_real = NULL;
double *addr_imaginary = NULL;
starpu_ssize_t requested_memory = complex_interface->nx * sizeof(complex_interface->real[0]);

addr_real = (double*) starpu_malloc_on_node(node, requested_memory);
if (!addr_real)

goto fail_real;
addr_imaginary = (double*) starpu_malloc_on_node(node, requested_memory);
if (!addr_imaginary)

goto fail_imaginary;

/* update the data properly in consequence */
complex_interface->real = addr_real;
complex_interface->imaginary = addr_imaginary;

return 2*requested_memory;

fail_imaginary:
starpu_free_on_node(node, (uintptr_t) addr_real, requested_memory);

fail_real:
return -ENOMEM;

}

Here we try to allocate the two parts. If either of them fails, we return -ENOMEM. If they succeed, we can record
the obtained pointers and returned the amount of allocated memory (for memory usage accounting).
Conversely, complex_free_data_on_node() frees the two parts:

static void complex_free_data_on_node(void *data_interface, unsigned node)
{

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
data_interface;

starpu_ssize_t requested_memory = complex_interface->nx * sizeof(complex_interface->real[0]);

starpu_free_on_node(node, (uintptr_t) complex_interface->real, requested_memory)
;

starpu_free_on_node(node, (uintptr_t) complex_interface->imaginary,
requested_memory);

}

We we have not made anything particular for GPUs or whatsoever: it is starpu_free_on_node() which knows how
to actually make the allocation, and returns the resulting pointer, be it in main memory, in GPU memory, etc.

7.14.3 Data copy

Now that StarPU knows how to allocate/free a buffer, it needs to be able to copy over data into/from it. Defining a
copy_any_to_any method allows StarPU to perform direct transfers between main memory and GPU memory.

static int copy_any_to_any(void *src_interface, unsigned src_node,
void *dst_interface, unsigned dst_node,
void *async_data)

{
struct starpu_complex_interface *src_complex = src_interface;
struct starpu_complex_interface *dst_complex = dst_interface;
int ret = 0;

if (starpu_interface_copy((uintptr_t) src_complex->real, 0, src_node,
(uintptr_t) dst_complex->real, 0, dst_node,

Generated by Doxygen

60 Data Management

src_complex->nx*sizeof(src_complex->real[0]),
async_data))

ret = -EAGAIN;
if (starpu_interface_copy((uintptr_t) src_complex->imaginary, 0, src_node,

(uintptr_t) dst_complex->imaginary, 0, dst_node,
src_complex->nx*sizeof(src_complex->imaginary[0]),
async_data))

ret = -EAGAIN;
return ret;

}

We here again have no idea what is main memory or GPU memory, or even if the copy is synchronous or
asynchronous: we just call starpu_interface_copy() according to the interface, passing it the pointers, and check-
ing whether it returned -EAGAIN, which means the copy is asynchronous, and StarPU will appropriately wait for it
thanks to the async_data pointer.
This copy method is referenced in a starpu_data_copy_methods structure:

static const struct starpu_data_copy_methods complex_copy_methods =
{

.any_to_any = copy_any_to_any
};

which was referenced in the starpu_data_interface_ops structure above.
Other fields of starpu_data_copy_methods allow to provide optimized variants, notably for the case of 2D or 3D
matrix tiles with non-trivial ld.

7.14.4 Data pack/unpack

The copy methods allow for RAM/GPU transfers, but is not enough for e.g. transferring over MPI. That requires defin-
ing the pack/unpack methods. The principle is that the starpu_data_interface_ops::pack_data method concatenates
the buffer data into a newly-allocated contiguous bytes array, conversely starpu_data_interface_ops::unpack_data
extracts from a bytes array into the buffer data and frees the bytes array.

static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr,
starpu_ssize_t *count)

{
STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

*count = complex_get_size(handle);
if (ptr != NULL)
{

char *data;
data = (void*) starpu_malloc_on_node_flags(node, *count, 0);

*ptr = data;
memcpy(data, complex_interface->real, complex_interface->nx*sizeof(double));
memcpy(data+complex_interface->nx*sizeof(double), complex_interface->imaginary,

complex_interface->nx*sizeof(double));
}

return 0;
}

complex_pack_data() first computes the size to be allocated, then allocates it, and copies over into it the content of
the two real and imaginary arrays.

static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr,
size_t count)

{
char *data = ptr;
STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

STARPU_ASSERT(count == 2 * complex_interface->nx * sizeof(double));
memcpy(complex_interface->real, data, complex_interface->nx*sizeof(double));
memcpy(complex_interface->imaginary, data+complex_interface->nx*sizeof(double), complex_interface->

nx*sizeof(double));

starpu_free_on_node_flags(node, (uintptr_t) ptr, count, 0);

return 0;
}

complex_unpack_data() simply uses memcpy to copy over from the bytes array into the data buffer, and releases
the bytes array.

Generated by Doxygen

7.15 Specifying A Target Node For Task Data 61

7.15 Specifying A Target Node For Task Data

When executing a task on a GPU for instance, StarPU would normally copy all the needed data for the tasks on
the embedded memory of the GPU. It may however happen that the task kernel would rather have some of the
datas kept in the main memory instead of copied in the GPU, a pivoting vector for instance. This can be achieved
by setting the starpu_codelet::specific_nodes flag to 1, and then fill the starpu_codelet::nodes array (or starpu_←↩
codelet::dyn_nodes when starpu_codelet::nbuffers is greater than STARPU_NMAXBUFS) with the node numbers
where data should be copied to, or STARPU_SPECIFIC_NODE_LOCAL to let StarPU copy it to the memory node
where the task will be executed.
::STARPU_SPECIFIC_NODE_CPU can also be used to request data to be put in CPU-accessible memory (and let
StarPU choose the NUMA node). ::STARPU_SPECIFIC_NODE_FAST and ::STARPU_SPECIFIC_NODE_SLOW
can also be used
For instance, with the following codelet:

struct starpu_codelet cl =
{

.cuda_funcs = { kernel },

.nbuffers = 2,

.modes = {STARPU_RW, STARPU_RW},

.specific_nodes = 1,

.nodes = {STARPU_SPECIFIC_NODE_CPU, STARPU_SPECIFIC_NODE_LOCAL},
};

the first data of the task will be kept in the CPU memory, while the second data will be copied to the CUDA GPU as
usual. A working example is available in tests/datawizard/specific_node.c
With the following codelet:

struct starpu_codelet cl =
{

.cuda_funcs = { kernel },

.nbuffers = 2,

.modes = {STARPU_RW, STARPU_RW},

.specific_nodes = 1,

.nodes = {STARPU_SPECIFIC_NODE_LOCAL, STARPU_SPECIFIC_NODE_SLOW},
};

The first data will be copied into fast (but probably size-limited) local memory while the second data will be left
in slow (but large) memory. This makes sense when the kernel does not make so many accesses to the second
data, and thus data being remote e.g. over a PCI bus is not a performance problem, and avoids filling the fast local
memory with data which does not need the performance.

Generated by Doxygen

62 Data Management

Generated by Doxygen

Chapter 8

Scheduling

8.1 Task Scheduling Policies

The basics of the scheduling policy are the following:

• The scheduler gets to schedule tasks (push operation) when they become ready to be executed, i.e. they
are not waiting for some tags, data dependencies or task dependencies.

• Workers pull tasks (pop operation) one by one from the scheduler.

This means scheduling policies usually contain at least one queue of tasks to store them between the time when
they become available, and the time when a worker gets to grab them.
By default, StarPU uses the work-stealing scheduler lws. This is because it provides correct load balance and
locality even if the application codelets do not have performance models. Other non-modelling scheduling policies
can be selected among the list below, thanks to the environment variable STARPU_SCHED. For instance export
STARPU_SCHED=dmda . Use help to get the list of available schedulers.

8.1.1 Non Performance Modelling Policies

• The eager scheduler uses a central task queue, from which all workers draw tasks to work on concurrently.
This however does not permit to prefetch data since the scheduling decision is taken late. If a task has a
non-0 priority, it is put at the front of the queue.

• The random scheduler uses a queue per worker, and distributes tasks randomly according to assumed
worker overall performance.

• The ws (work stealing) scheduler uses a queue per worker, and schedules a task on the worker which
released it by default. When a worker becomes idle, it steals a task from the most loaded worker.

• The lws (locality work stealing) scheduler uses a queue per worker, and schedules a task on the worker
which released it by default. When a worker becomes idle, it steals a task from neighbour workers. It also
takes into account priorities.

• The prio scheduler also uses a central task queue, but sorts tasks by priority specified by the programmer.

• The heteroprio scheduler uses different priorities for the different processing units. This scheduler must be
configured to work correclty and to expect high-performance as described in the corresponding section.

8.1.2 Performance Model-Based Task Scheduling Policies

If (and only if) your application codelets have performance models (Performance Model Example), you should
change the scheduler thanks to the environment variable STARPU_SCHED, to select one of the policies below,
in order to take advantage of StarPU's performance modelling. For instance export STARPU_SCHED=dmda .
Use help to get the list of available schedulers.
Note: Depending on the performance model type chosen, some preliminary calibration runs may be needed for the
model to converge. If the calibration has not been done, or is insufficient yet, or if no performance model is specified
for a codelet, every task built from this codelet will be scheduled using an eager fallback policy.

64 Scheduling

Troubleshooting: Configuring and recompiling StarPU using the --enable-verbose configure option displays
some statistics at the end of execution about the percentage of tasks which have been scheduled by a DM∗ family
policy using performance model hints. A low or zero percentage may be the sign that performance models are not
converging or that codelets do not have performance models enabled.

• The dm (deque model) scheduler takes task execution performance models into account to perform a HEF←↩
T-similar scheduling strategy: it schedules tasks where their termination time will be minimal. The difference
with HEFT is that dm schedules tasks as soon as they become available, and thus in the order they become
available, without taking priorities into account.

• The dmda (deque model data aware) scheduler is similar to dm, but it also takes into account data transfer
time.

• The dmdap (deque model data aware prio) scheduler is similar to dmda, except that it sorts tasks by priority
order, which allows to become even closer to HEFT by respecting priorities after having made the scheduling
decision (but it still schedules tasks in the order they become available).

• The dmdar (deque model data aware ready) scheduler is similar to dmda, but it also privileges tasks whose
data buffers are already available on the target device.

• The dmdas combines dmdap and dmdas: it sorts tasks by priority order, but for a given priority it will privilege
tasks whose data buffers are already available on the target device.

• The dmdasd (deque model data aware sorted decision) scheduler is similar to dmdas, except that when
scheduling a task, it takes into account its priority when computing the minimum completion time, since this
task may get executed before others, and thus the latter should be ignored.

• The heft (heterogeneous earliest finish time) scheduler is a deprecated alias for dmda.

• The pheft (parallel HEFT) scheduler is similar to dmda, it also supports parallel tasks (still experimental).
Should not be used when several contexts using it are being executed simultaneously.

• The peager (parallel eager) scheduler is similar to eager, it also supports parallel tasks (still experimental).
Should not be used when several contexts using it are being executed simultaneously.

8.1.3 Modularized Schedulers

StarPU provides a powerful way to implement schedulers, as documented in Defining A New Modular Scheduling
Policy . It is currently shipped with the following pre-defined Modularized Schedulers :

• modular-eager , modular-eager-prefetching are eager-based Schedulers (without and with prefetching)),
they are
naive schedulers, which try to map a task on the first available resource they find. The prefetching variant
queues several tasks in advance to be able to do data prefetching. This may however degrade load balancing
a bit.

• modular-prio, modular-prio-prefetching, modular-eager-prio are prio-based Schedulers (without / with
prefetching):, similar to Eager-Based Schedulers. Can handle tasks which have a defined priority and sched-
ule them accordingly. The modular-eager-prio variant integrates the eager and priority queue in a single
component. This allows it to do a better job at pushing tasks.

• modular-random, modular-random-prio, modular-random-prefetching, modular-random-prio-
prefetching are random-based Schedulers (without/with prefetching) :
Select randomly a resource to be mapped on for each task.

• modular-ws) implements Work Stealing: Maps tasks to workers in round robin, but allows workers to steal
work from other workers.

• modular-heft, modular-heft2, and modular-heft-prio are HEFT Schedulers :
Maps tasks to workers using a heuristic very close to Heterogeneous Earliest Finish Time. It needs that every
task submitted to StarPU have a defined performance model (Performance Model Calibration) to work effi-
ciently, but can handle tasks without a performance model. modular-heft just takes tasks by order. modular-
heft2 takes at most 5 tasks of the same priority and checks which one fits best. modular-heft-prio is similar

Generated by Doxygen

8.2 Task Distribution Vs Data Transfer 65

to modular-heft, but only decides the memory node, not the exact worker, just pushing tasks to one central
queue per memory node. By default, they sort tasks by priorities and privilege running first a task which has
most of its data already available on the target. These can however be changed with STARPU_SCHED_S←↩
ORTED_ABOVE, STARPU_SCHED_SORTED_BELOW, and STARPU_SCHED_READY .

• modular-heteroprio is a Heteroprio Scheduler:
Maps tasks to worker similarly to HEFT, but first attribute accelerated tasks to GPUs, then not-so-accelerated
tasks to CPUs.

8.2 Task Distribution Vs Data Transfer

Distributing tasks to balance the load induces data transfer penalty. StarPU thus needs to find a balance between
both. The target function that the scheduler dmda of StarPU tries to minimize is alpha ∗ T_execution +
beta ∗ T_data_transfer, where T_execution is the estimated execution time of the codelet (usually
accurate), and T_data_transfer is the estimated data transfer time. The latter is estimated based on bus
calibration before execution start, i.e. with an idle machine, thus without contention. You can force bus re-calibration
by running the tool starpu_calibrate_bus. The beta parameter defaults to 1, but it can be worth trying to
tweak it by using export STARPU_SCHED_BETA=2 (STARPU_SCHED_BETA) for instance, since during real
application execution, contention makes transfer times bigger. This is of course imprecise, but in practice, a rough
estimation already gives the good results that a precise estimation would give.

8.3 Energy-based Scheduling

Note: by default StarPU does not let CPU workers sleep, to let them react to task release as quickly as possible. For
idle time to really let CPU cores save energy, one needs to use the --enable-blocking-drivers configuration option.
If the application can provide some energy consumption performance model (through the field starpu_codelet←↩
::energy_model), StarPU will take it into account when distributing tasks. The target function that the sched-
uler dmda minimizes becomes alpha ∗ T_execution + beta ∗ T_data_transfer + gamma ∗
Consumption , where Consumption is the estimated task consumption in Joules. To tune this parameter,
use export STARPU_SCHED_GAMMA=3000 (STARPU_SCHED_GAMMA) for instance, to express that each
Joule (i.e kW during 1000us) is worth 3000us execution time penalty. Setting alpha and beta to zero permits to
only take into account energy consumption.
This is however not sufficient to correctly optimize energy: the scheduler would simply tend to run all computations
on the most energy-conservative processing unit. To account for the consumption of the whole machine (including
idle processing units), the idle power of the machine should be given by setting export STARPU_IDLE_PO←↩
WER=200 (STARPU_IDLE_POWER) for 200W, for instance. This value can often be obtained from the machine
power supplier, e.g. by running
ipmitool -I lanplus -H mymachine-ipmi -U myuser -P mypasswd sdr type Current
The energy actually consumed by the total execution can be displayed by setting export STARPU_PROFIL←↩
ING=1 STARPU_WORKER_STATS=1 (STARPU_PROFILING and STARPU_WORKER_STATS).
For OpenCL devices, on-line task consumption measurement is currently supported through the CL_PROFILI←↩
NG_POWER_CONSUMED OpenCL extension, implemented in the MoviSim simulator.
For CUDA devices, on-line task consumption measurement is supported on V100 cards and beyond. This however
only works for quite long tasks, since the measurement granularity is about 10ms.
Applications can however provide explicit measurements by using the function starpu_perfmodel_update_history()
(examplified in Performance Model Example with the energy_model performance model). Fine-grain measure-
ment is often not feasible with the feedback provided by the hardware, so the user can for instance run a given task a
thousand times, measure the global consumption for that series of tasks, divide it by a thousand, repeat for varying
kinds of tasks and task sizes, and eventually feed StarPU with these manual measurements through starpu_←↩
perfmodel_update_history(). For instance, for CUDA devices, nvidia-smi -q -d POWER can be used to get
the current consumption in Watt. Multiplying this value by the average duration of a single task gives the consump-
tion of the task in Joules, which can be given to starpu_perfmodel_update_history().
Another way to provide the energy performance is to define a perfmodel with starpu_perfmodel::type STARPU_←↩
PER_ARCH, and set the starpu_perfmodel::arch_cost_function field to a function which shall return the estimated
consumption of the task in Joules. Such a function can for instance use starpu_task_expected_length() on the task
(in µs), multiplied by the typical power consumption of the device, e.g. in W, and divided by 1000000. to get Joules.

Generated by Doxygen

66 Scheduling

8.4 Static Scheduling

In some cases, one may want to force some scheduling, for instance force a given set of tasks to GPU0, another set
to GPU1, etc. while letting some other tasks be scheduled on any other device. This can indeed be useful to guide
StarPU into some work distribution, while still letting some degree of dynamism. For instance, to force execution of
a task on CUDA0:

task->execute_on_a_specific_worker = 1;
task->workerid = starpu_worker_get_by_type(STARPU_CUDA_WORKER, 0

);

or equivalently

starpu_task_insert(&cl, ..., STARPU_EXECUTE_ON_WORKER,
starpu_worker_get_by_type(STARPU_CUDA_WORKER, 0), ...);

One can also specify a set worker(s) which are allowed to take the task, as an array of bit, for instance to allow
workers 2 and 42:

task->workerids = calloc(2,sizeof(uint32_t));
task->workerids[2/32] |= (1 << (2%32));
task->workerids[42/32] |= (1 << (42%32));
task->workerids_len = 2;

One can also specify the order in which tasks must be executed by setting the starpu_task::workerorder field. If this
field is set to a non-zero value, it provides the per-worker consecutive order in which tasks will be executed, starting
from 1. For a given of such task, the worker will thus not execute it before all the tasks with smaller order value have
been executed, notably in case those tasks are not available yet due to some dependencies. This eventually gives
total control of task scheduling, and StarPU will only serve as a "self-timed" task runtime. Of course, the provided
order has to be runnable, i.e. a task should should not depend on another task bound to the same worker with a
bigger order.
Note however that using scheduling contexts while statically scheduling tasks on workers could be tricky. Be careful
to schedule the tasks exactly on the workers of the corresponding contexts, otherwise the workers' correspond-
ing scheduling structures may not be allocated or the execution of the application may deadlock. Moreover, the
hypervisor should not be used when statically scheduling tasks.

8.5 Heteroprio

Within Heteroprio, one priority per processing unit type is assigned to each task, such that a task has several
priorities. Each worker pops the task that has the highest priority for the hardware type it uses, which could be CPU
or CUDA for example. Therefore, the priorities has to be used to manage the critical path, but also to promote the
consumption of tasks by the more appropriate workers.
The tasks are stored inside buckets, where each bucket corresponds to a priority set. Then each worker uses an
indirect access array to know the order in which it should access the buckets. Moreover, all the tasks inside a bucket
must be compatible with all the processing units that may access it (at least).
As an example, see the following code where we have 5 types of tasks. CPU workers can compute all of them, but
CUDA workers can only execute tasks of types 0 and 1, and is expected to go 20 and 30 time faster than the CPU,
respectively.

#include <starpu_heteroprio.h>

struct starpu_conf conf;
starpu_conf_init(&conf);

conf.sched_policy_name = "heteroprio";

conf.sched_policy_init = &init_heteroprio;

starpu_init(&conf);

void init_heteroprio(unsigned sched_ctx) {
// CPU uses 5 buckets and visits them in the natural order
starpu_heteroprio_set_nb_prios(ctx, STARPU_CPU_IDX, 5);

Generated by Doxygen

8.5 Heteroprio 67

// It uses direct mapping idx => idx
for(unsigned idx = 0; idx < 5; ++idx){
starpu_heteroprio_set_mapping(ctx, STARPU_CPU_IDX, idx, idx);
// If there is no CUDA worker we must tell that CPU is faster
starpu_heteroprio_set_faster_arch(ctx, STARPU_CPU_IDX, idx);

}

if(starpu_cuda_worker_get_count()){
// CUDA is enabled and uses 2 buckets
starpu_heteroprio_set_nb_prios(ctx, STARPU_CUDA_IDX, 2);
// CUDA will first look at bucket 1
starpu_heteroprio_set_mapping(ctx, STARPU_CUDA_IDX, 0, 1);
// CUDA will then look at bucket 2
starpu_heteroprio_set_mapping(ctx, STARPU_CUDA_IDX, 1, 2);

// For bucket 1 CUDA is the fastest
starpu_heteroprio_set_faster_arch(ctx, STARPU_CUDA_IDX, 1);
// And CPU is 30 times slower
starpu_heteroprio_set_arch_slow_factor(ctx, STARPU_CPU_IDX, 1, 30

.0f);

// For bucket 0 CUDA is the fastest
starpu_heteroprio_set_faster_arch(ctx, STARPU_CUDA_IDX, 0);
// And CPU is 20 times slower
starpu_heteroprio_set_arch_slow_factor(ctx, STARPU_CPU_IDX, 0, 20

.0f);
}

}

Then, when a task is inserted the priority of the task will be used to select in which bucket is has to be stored.
So, in the given example, the priority of a task will be between 0 and 4 included. However, tasks of priorities 0-1
must provide CPU and CUDA kernels, and tasks of priorities 2-4 must provide CPU kernels (at least).

Generated by Doxygen

68 Scheduling

Generated by Doxygen

Chapter 9

Scheduling Contexts

TODO: improve!

9.1 General Ideas

Scheduling contexts represent abstracts sets of workers that allow the programmers to control the distribution of
computational resources (i.e. CPUs and GPUs) to concurrent kernels. The main goal is to minimize interferences
between the execution of multiple parallel kernels, by partitioning the underlying pool of workers using contexts.
Scheduling contexts additionally allow a user to make use of a different scheduling policy depending on the target
resource set.

9.2 Creating A Context

By default, the application submits tasks to an initial context, which disposes of all the computation resources avail-
able to StarPU (all the workers). If the application programmer plans to launch several kernels simultaneously, by
default these kernels will be executed within this initial context, using a single scheduler policy(see Task Scheduling
Policies). Meanwhile, if the application programmer is aware of the demands of these kernels and of the specificity
of the machine used to execute them, the workers can be divided between several contexts. These scheduling
contexts will isolate the execution of each kernel and they will permit the use of a scheduling policy proper to each
one of them.
Scheduling Contexts may be created in two ways: either the programmers indicates the set of workers correspond-
ing to each context (providing he knows the identifiers of the workers running within StarPU), or the programmer
does not provide any worker list and leaves the Hypervisor assign workers to each context according to their needs
(Scheduling Context Hypervisor).
Both cases require a call to the function starpu_sched_ctx_create(), which requires as input the worker list (the
exact list or a NULL pointer), the amount of workers (or -1 to designate all workers on the platform) and a list of
optional parameters such as the scheduling policy, terminated by a 0. The scheduling policy can be a character list
corresponding to the name of a StarPU predefined policy or the pointer to a custom policy. The function returns an
identifier of the context created which you will use to indicate the context you want to submit the tasks to.

/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};

/* indicate the list of workers assigned to it, the number of workers,
the name of the context and the scheduling policy to be used within
the context */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx",

STARPU_SCHED_CTX_POLICY_NAME, "dmda", 0);

/* let StarPU know that the following tasks will be submitted to this context */
starpu_sched_ctx_set_context(id);

/* submit the task to StarPU */
starpu_task_submit(task);

Note: Parallel greedy and parallel heft scheduling policies do not support the existence of several disjoint contexts
on the machine. Combined workers are constructed depending on the entire topology of the machine, not only the
one belonging to a context.

70 Scheduling Contexts

9.2.1 Creating A Context With The Default Behavior

If no scheduling policy is specified when creating the context, it will be used as another type of resource: a
cluster. A cluster is a context without scheduler (eventually delegated to another runtime). For more information see
Clustering A Machine. It is therefore mandatory to stipulate a scheduler to use the contexts in this traditional way.
To create a context with the default scheduler, that is either controlled through the environment variable STARP←↩
U_SCHED or the StarPU default scheduler, one can explicitly use the option STARPU_SCHED_CTX_POLICY←↩
_NAME, "" as in the following example:

/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};

/* indicate the list of workers assigned to it, the number of workers,
and use the default scheduling policy. */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx",

STARPU_SCHED_CTX_POLICY_NAME, "", 0);

/* */

9.3 Creating A Context To Partition a GPU

The contexts can also be used to group set of SMs of an NVIDIA GPU in order to isolate the parallel kernels and
allow them to coexecution on a specified partiton of the GPU.
Each context will be mapped to a stream and the user can indicate the number of SMs. The context can be added
to a larger context already grouping CPU cores. This larger context can use a scheduling policy that assigns tasks
to both CPUs and contexts (partitions of the GPU) based on performance models adjusted to the number of SMs.
The GPU implementation of the task has to be modified accordingly and receive as a parameter the number of SMs.

/* get the available streams (suppose we have nstreams = 2 by specifying them with
STARPU_NWORKER_PER_CUDA=2 */

int nstreams = starpu_worker_get_stream_workerids(gpu_devid, stream_workerids, STARPU_CUDA_WORKER
);

int sched_ctx[nstreams];
sched_ctx[0] = starpu_sched_ctx_create(&stream_workerids[0], 1, "subctx",

STARPU_SCHED_CTX_CUDA_NSMS, 6, 0);
sched_ctx[1] = starpu_sched_ctx_create(&stream_workerids[1], 1, "subctx",

STARPU_SCHED_CTX_CUDA_NSMS, 7, 0);

int ncpus = 4;
int workers[ncpus+nstreams];
workers[ncpus+0] = stream_workerids[0];
workers[ncpus+1] = stream_workerids[1];

big_sched_ctx = starpu_sched_ctx_create(workers, ncpus+nstreams, "ctx1",
STARPU_SCHED_CTX_SUB_CTXS, sched_ctxs, nstreams, STARPU_SCHED_CTX_POLICY_NAME
, "dmdas", 0);

starpu_task_submit_to_ctx(task, big_sched_ctx);

9.4 Modifying A Context

A scheduling context can be modified dynamically. The application may change its requirements during the execu-
tion and the programmer can add additional workers to a context or remove those no longer needed. In the following
example we have two scheduling contexts sched_ctx1 and sched_ctx2. After executing a part of the tasks
some of the workers of sched_ctx1 will be moved to context sched_ctx2.

/* the list of ressources that context 1 will give away */
int workerids[3] = {1, 3, 10};

/* add the workers to context 1 */
starpu_sched_ctx_add_workers(workerids, 3, sched_ctx2);

/* remove the workers from context 2 */
starpu_sched_ctx_remove_workers(workerids, 3, sched_ctx1);

9.5 Submitting Tasks To A Context

The application may submit tasks to several contexts either simultaneously or sequnetially. If several threads of
submission are used the function starpu_sched_ctx_set_context() may be called just before starpu_task_submit().
Thus StarPU considers that the current thread will submit tasks to the coresponding context.

Generated by Doxygen

9.6 Deleting A Context 71

When the application may not assign a thread of submission to each context, the id of the context must be indicated
by using the function starpu_task_submit_to_ctx() or the field STARPU_SCHED_CTX for starpu_task_insert().

9.6 Deleting A Context

When a context is no longer needed it must be deleted. The application can indicate which context should keep the
resources of a deleted one. All the tasks of the context should be executed before doing this. Thus, the programmer
may use either a barrier and then delete the context directly, or just indicate that other tasks will not be submitted
later on to the context (such that when the last task is executed its workers will be moved to the inheritor) and delete
the context at the end of the execution (when a barrier will be used eventually).

/* when the context 2 is deleted context 1 inherits its resources */
starpu_sched_ctx_set_inheritor(sched_ctx2, sched_ctx1);

/* submit tasks to context 2 */
for (i = 0; i < ntasks; i++)

starpu_task_submit_to_ctx(task[i],sched_ctx2);

/* indicate that context 2 finished submitting and that */
/* as soon as the last task of context 2 finished executing */
/* its workers can be moved to the inheritor context */
starpu_sched_ctx_finished_submit(sched_ctx1);

/* wait for the tasks of both contexts to finish */
starpu_task_wait_for_all();

/* delete context 2 */
starpu_sched_ctx_delete(sched_ctx2);

/* delete context 1 */
starpu_sched_ctx_delete(sched_ctx1);

9.7 Emptying A Context

A context may have no resources at the begining or at a certain moment of the execution. Tasks can still be
submitted to these contexts and they will be executed as soon as the contexts will have resources. A list of tasks
pending to be executed is kept and will be submitted when workers are added to the contexts.

/* create a empty context */
unsigned sched_ctx_id = starpu_sched_ctx_create(NULL, 0, "ctx", 0);

/* submit a task to this context */
starpu_sched_ctx_set_context(&sched_ctx_id);
ret = starpu_task_insert(&codelet, 0);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");

/* add CPU workers to the context */
int procs[STARPU_NMAXWORKERS];
int nprocs = starpu_cpu_worker_get_count();
starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, procs,

nprocs);
starpu_sched_ctx_add_workers(procs, nprocs, sched_ctx_id);

/* and wait for the task termination */
starpu_task_wait_for_all();

However, if resources are never allocated to the context, the application will not terminate. If these tasks have low
priority, the application can inform StarPU to not submit them by calling the function starpu_sched_ctx_stop_task←↩
_submission().

Generated by Doxygen

72 Scheduling Contexts

Generated by Doxygen

Chapter 10

Scheduling Context Hypervisor

10.1 What Is The Hypervisor

StarPU proposes a platform to construct Scheduling Contexts, to delete and modify them dynamically. A parallel
kernel, can thus be isolated into a scheduling context and interferences between several parallel kernels are avoided.
If users know exactly how many workers each scheduling context needs, they can assign them to the contexts at
their creation time or modify them during the execution of the program.
The Scheduling Context Hypervisor Plugin is available for users who do not dispose of a regular parallelism, who
cannot know in advance the exact size of the context and need to resize the contexts according to the behavior of
the parallel kernels.
The Hypervisor receives information from StarPU concerning the execution of the tasks, the efficiency of the re-
sources, etc. and it decides accordingly when and how the contexts can be resized. Basic strategies of resizing
scheduling contexts already exist but a platform for implementing additional custom ones is available.

10.2 Start the Hypervisor

The Hypervisor must be initialized once at the beginning of the application. At this point a resizing policy should be
indicated. This strategy depends on the information the application is able to provide to the hypervisor as well as on
the accuracy needed for the resizing procedure. For example, the application may be able to provide an estimation
of the workload of the contexts. In this situation the hypervisor may decide what resources the contexts need.
However, if no information is provided the hypervisor evaluates the behavior of the resources and of the application
and makes a guess about the future. The hypervisor resizes only the registered contexts.

10.3 Interrogate The Runtime

The runtime provides the hypervisor with information concerning the behavior of the resources and the application.
This is done by using the performance_counters which represent callbacks indicating when the resources
are idle or not efficient, when the application submits tasks or when it becomes to slow.

10.4 Trigger the Hypervisor

The resizing is triggered either when the application requires it (sc_hypervisor_resize_ctxs()) or when the initials
distribution of resources alters the performance of the application (the application is to slow or the resource are
idle for too long time). If the environment variable SC_HYPERVISOR_TRIGGER_RESIZE is set to speed the
monitored speed of the contexts is compared to a theoretical value computed with a linear program, and the resizing
is triggered whenever the two values do not correspond. Otherwise, if the environment variable is set to idle the
hypervisor triggers the resizing algorithm whenever the workers are idle for a period longer than the threshold
indicated by the programmer. When this happens different resizing strategy are applied that target minimizing the
total execution of the application, the instant speed or the idle time of the resources.

74 Scheduling Context Hypervisor

10.5 Resizing Strategies

The plugin proposes several strategies for resizing the scheduling context.
The Application driven strategy uses users's input concerning the moment when they want to resize the contexts.
Thus, users tag the task that should trigger the resizing process. One can set directly the field starpu_task←↩
::hypervisor_tag or use the macro STARPU_HYPERVISOR_TAG in the function starpu_task_insert().

task.hypervisor_tag = 2;

or

starpu_task_insert(&codelet,
...,
STARPU_HYPERVISOR_TAG, 2,
0);

Then users have to indicate that when a task with the specified tag is executed the contexts should resize.

sc_hypervisor_resize(sched_ctx, 2);

Users can use the same tag to change the resizing configuration of the contexts if they consider it necessary.

sc_hypervisor_ctl(sched_ctx,
SC_HYPERVISOR_MIN_WORKERS, 6,
SC_HYPERVISOR_MAX_WORKERS, 12,
SC_HYPERVISOR_TIME_TO_APPLY, 2,
NULL);

The Idleness based strategy moves workers unused in a certain context to another one needing them. (see
Scheduling Context Hypervisor - Regular usage)

int workerids[3] = {1, 3, 10};
int workerids2[9] = {0, 2, 4, 5, 6, 7, 8, 9, 11};
sc_hypervisor_ctl(sched_ctx_id,

SC_HYPERVISOR_MAX_IDLE, workerids, 3, 10000.0,
SC_HYPERVISOR_MAX_IDLE, workerids2, 9, 50000.0,
NULL);

The Gflops/s rate based strategy resizes the scheduling contexts such that they all finish at the same time. The
speed of each of them is computed and once one of them is significantly slower the resizing process is triggered.
In order to do these computations users have to input the total number of instructions needed to be executed by the
parallel kernels and the number of instruction to be executed by each task.
The number of flops to be executed by a context are passed as parameter when they are registered to the hypervisor,

sc_hypervisor_register_ctx(sched_ctx_id, flops)

and the one to be executed by each task are passed when the task is submitted. The corresponding field is starpu←↩
_task::flops and the corresponding macro in the function starpu_task_insert() is STARPU_FLOPS (Caution: but
take care of passing a double, not an integer, otherwise parameter passing will be bogus). When the task is
executed the resizing process is triggered.

task.flops = 100;

or

starpu_task_insert(&codelet,
...,
STARPU_FLOPS, (double) 100,
0);

The Feft strategy uses a linear program to predict the best distribution of resources such that the application finishes
in a minimum amount of time. As for the Gflops/s rate strategy the programmers has to indicate the total number
of flops to be executed when registering the context. This number of flops may be updated dynamically during
the execution of the application whenever this information is not very accurate from the beginning. The function
sc_hypervisor_update_diff_total_flops() is called in order to add or to remove a difference to the flops left to be
executed. Tasks are provided also the number of flops corresponding to each one of them. During the execution
of the application the hypervisor monitors the consumed flops and recomputes the time left and the number of
resources to use. The speed of each type of resource is (re)evaluated and inserter in the linear program in order to
better adapt to the needs of the application.

Generated by Doxygen

10.6 Defining A New Hypervisor Policy 75

The Teft strategy uses a linear program too, that considers all the types of tasks and the number of each of them and
it tries to allocates resources such that the application finishes in a minimum amount of time. A previous calibration
of StarPU would be useful in order to have good predictions of the execution time of each type of task.
The types of tasks may be determines directly by the hypervisor when they are submitted. However there are
applications that do not expose all the graph of tasks from the beginning. In this case in order to let the hypervisor
know about all the tasks the function sc_hypervisor_set_type_of_task() will just inform the hypervisor about future
tasks without submitting them right away.
The Ispeed strategy divides the execution of the application in several frames. For each frame the hypervisor
computes the speed of the contexts and tries making them run at the same speed. The strategy requires less
contribution from users as the hypervisor requires only the size of the frame in terms of flops.

int workerids[3] = {1, 3, 10};
int workerids2[9] = {0, 2, 4, 5, 6, 7, 8, 9, 11};
sc_hypervisor_ctl(sched_ctx_id,

SC_HYPERVISOR_ISPEED_W_SAMPLE, workerids, 3, 2000000000.0,
SC_HYPERVISOR_ISPEED_W_SAMPLE, workerids2, 9, 200000000000.0

,
SC_HYPERVISOR_ISPEED_CTX_SAMPLE, 60000000000.0,

NULL);

The Throughput strategy focuses on maximizing the throughput of the resources and resizes the contexts such
that the machine is running at its maximum efficiency (maximum instant speed of the workers).

10.6 Defining A New Hypervisor Policy

While Scheduling Context Hypervisor Plugin comes with a variety of resizing policies (see Resizing Strategies), it
may sometimes be desirable to implement custom policies to address specific problems. The API described below
allows users to write their own resizing policy.
Here an example of how to define a new policy

struct sc_hypervisor_policy dummy_policy =
{

.handle_poped_task = dummy_handle_poped_task,

.handle_pushed_task = dummy_handle_pushed_task,

.handle_idle_cycle = dummy_handle_idle_cycle,

.handle_idle_end = dummy_handle_idle_end,

.handle_post_exec_hook = dummy_handle_post_exec_hook,

.custom = 1,

.name = "dummy"
};

Generated by Doxygen

76 Scheduling Context Hypervisor

Generated by Doxygen

Chapter 11

How To Define a New Scheduling Policy

11.1 Introduction

StarPU provides two ways of defining a scheduling policy, a basic monolithic way, and a modular way.
The basic monolithic way is directly connected with the core of StarPU, which means that the policy then has to
handle all performance details, such as data prefetching, task performance model calibration, worker locking, etc.
examples/scheduler/dummy_sched.c is a trivial example which does not handle this, and thus e.g. does
not achieve any data prefetching or smart scheduling.
The modular way allows to implement just one component, and reuse existing components to cope with all these
details. examples/scheduler/dummy_modular_sched.c is a trivial example very similar to dummy_←↩
sched.c, but implemented as a component, which allows to assemble it with other components, and notably get
data prefetching support for free, and task performance model calibration is properly performed, which allows to
easily extend it into taking task duration into account, etc.

11.2 Helper functions for defining a scheduling policy (Basic or modular)

Make sure to have a look at the Scheduling Policy section, which provides a complete list of the functions available
for writing advanced schedulers.
This includes getting an estimation for a task computation completion with starpu_task_expected_length(), for the
required data transfers with starpu_task_expected_data_transfer_time_for(), for the required energy with starpu←↩
_task_expected_energy(), etc. Other useful functions include starpu_transfer_bandwidth(), starpu_transfer_←↩
latency(), starpu_transfer_predict(), ... One can also directly test the presence of a data handle with starpu_←↩
data_is_on_node(). Prefetches can be triggered by calling either starpu_prefetch_task_input_for(), starpu_idle←↩
_prefetch_task_input(), starpu_prefetch_task_input_for_prio(), or starpu_idle_prefetch_task_input_for_prio(). The
_prio versions allow to specify a priority for the transfer (instead of taking the task priority by default). These
prefetches are only processed when there are no fetch data requests (i.e. a task is waiting for it) to process. The
_idle versions queue the transfers on the idle prefetch queue, which is only processed when there are no non-idle
prefetch to process. starpu_get_prefetch_flag() is a convenient helper for checking the value of the STARPU_PR←↩
EFETCH environment variable.
Usual functions can be used on tasks, for instance one can use the following to get the data size for a task.

size = 0;
write = 0;
if (task->cl)

for (i = 0; i < STARPU_TASK_GET_NBUFFERS(task); i++)
{

starpu_data_handle_t data = STARPU_TASK_GET_HANDLE(task,
i)
size_t datasize = starpu_data_get_size(data);
size += datasize;
if (STARPU_TASK_GET_MODE(task, i) & STARPU_W)

write += datasize;
}

Task queues can be implemented with the starpu_task_list functions.
Access to the hwloc topology is available with starpu_worker_get_hwloc_obj().

78 How To Define a New Scheduling Policy

11.3 Defining A New Basic Scheduling Policy

A full example showing how to define a new scheduling policy is available in the StarPU sources in
examples/scheduler/dummy_sched.c.
The scheduler has to provide methods:

static struct starpu_sched_policy dummy_sched_policy =
{

.init_sched = init_dummy_sched,

.deinit_sched = deinit_dummy_sched,

.add_workers = dummy_sched_add_workers,

.remove_workers = dummy_sched_remove_workers,

.push_task = push_task_dummy,

.pop_task = pop_task_dummy,

.policy_name = "dummy",

.policy_description = "dummy scheduling strategy"
};

The idea is that when a task becomes ready for execution, the starpu_sched_policy::push_task method is called to
give the ready task to the scheduler. When a worker is idle, the starpu_sched_policy::pop_task method is called to
get a task from the scheduler. It is up to the scheduler to implement what is between. A simple eager scheduler
is for instance to make starpu_sched_policy::push_task push the task to a global list, and make starpu_sched_←↩
policy::pop_task pop from this list. A scheduler can also use starpu_push_local_task() to directly push tasks to a
per-worker queue, and then starpu does not even need to implement starpu_sched_policy::pop_task. If there are
no ready tasks within the scheduler, it can just return NULL, and the worker will sleep.
The starpu_sched_policy section provides the exact rules that govern the methods of the policy.
One can enumerate the workers with this iterator:

struct starpu_worker_collection *workers = starpu_sched_ctx_get_worker_collection
(sched_ctx_id);

struct starpu_sched_ctx_iterator it;

workers->init_iterator(workers, &it);
while(workers->has_next(workers, &it))
{

unsigned worker = workers->get_next(workers, &it);
...

}

To provide synchronization between workers, a per-worker lock exists to protect the data structures of a given
worker. It is acquired around scheduler methods, so that the scheduler does not need any additional mutex to
protect its per-worker data.
In case the scheduler wants to access another scheduler's data, it should use starpu_worker_lock() and starpu_←↩
worker_unlock().
Calling

starpu_worker_lock(B)

from a worker A will however thus make worker A wait for worker B to complete its scheduling method. That may be
a problem if that method takes a long time, because it is e.g. computing a heuristic or waiting for another mutex, or
even cause deadlocks if worker B is calling

starpu_worker_lock(A)

at the same time. In such a case, worker B must call starpu_worker_relax_on() and starpu_worker_relax_off()
around the section which potentially blocks (and does not actually need protection). While a worker is in relaxed
mode, e.g. between a pair of starpu_worker_relax_on() and starpu_worker_relax_off() calls, its state can be altered
by other threads: for instance, worker A can push tasks for worker B. In consequence, worker B must re-assess its
state after

starpu_worker_relax_off(B)

, such as taking possible new tasks pushed to its queue into account.
When the starpu_sched_policy::push_task method has pushed a task for another worker, one has to call starpu_←↩
wake_worker_relax_light() so that the worker wakes up and picks it. If the task was pushed on a shared queue, one
may want to only wake one idle worker. An example doing this is available in src/sched_policies/eager←↩
_central_policy.c.
A pointer to one data structure specific to the scheduler can be set with starpu_sched_ctx_set_policy_data() and
fetched with starpu_sched_ctx_get_policy_data(). Per-worker data structures can then be store in it by allocating a
STARPU_NMAXWORKERS -sized array of structures indexed by workers.

Generated by Doxygen

11.4 Defining A New Modular Scheduling Policy 79

A variety of examples of advanced schedulers can be read in src/sched_policies, for instance random←↩
_policy.c, eager_central_policy.c, work_stealing_policy.c Code protected by if (_←↩
starpu_get_nsched_ctxs() > 1) can be ignored, this is for scheduling contexts, which is an experi-
mental feature.

11.4 Defining A New Modular Scheduling Policy

StarPU's Modularized Schedulers are made of individual Scheduling Components Modularizedly assembled as a
Scheduling Tree. Each Scheduling Component has an unique purpose, such as prioritizing tasks or mapping tasks
over resources. A typical Scheduling Tree is shown below.

|
starpu_push_task |

|
v

Fifo_Component
| ^

Push | | Can_Push
v |

Eager_Component
| ^
| |
v |

--------><-------------------><---------
| ^ | ^

Push | | Can_Push Push | | Can_Push
v | v |

Fifo_Component Fifo_Component
| ^ | ^

Pull | | Can_Pull Pull | | Can_Pull
v | v |

Worker_Component Worker_Component
| |

starpu_pop_task | |
v v

When a task is pushed by StarPU in a Modularized Scheduler, the task moves from a Scheduling Component
to an other, following the hierarchy of the Scheduling Tree, and is stored in one of the Scheduling Components
of the strategy. When a worker wants to pop a task from the Modularized Scheduler, the corresponding Worker
Component of the Scheduling Tree tries to pull a task from its parents, following the hierarchy, and gives it to the
worker if it succeded to get one.

11.4.1 Interface

Each Scheduling Component must follow the following pre-defined Interface to be able to interact with other Schedul-
ing Components.

• push_task (child_component, Task)
The calling Scheduling Component transfers a task to its Child Component. When the Push function returns,
the task no longer belongs to the calling Component. The Modularized Schedulers' model relies on this
function to perform prefetching. See starpu_sched_component::push_task for more details

• pull_task (parent_component, caller_component) -> Task
The calling Scheduling Component requests a task from its Parent Component. When the Pull function
ends, the returned task belongs to the calling Component. See starpu_sched_component::pull_task for more
details

• can_push (caller_component, parent_component)
The calling Scheduling Component notifies its Parent Component that it is ready to accept new tasks. See
starpu_sched_component::can_push for more details

Generated by Doxygen

80 How To Define a New Scheduling Policy

• can_pull (caller_component, child_component)
The calling Scheduling Component notifies its Child Component that it is ready to give new tasks. See
starpu_sched_component::can_pull for more details

The components also provide the following useful methods:

• starpu_sched_component::estimated_load provides an estimated load of the component

• starpu_sched_component::estimated_end provides an estimated date of availability of workers behind the
component, after processing tasks in the component and below. This is computed only if the estimated field
of the tasks have been set before passing it to the component.

11.4.2 Building a Modularized Scheduler

11.4.2.1 Pre-implemented Components

StarPU is currently shipped with the following four Scheduling Components :

• Storage Components : Fifo, Prio
Components which store tasks. They can also prioritize them if they have a defined priority. It is possible to
define a threshold for those Components following two criterias : the number of tasks stored in the Compo-
nent, or the sum of the expected length of all tasks stored in the Component. When a push operation tries
to queue a task beyond the threshold, the push fails. When some task leaves the queue (and thus possibly
more tasks can fit), this component calls can_push from ancestors.

• Resource-Mapping Components : Mct, Heft, Eager, Random, Work-Stealing
"Core" of the Scheduling Strategy, those Components are the ones who make scheduling choices between
their children components.

• Worker Components : Worker
Each Worker Component modelizes a concrete worker, and copes with the technical tricks of interacting with
the StarPU core. Modular schedulers thus usually have them at the bottom of their component tree.

• Special-Purpose Components : Perfmodel_Select, Best_Implementation
Components dedicated to original purposes. The Perfmodel_Select Component decides which Resource-←↩
Mapping Component should be used to schedule a task: a component that assumes tasks with a calibrated
performance model; a component for non-yet-calibrated tasks, that will distribute them to get measurements
done as quickly as possible; and a component that takes the tasks without performance models.
The Best_Implementation Component chooses which implementation of a task should be used on the chosen
resource.

11.4.2.2 Progression And Validation Rules

Some rules must be followed to ensure the correctness of a Modularized Scheduler :

• At least one Storage Component without threshold is needed in a Modularized Scheduler, to store incoming
tasks from StarPU. It can for instance be a global component at the top of the tree, or one component per
worker at the bottom of the tree, or intermediate assemblies. The important point is that the starpu_sched←↩
_component::push_task call at the top can not fail, so there has to be a storage component without threshold
between the top of the tree and the first storage component with threshold, or the workers themselves.

• At least one Resource-Mapping Component is needed in a Modularized Scheduler. Resource-Mapping Com-
ponents are the only ones which can make scheduling choices, and so the only ones which can have several
child.

11.4.2.3 Locking in modularized schedulers

Most often, components do not need to take locks. This allows e.g. the push operation to be called in parallel when
tasks get released in parallel from different workers which have completed different ancestor tasks.
When a component has internal information which needs to be kept coherent, the component can define its own lock
at take it as it sees fit, e.g. to protect a task queue. This may however limit scalability of the scheduler. Conversely,
since push and pull operations will be called concurrently from different workers, the component might prefer to use
a central mutex to serialize all scheduling decisions to avoid pathological cases (all push calls decide to put their
task on the same target)

Generated by Doxygen

11.4 Defining A New Modular Scheduling Policy 81

11.4.2.4 Implementing a Modularized Scheduler

The following code shows how to implement a Tree-Eager-Prefetching Scheduler.

static void initialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

/* The eager component will decide for each task which worker will run it,

* and we want fifos both above and below the component */
starpu_sched_component_initialize_simple_scheduler(
starpu_sched_component_eager_create, NULL,
STARPU_SCHED_SIMPLE_DECIDE_WORKERS |
STARPU_SCHED_SIMPLE_FIFO_ABOVE |
STARPU_SCHED_SIMPLE_FIFOS_BELOW,
sched_ctx_id);

}

/* Properly destroy the Scheduling Tree and all its Components */
static void deinitialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

struct starpu_sched_tree * tree = (struct starpu_sched_tree*)
starpu_sched_ctx_get_policy_data(sched_ctx_id);

starpu_sched_tree_destroy(tree);
}

/* Initializing the starpu_sched_policy struct associated to the Modularized

* Scheduler : only the init_sched and deinit_sched needs to be defined to

* implement a Modularized Scheduler */
struct starpu_sched_policy _starpu_sched_tree_eager_prefetching_policy =
{

.init_sched = initialize_eager_prefetching_center_policy,

.deinit_sched = deinitialize_eager_prefetching_center_policy,

.add_workers = starpu_sched_tree_add_workers,

.remove_workers = starpu_sched_tree_remove_workers,

.push_task = starpu_sched_tree_push_task,

.pop_task = starpu_sched_tree_pop_task,

.pre_exec_hook = starpu_sched_component_worker_pre_exec_hook,

.post_exec_hook = starpu_sched_component_worker_post_exec_hook
,

.pop_every_task = NULL,

.policy_name = "tree-eager-prefetching",

.policy_description = "eager with prefetching tree policy"
};

starpu_sched_component_initialize_simple_scheduler() is a helper function which makes it very trivial to assem-
ble a modular scheduler around a scheduling decision component as seen above (here, a dumb eager decision
component). Most often a modular scheduler can be implemented that way.
A modular scheduler can also be constructed hierarchically with starpu_sched_component_composed_recipe_←↩
create().
That modular scheduler can also be built by hand in the following way:

#define _STARPU_SCHED_NTASKS_THRESHOLD_DEFAULT 2
#define _STARPU_SCHED_EXP_LEN_THRESHOLD_DEFAULT 1000000000.0

static void initialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

unsigned ntasks_threshold = _STARPU_SCHED_NTASKS_THRESHOLD_DEFAULT;
double exp_len_threshold = _STARPU_SCHED_EXP_LEN_THRESHOLD_DEFAULT;

[...]

starpu_sched_ctx_create_worker_collection
(sched_ctx_id, STARPU_WORKER_LIST);

/* Create the Scheduling Tree */
struct starpu_sched_tree * t = starpu_sched_tree_create(

sched_ctx_id);

/* The Root Component is a Flow-control Fifo Component */
t->root = starpu_sched_component_fifo_create(NULL);

/* The Resource-mapping Component of the strategy is an Eager Component

*/
struct starpu_sched_component *eager_component =

starpu_sched_component_eager_create(NULL);

/* Create links between Components : the Eager Component is the child

* of the Root Component */
starpu_sched_component_connect(t->root, eager_component);

/* A task threshold is set for the Flow-control Components which will

* be connected to Worker Components. By doing so, this Modularized

* Scheduler will be able to perform some prefetching on the resources

*/
struct starpu_sched_component_fifo_data fifo_data =

Generated by Doxygen

82 How To Define a New Scheduling Policy

{
.ntasks_threshold = ntasks_threshold,
.exp_len_threshold = exp_len_threshold,

};

unsigned i;
for(i = 0; i < starpu_worker_get_count() + starpu_combined_worker_get_count

(); i++)
{
/* Each Worker Component has a Flow-control Fifo Component as

* father */
struct starpu_sched_component * worker_component =
starpu_sched_component_worker_new(i);

struct starpu_sched_component * fifo_component =
starpu_sched_component_fifo_create(&fifo_data);

starpu_sched_component_connect(fifo_component, worker_component);

/* Each Flow-control Fifo Component associated to a Worker

* Component is linked to the Eager Component as one of its

* children */
starpu_sched_component_connect(eager_component, fifo_component);

}

starpu_sched_tree_update_workers(t);
starpu_sched_ctx_set_policy_data(sched_ctx_id, (void*)t);

}

/* Properly destroy the Scheduling Tree and all its Components */
static void deinitialize_eager_prefetching_center_policy(unsigned sched_ctx_id)
{

struct starpu_sched_tree * tree = (struct starpu_sched_tree*)
starpu_sched_ctx_get_policy_data(sched_ctx_id);

starpu_sched_tree_destroy(tree);
starpu_sched_ctx_delete_worker_collection(sched_ctx_id);

}

/* Initializing the starpu_sched_policy struct associated to the Modularized

* Scheduler : only the init_sched and deinit_sched needs to be defined to

* implement a Modularized Scheduler */
struct starpu_sched_policy _starpu_sched_tree_eager_prefetching_policy =
{

.init_sched = initialize_eager_prefetching_center_policy,

.deinit_sched = deinitialize_eager_prefetching_center_policy,

.add_workers = starpu_sched_tree_add_workers,

.remove_workers = starpu_sched_tree_remove_workers,

.push_task = starpu_sched_tree_push_task,

.pop_task = starpu_sched_tree_pop_task,

.pre_exec_hook = starpu_sched_component_worker_pre_exec_hook,

.post_exec_hook = starpu_sched_component_worker_post_exec_hook
,

.pop_every_task = NULL,

.policy_name = "tree-eager-prefetching",

.policy_description = "eager with prefetching tree policy"
};

Other modular scheduler examples can be seen in src/sched_policies/modular_∗.c
For instance, modular-heft-prio needs performance models, decides memory nodes, uses prioritized fifos
above and below, and decides the best implementation.
If unsure on the result of the modular scheduler construction, you can run a simple application with FxT enabled
(see Generating Traces With FxT), and open the generated file trace.html in a web-browser.

11.4.3 Management of parallel task

At the moment, parallel tasks can be managed in modularized schedulers through combined workers: instead of
connecting a scheduling component to a worker component, one can connect it to a combined worker component
(i.e. a worker component created with a combined worker id). That component will handle creating task aliases for
parallel execution and push them to the different workers components.

11.4.4 Writing a Scheduling Component

11.4.4.1 Generic Scheduling Component

Each Scheduling Component is instantiated from a Generic Scheduling Component, which implements a generic
version of the Interface. The generic implementation of Pull, Can_Pull and Can_Push functions are recursive calls
to their parents (respectively to their children). However, as a Generic Scheduling Component do not know how
much children it will have when it will be instantiated, it does not implement the Push function.

Generated by Doxygen

11.5 Graph-based Scheduling 83

11.4.4.2 Instantiation : Redefining the Interface

A Scheduling Component must implement all the functions of the Interface. It is so necessary to implement a
Push function to instantiate a Scheduling Component. The implemented Push function is the "fingerprint" of a
Scheduling Component. Depending on how functionalities or properties programmers want to give to the Scheduling
Component they are implementing, it is possible to reimplement all the functions of the Interface. For example, a
Flow-control Component reimplements the Pull and the Can_Push functions of the Interface, allowing to catch the
generic recursive calls of these functions. The Pull function of a Flow-control Component can, for example, pop a
task from the local storage queue of the Component, and give it to the calling Component which asks for it.

11.4.4.3 Detailed Progression and Validation Rules

• A Reservoir is a Scheduling Component which redefines a Push and a Pull function, in order to store tasks
into it. A Reservoir delimit Scheduling Areas in the Scheduling Tree.

• A Pump is the engine source of the Scheduler : it pushes/pulls tasks to/from a Scheduling Component to
an other. Native Pumps of a Scheduling Tree are located at the root of the Tree (incoming Push calls from
StarPU), and at the leafs of the Tree (Pop calls coming from StarPU Workers). Pre-implemented Schedul-
ing Components currently shipped with Pumps are Flow-Control Components and the Resource-Mapping
Component Heft, within their defined Can_Push functions.

• A correct Scheduling Tree requires a Pump per Scheduling Area and per Execution Flow.

The Tree-Eager-Prefetching Scheduler shown in Section Implementing a Modularized Scheduler follows the previ-
ous assumptions :

starpu_push_task
Pump
|

Area 1 |
|
v

-----------------------Fifo_Component-----------------------------
Pump
| ^

Push | | Can_Push
v |

Area 2 Eager_Component
| ^
| |
v |

--------><-------------------><---------
| ^ | ^

Push | | Can_Push Push | | Can_Push
v | v |

-----Fifo_Component-----------------------Fifo_Component----------
| ^ | ^

Pull | | Can_Pull Pull | | Can_Pull
Area 3 v | v |

Pump Pump
Worker_Component Worker_Component

11.5 Graph-based Scheduling

For performance reasons, most of the schedulers shipped with StarPU use simple list-scheduling heuristics, assum-
ing that the application has already set priorities. This is why they do their scheduling between when tasks become
available for execution and when a worker becomes idle, without looking at the task graph.
Other heuristics can however look at the task graph. Recording the task graph is expensive, so it is not available
by default, the scheduling heuristic has to set _starpu_graph_record to 1 from the initialization function, to
make it available. Then the _starpu_graph∗ functions can be used.
src/sched_policies/graph_test_policy.c is an example of simple greedy policy which automatically
computes priorities by bottom-up rank.

Generated by Doxygen

84 How To Define a New Scheduling Policy

The idea is that while the application submits tasks, they are only pushed to a bag of tasks. When the application
is finished with submitting tasks, it calls starpu_do_schedule() (or starpu_task_wait_for_all(), which calls starpu←↩
_do_schedule()), and the starpu_sched_policy::do_schedule method of the scheduler is called. This method calls
_starpu_graph_compute_depths() to compute the bottom-up ranks, and then uses these ranks to set
priorities over tasks.
It then has two priority queues, one for CPUs, and one for GPUs, and uses a dumb heuristic based on the duration
of the task over CPUs and GPUs to decide between the two queues. CPU workers can then pop from the CPU
priority queue, and GPU workers from the GPU priority queue.

11.6 Debugging Scheduling

All the Online Performance Tools and Offline Performance Tools can be used to get information about how well the
execution proceeded, and thus the overall quality of the execution.
Precise debugging can also be performed by using the STARPU_TASK_BREAK_ON_PUSH, STARPU_TASK_←↩
BREAK_ON_SCHED, STARPU_TASK_BREAK_ON_POP, and STARPU_TASK_BREAK_ON_EXEC environment
variables. By setting the job_id of a task in these environment variables, StarPU will raise SIGTRAP when the task
is being scheduled, pushed, or popped by the scheduler. This means that when one notices that a task is being
scheduled in a seemingly odd way, one can just reexecute the application in a debugger, with some of those
variables set, and the execution will stop exactly at the scheduling points of this task, thus allowing to inspect the
scheduler state, etc.

Generated by Doxygen

Chapter 12

Debugging Tools

StarPU provides several tools to help debugging applications. Execution traces can be generated and displayed
graphically, see Generating Traces With FxT.

12.1 TroubleShooting In General

Generally-speaking, if you have troubles, pass --enable-debug to configure to enable some checks which impact
performance, but will catch common issues, possibly earlier than the actual problem you are observing, which may
just be a consequence of a bug that happened earlier. Also, make sure not to have the --enable-fast configure
option which drops very useful catchup assertions. If your program is valgrind-safe, you can use it, see Using Other
Debugging Tools.
Depending on your toolchain, it might happen that you get undefined reference to ‘__stack_chk←↩
_guard' errors. In that case, use the -disable-fstack-protector-all option to avoid the issue.
Then, if your program crashes with an assertion error, a segfault, etc. you can send us the result of

thread apply all bt

run in gdb at the point of the crash.
In case your program just hangs, but it may also be useful in case of a crash too, it helps to source gdbinit as
described in the next section to be able to run and send us the output of the following commands:

starpu-workers
starpu-tasks
starpu-print-requests
starpu-print-prequests
starpu-print-frrequests
starpu-print-irrequests

To give us an idea of what is happening within StarPU. If the outputs are not too long, you can even run

starpu-all-tasks
starpu-print-all-tasks
starpu-print-datas-summary
starpu-print-datas

12.2 Using The Gdb Debugger

Some gdb helpers are provided to show the whole StarPU state:

(gdb) source tools/gdbinit
(gdb) help starpu

For instance,

• one can print all tasks with starpu-print-all-tasks,

• print all datas with starpu-print-datas,

86 Debugging Tools

• print all pending data transfers with starpu-print-prequests, starpu-print-requests,
starpu-print-frequests, starpu-print-irequests,

• print pending MPI requests with starpu-mpi-print-detached-requests

Some functions can only work if --enable-debug was passed to configure (because they impact performance)

12.3 Using Other Debugging Tools

Valgrind can be used on StarPU: valgrind.h just needs to be found at configure time, to tell valgrind about some
known false positives and disable host memory pinning. Other known false positives can be suppressed by giving
the suppression files in tools/valgrind/∗.suppr to valgrind's -suppressions option.
The environment variable STARPU_DISABLE_KERNELS can also be set to 1 to make StarPU does everything
(schedule tasks, transfer memory, etc.) except actually calling the application-provided kernel functions, i.e. the
computation will not happen. This permits to quickly check that the task scheme is working properly.

12.4 Using The Temanejo Task Debugger

StarPU can connect to Temanejo >= 1.0rc2 (see http://www.hlrs.de/temanejo), to permit nice
visual task debugging. To do so, build Temanejo's libayudame.so, install Ayudame.h to e.←↩
g. /usr/local/include, apply the tools/patch-ayudame to it to fix C build, re-configure, make
sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path to your application, any options you
want to pass it, the path to libayudame.so.
It permits to visualize the task graph, add breakpoints, continue execution task-by-task, and run gdb on a given
task, etc.

Make sure to specify at least the same number of CPUs in the dialog box as your machine has, otherwise an error
will happen during execution. Future versions of Temanejo should be able to tell StarPU the number of CPUs to
use.

Generated by Doxygen

http://www.hlrs.de/temanejo

12.4 Using The Temanejo Task Debugger 87

Tag numbers have to be below 4000000000000000000ULL to be usable for Temanejo (so as to distinguish
them from tasks).

Generated by Doxygen

88 Debugging Tools

Generated by Doxygen

Chapter 13

Online Performance Tools

13.1 On-line Performance Feedback

13.1.1 Enabling On-line Performance Monitoring

In order to enable online performance monitoring, the application can call starpu_profiling_status_set() with the
parameter STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring is already enabled or not
by calling starpu_profiling_status_get(). Enabling monitoring also reinitialize all previously collected feedback. The
environment variable STARPU_PROFILING can also be set to 1 to achieve the same effect. The function starpu←↩
_profiling_init() can also be called during the execution to reinitialize performance counters and to start the profiling
if the environment variable STARPU_PROFILING is set to 1.
Likewise, performance monitoring is stopped by calling starpu_profiling_status_set() with the parameter STARPU←↩
_PROFILING_DISABLE. Note that this does not reset the performance counters so that the application may consult
them later on.
More details about the performance monitoring API are available in Profiling.

13.1.2 Per-task Feedback

If profiling is enabled, a pointer to a structure starpu_profiling_task_info is put in the field starpu_task::profiling_←↩
info when a task terminates. This structure is automatically destroyed when the task structure is destroyed, either
automatically or by calling starpu_task_destroy().
The structure starpu_profiling_task_info indicates the date when the task was submitted (starpu_profiling_task←↩
_info::submit_time), started (starpu_profiling_task_info::start_time), and terminated (starpu_profiling_task_info←↩
::end_time), relative to the initialization of StarPU with starpu_init(). It also specifies the identifier of the worker
that has executed the task (starpu_profiling_task_info::workerid). These date are stored as timespec structures
which the user may convert into micro-seconds using the helper function starpu_timing_timespec_to_us().
It it worth noting that the application may directly access this structure from the callback executed at the end of the
task. The structure starpu_task associated to the callback currently being executed is indeed accessible with the
function starpu_task_get_current().

13.1.3 Per-codelet Feedback

The field starpu_codelet::per_worker_stats is an array of counters. The i-th entry of the array is incremented every
time a task implementing the codelet is executed on the i-th worker. This array is not reinitialized when profiling is
enabled or disabled.

13.1.4 Per-worker Feedback

The second argument returned by the function starpu_profiling_worker_get_info() is a structure starpu_profiling_←↩
worker_info that gives statistics about the specified worker. This structure specifies when StarPU started collecting
profiling information for that worker (starpu_profiling_worker_info::start_time), the duration of the profiling measure-
ment interval (starpu_profiling_worker_info::total_time), the time spent executing kernels (starpu_profiling_worker←↩
_info::executing_time), the time spent sleeping because there is no task to execute at all (starpu_profiling_worker←↩
_info::sleeping_time), and the number of tasks that were executed while profiling was enabled. These values give

90 Online Performance Tools

an estimation of the proportion of time spent do real work, and the time spent either sleeping because there are not
enough executable tasks or simply wasted in pure StarPU overhead.
Calling starpu_profiling_worker_get_info() resets the profiling information associated to a worker.
To easily display all this information, the environment variable STARPU_WORKER_STATS can be set to 1 (in
addition to setting STARPU_PROFILING to 1). A summary will then be displayed at program termination. To
display the summary in a file instead of the standard error stream, use the environment variable STARPU_WOR←↩
KER_STATS_FILE.

Worker stats:
CUDA 0.0 (4.7 GiB)
480 task(s)
total: 1574.82 ms executing: 1510.72 ms sleeping: 0.00 ms overhead 64.10 ms
325.217970 GFlop/s

CPU 0
22 task(s)
total: 1574.82 ms executing: 1364.81 ms sleeping: 0.00 ms overhead 210.01 ms
7.512057 GFlop/s

CPU 1
14 task(s)
total: 1574.82 ms executing: 1500.13 ms sleeping: 0.00 ms overhead 74.69 ms
6.675853 GFlop/s

CPU 2
14 task(s)
total: 1574.82 ms executing: 1553.12 ms sleeping: 0.00 ms overhead 21.70 ms
7.152886 GFlop/s

The number of GFlops/s is available because the starpu_task::flops field of the tasks were filled (or STARPU_FL←↩
OPS used in starpu_task_insert()).
When an FxT trace is generated (see Generating Traces With FxT), it is also possible to use the tool starpu_←↩
workers_activity (see Monitoring Activity) to generate a graphic showing the evolution of these values during
the time, for the different workers.

13.1.5 Bus-related Feedback

The bus speed measured by StarPU can be displayed by using the tool starpu_machine_display, for
instance:

StarPU has found:
3 CUDA devices

CUDA 0 (Tesla C2050 02:00.0)
CUDA 1 (Tesla C2050 03:00.0)
CUDA 2 (Tesla C2050 84:00.0)

from to RAM to CUDA 0 to CUDA 1 to CUDA 2
RAM 0.000000 5176.530428 5176.492994 5191.710722
CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
CUDA 2 4534.229519 2417.069025 2417.060863 0.000000

Statistics about the data transfers which were performed and temporal average of bandwidth usage can be obtained
by setting the environment variable STARPU_BUS_STATS to 1; a summary will then be displayed at program
termination. To display the summary in a file instead of the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE.

Data transfer stats:
RAM 0 -> CUDA 0 319.92 MB 213.10 MB/s (transfers : 91 - avg 3.52 MB)
CUDA 0 -> RAM 0 214.45 MB 142.85 MB/s (transfers : 61 - avg 3.52 MB)
RAM 0 -> CUDA 1 302.34 MB 201.39 MB/s (transfers : 86 - avg 3.52 MB)
CUDA 1 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 1 144.14 MB 96.01 MB/s (transfers : 41 - avg 3.52 MB)
CUDA 1 -> CUDA 0 130.08 MB 86.64 MB/s (transfers : 37 - avg 3.52 MB)
RAM 0 -> CUDA 2 312.89 MB 208.42 MB/s (transfers : 89 - avg 3.52 MB)
CUDA 2 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 2 151.17 MB 100.69 MB/s (transfers : 43 - avg 3.52 MB)
CUDA 2 -> CUDA 0 105.47 MB 70.25 MB/s (transfers : 30 - avg 3.52 MB)
CUDA 1 -> CUDA 2 175.78 MB 117.09 MB/s (transfers : 50 - avg 3.52 MB)
CUDA 2 -> CUDA 1 203.91 MB 135.82 MB/s (transfers : 58 - avg 3.52 MB)
Total transfers: 2.27 GB

Generated by Doxygen

13.2 Task And Worker Profiling 91

13.1.6 MPI-related Feedback

Statistics about the data transfers which were performed over MPI can be obtained by setting the environment
variable STARPU_COMM_STATS to 1; a summary will then be displayed at program termination:

[starpu_comm_stats][1] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats][1:0] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

[starpu_comm_stats][0] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats][0:1] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using StarPU tool starpu_mpi_comm_matrix.py (see Debug-
ging MPI).

13.2 Task And Worker Profiling

A full example showing how to use the profiling API is available in the StarPU sources in the directory
examples/profiling/.

struct starpu_task *task = starpu_task_create();
task->cl = &cl;
task->synchronous = 1;
/* We will destroy the task structure by hand so that we can

* query the profiling info before the task is destroyed. */
task->destroy = 0;

/* Submit and wait for completion (since synchronous was set to 1) */
starpu_task_submit(task);

/* The task is finished, get profiling information */
struct starpu_profiling_task_info *info = task->profiling_info;

/* How much time did it take before the task started ? */
double delay += starpu_timing_timespec_delay_us(&info->submit_time

, &info->start_time);

/* How long was the task execution ? */
double length += starpu_timing_timespec_delay_us(&info->start_time

, &info->end_time);

/* We no longer need the task structure */
starpu_task_destroy(task);

/* Display the occupancy of all workers during the test */
int worker;
for (worker = 0; worker < starpu_worker_get_count(); worker++)
{

struct starpu_profiling_worker_info worker_info;
int ret = starpu_profiling_worker_get_info(worker, &worker_info);
STARPU_ASSERT(!ret);

double total_time = starpu_timing_timespec_to_us(&worker_info
.total_time);

double executing_time = starpu_timing_timespec_to_us(&
worker_info.executing_time);

double sleeping_time = starpu_timing_timespec_to_us(&
worker_info.sleeping_time);

double overhead_time = total_time - executing_time - sleeping_time;

float executing_ratio = 100.0*executing_time/total_time;
float sleeping_ratio = 100.0*sleeping_time/total_time;
float overhead_ratio = 100.0 - executing_ratio - sleeping_ratio;

char workername[128];
starpu_worker_get_name(worker, workername, 128);
fprintf(stderr, "Worker %s:\n", workername);
fprintf(stderr, "\ttotal time: %.2lf ms\n", total_time*1e-3);
fprintf(stderr, "\texec time: %.2lf ms (%.2f %%)\n", executing_time*1e-3, executing_ratio);
fprintf(stderr, "\tblocked time: %.2lf ms (%.2f %%)\n", sleeping_time*1e-3, sleeping_ratio);
fprintf(stderr, "\toverhead time: %.2lf ms (%.2f %%)\n", overhead_time*1e-3, overhead_ratio);

}

13.3 Performance Model Example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in advance the duration of a
task. This is done by giving to codelets a performance model, by defining a structure starpu_perfmodel and providing

Generated by Doxygen

92 Online Performance Tools

its address in the field starpu_codelet::model. The fields starpu_perfmodel::symbol and starpu_perfmodel::type are
mandatory, to give a name to the model, and the type of the model, since there are several kinds of performance
models. For compatibility, make sure to initialize the whole structure to zero, either by using explicit memset(), or by
letting the compiler implicitly do it as examplified below.

• Measured at runtime (model type STARPU_HISTORY_BASED). This assumes that for a given set of data
input/output sizes, the performance will always be about the same. This is very true for regular kernels
on GPUs for instance (<0.1% error), and just a bit less true on CPUs (∼=1% error). This also assumes
that there are few different sets of data input/output sizes. StarPU will then keep record of the average
time of previous executions on the various processing units, and use it as an estimation. History is done
per task size, by using a hash of the input and ouput sizes as an index. It will also save it in $STAR←↩
PU_HOME/.starpu/sampling/codelets for further executions, and can be observed by using the
tool starpu_perfmodel_display, or drawn by using the tool starpu_perfmodel_plot (Per-
formance Model Calibration). The models are indexed by machine name. To share the models between
machines (e.g. for a homogeneous cluster), use export STARPU_HOSTNAME=some_global_name.
Measurements are only done when using a task scheduler which makes use of it, such as dmda. Measure-
ments can also be provided explicitly by the application, by using the function starpu_perfmodel_update_←↩
history().

The following is a small code example.

If e.g. the code is recompiled with other compilation options, or several variants of the code are used, the
symbol string should be changed to reflect that, in order to recalibrate a new model from zero. The symbol
string can even be constructed dynamically at execution time, as long as this is done before submitting any
task using it.

static struct starpu_perfmodel mult_perf_model =
{

.type = STARPU_HISTORY_BASED,

.symbol = "mult_perf_model"
};

struct starpu_codelet cl =
{

.cpu_funcs = { cpu_mult },

.cpu_funcs_name = { "cpu_mult" },

.nbuffers = 3,

.modes = { STARPU_R, STARPU_R, STARPU_W },
/* for the scheduling policy to be able to use performance models */
.model = &mult_perf_model

};

• Measured at runtime and refined by regression (model types STARPU_REGRESSION_BASED and ST←↩
ARPU_NL_REGRESSION_BASED). This still assumes performance regularity, but works with various data
input sizes, by applying regression over observed execution times. STARPU_REGRESSION_BASED uses
an a∗n∧b regression form, STARPU_NL_REGRESSION_BASED uses an a∗n∧b+c (more precise than
STARPU_REGRESSION_BASED, but costs a lot more to compute).

For instance, tests/perfmodels/regression_based.c uses a regression-based performance
model for the function memset().

Of course, the application has to issue tasks with varying size so that the regression can be computed.
StarPU will not trust the regression unless there is at least 10% difference between the minimum and max-
imum observed input size. It can be useful to set the environment variable STARPU_CALIBRATE to 1 and
run the application on varying input sizes with STARPU_SCHED set to dmda scheduler, so as to feed the
performance model for a variety of inputs. The application can also provide the measurements explictly by
using the function starpu_perfmodel_update_history(). The tools starpu_perfmodel_display and
starpu_perfmodel_plot can be used to observe how much the performance model is calibrated (Per-
formance Model Calibration); when their output look good, STARPU_CALIBRATE can be reset to 0 to let
StarPU use the resulting performance model without recording new measures, and STARPU_SCHED can
be set to dmda to benefit from the performance models. If the data input sizes vary a lot, it is really important
to set STARPU_CALIBRATE to 0, otherwise StarPU will continue adding the measures, and result with a
very big performance model, which will take time a lot of time to load and save.

For non-linear regression, since computing it is quite expensive, it is only done at termination of the applica-
tion. This means that the first execution of the application will use only history-based performance model to
perform scheduling, without using regression.

Generated by Doxygen

13.3 Performance Model Example 93

• Another type of model is STARPU_MULTIPLE_REGRESSION_BASED, which is based on multiple linear
regression. In this model, the user defines both the relevant parameters and the equation for computing the
task duration.

Tkernel = a+ b(Mα1 ∗Nβ1 ∗Kγ1) + c(Mα2 ∗Nβ2 ∗Kγ2) + ...

M,N,K are the parameters of the task, added at the task creation. These need to be extracted by the cl←↩
_perf_func function, which should be defined by the user. α, β, γ are the exponents defined by the user
in model->combinations table. Finally, coefficients a, b, c are computed automatically by the StarPU
at the end of the execution, using least squares method of the dgels_ LAPACK function.

examples/mlr/mlr.c example provides more details on the usage of STARPU_MULTIPLE_REGRE←↩
SSION_BASED models. The --enable-mlr configure option needs to be set to calibrate the model.

Coefficients computation is done at the end of the execution, and the results are stored in standard codelet
perfmodel files. Additional files containing the duration of task together with the value of each parameter are
stored in .starpu/sampling/codelets/tmp/ directory. These files are reused when STARPU_←↩
CALIBRATE environment variable is set to 1, to recompute coefficients based on the current, but also on
the previous executions. By default StarPU uses a lightweight dgels implementation, but the --enable-mlr-
system-blas configure option can be used to make StarPU use a system-provided dgels BLAS.

Additionally, when multiple linear regression models are not enabled through --enable-mlr or when the
model->combinations are not defined, StarPU will still write output files into .starpu/sampling/codelets/tmp/
to allow performing an analysis. This analysis typically aims at finding the most appropriate equation for the
codelet and tools/starpu_mlr_analysis script provides an example of how to perform such study.

• Provided as an estimation from the application itself (model type STARPU_COMMON and field
starpu_perfmodel::cost_function), see for instance examples/common/blas_model.h and
examples/common/blas_model.c.

• Provided explicitly by the application (model type STARPU_PER_ARCH): either field starpu_perfmodel←↩
::arch_cost_function, or the fields .per_arch[arch][nimpl].cost_function have to be filled with
pointers to functions which return the expected duration of the task in micro-seconds, one per architecture,
see for instance tests/datawizard/locality.c

For STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, and STARPU_NL_REGRESSION_BASED,
the dimensions of task data (both input and output) are used as an index by default. STARPU_HISTORY_BASED
uses a CRC hash of the dimensions as an index to distinguish histories, and STARPU_REGRESSION_BASED and
STARPU_NL_REGRESSION_BASED use the total size as an index for the regression.
The starpu_perfmodel::size_base and starpu_perfmodel::footprint fields however permit the application to override
that, when for instance some of the data do not matter for task cost (e.g. mere reference table), or when using sparse
structures (in which case it is the number of non-zeros which matter), or when there is some hidden parameter such
as the number of iterations, or when the application actually has a very good idea of the complexity of the algorithm,
and just not the speed of the processor, etc. The example in the directory examples/pi uses this to include the
number of iterations in the base size. starpu_perfmodel::size_base should be used when the variance of the actual
performance is known (i.e. bigger return value is longer execution time), and thus particularly useful for STARPU←↩
_REGRESSION_BASED or STARPU_NL_REGRESSION_BASED. starpu_perfmodel::footprint can be used when
the variance of the actual performance is unknown (irregular performance behavior, etc.), and thus only useful
for STARPU_HISTORY_BASED. starpu_task_data_footprint() can be used as a base and combined with other
parameters through starpu_hash_crc32c_be() for instance.
StarPU will automatically determine when the performance model is calibrated, or rather, it will assume the per-
formance model is calibrated until the application submits a task for which the performance can not be predicted.
For STARPU_HISTORY_BASED, StarPU will require 10 (STARPU_CALIBRATE_MINIMUM) measurements for a
given size before estimating that an average can be taken as estimation for further executions with the same size.
For STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_BASED, StarPU will require 10 (STAR←↩
PU_CALIBRATE_MINIMUM) measurements, and that the minimum measured data size is smaller than 90% of the
maximum measured data size (i.e. the measurement interval is large enough for a regression to have a meaning).
Calibration can also be forced by setting the STARPU_CALIBRATE environment variable to 1, or even reset by
setting it to 2.
How to use schedulers which can benefit from such performance model is explained in Task Scheduling Policies.

Generated by Doxygen

94 Online Performance Tools

The same can be done for task energy consumption estimation, by setting the field starpu_codelet::energy_←↩
model the same way as the field starpu_codelet::model. Note: for now, the application has to give to the energy
consumption performance model a name which is different from the execution time performance model.
The application can request time estimations from the StarPU performance models by filling a task structure as
usual without actually submitting it. The data handles can be created by calling any of the functions starpu_∗_←↩
data_register with a NULL pointer and -1 node and the desired data sizes, and need to be unregistered as
usual. The functions starpu_task_expected_length() and starpu_task_expected_energy() can then be called to get
an estimation of the task cost on a given arch. starpu_task_footprint() can also be used to get the footprint used for
indexing history-based performance models. starpu_task_destroy() needs to be called to destroy the dummy task
afterwards. See tests/perfmodels/regression_based.c for an example.
The application can also request an on-the-fly XML report of the performance model, by calling starpu_perfmodel←↩
_dump_xml() to print the report to a FILE∗.

Generated by Doxygen

Chapter 14

Offline Performance Tools

To get an idea of what is happening, a lot of performance feedback is available, detailed in this chapter. The various
informations should be checked for.

• What does the Gantt diagram look like? (see Creating a Gantt Diagram)

– If it's mostly green (tasks running in the initial context) or context specific color prevailing, then the
machine is properly utilized, and perhaps the codelets are just slow. Check their performance, see
Performance Of Codelets.

– If it's mostly purple (FetchingInput), tasks keep waiting for data transfers, do you perhaps have far more
communication than computation? Did you properly use CUDA streams to make sure communication
can be overlapped? Did you use data-locality aware schedulers to avoid transfers as much as possible?

– If it's mostly red (Blocked), tasks keep waiting for dependencies, do you have enough parallelism? It
might be a good idea to check what the DAG looks like (see Creating a DAG With Graphviz).

– If only some workers are completely red (Blocked), for some reason the scheduler didn't assign tasks
to them. Perhaps the performance model is bogus, check it (see Performance Of Codelets). Do all your
codelets have a performance model? When some of them don't, the schedulers switches to a greedy
algorithm which thus performs badly.

You can also use the Temanejo task debugger (see Using The Temanejo Task Debugger) to visualize the task graph
more easily.

14.1 Off-line Performance Feedback

14.1.1 Generating Traces With FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to generate
traces with a limited runtime overhead.
You can get a tarball from http://download.savannah.gnu.org/releases/fkt/?C=M
Compiling and installing the FxT library in the $FXTDIR path is done following the standard procedure:

$./configure --prefix=$FXTDIR
$ make
$ make install

In order to have StarPU to generate traces, StarPU should be configured with the option --with-fxt :

$./configure --with-fxt=$FXTDIR

Or you can simply point the PKG_CONFIG_PATH to $FXTDIR/lib/pkgconfig and pass --with-fxt to
configure
When FxT is enabled, a trace is generated when StarPU is terminated by calling starpu_shutdown(). The trace is a
binary file whose name has the form prof_file_XXX_YYY where XXX is the user name, and YYY is the MPI
id of the process that used StarPU (or 0 when running a sequential program). One can change the name of the file
by setting the environnement variable STARPU_FXT_SUFFIX, its contents will be used instead of prof_file←↩
_XXX. This file is saved in the /tmp/ directory by default, or by the directory specified by the environment variable
STARPU_FXT_PREFIX.

https://savannah.nongnu.org/projects/fkt/
http://download.savannah.gnu.org/releases/fkt/?C=M

96 Offline Performance Tools

The additional configure option --enable-fxt-lock can be used to generate trace events which describes the
locks behaviour during the execution. It is however very heavy and should not be used unless debugging StarPU's
internal locking.
The environment variable STARPU_FXT_TRACE can be set to 0 to disable the generation of the prof_file_←↩
XXX_YYY file.
When the FxT trace file prof_file_something has been generated, it is possible to generate different trace
formats by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something

Or alternatively, setting the environment variable STARPU_GENERATE_TRACE to 1 before application execution
will make StarPU do it automatically at application shutdown.
One can also set the environment variable STARPU_GENERATE_TRACE_OPTIONS to specify options, see
starpu_fxt_tool -help, for example:

$ export STARPU_GENERATE_TRACE=1
$ export STARPU_GENERATE_TRACE_OPTIONS="-no-acquire"

When running a MPI application, STARPU_GENERATE_TRACE will not work as expected (each node will try to
generate trace files, thus mixing outputs...), you have to collect the trace files from the MPI nodes, and specify them
all on the command starpu_fxt_tool, for instance:

$ starpu_fxt_tool -i /tmp/prof_file_something*

By default, the generated trace contains all informations. To reduce the trace size, various -no-foo options can
be passed to starpu_fxt_tool, see starpu_fxt_tool -help .

14.1.1.1 Creating a Gantt Diagram

One of the generated files is a trace in the Paje format. The file, located in the current directory, is named paje.←↩
trace. It can be viewed with ViTE (http://vite.gforge.inria.fr/) a trace visualizing open-source
tool. To open the file paje.trace with ViTE, use the following command:

$ vite paje.trace

Tasks can be assigned a name (instead of the default unknown) by filling the optional starpu_codelet::name, or
assigning them a performance model. The name can also be set with the field starpu_task::name or by using
STARPU_NAME when calling starpu_task_insert().
Tasks are assigned default colors based on the worker which executed them (green for CPUs, yellow/orange/red
for CUDAs, blue for OpenCLs, red for MICs, ...). To use a different color for every type of task, one can specify
the option -c to starpu_fxt_tool or in STARPU_GENERATE_TRACE_OPTIONS. Tasks can also be given
a specific color by setting the field starpu_codelet::color or the starpu_task::color. Colors are expressed with the
following format 0xRRGGBB (e.g 0xFF0000 for red). See basic_examples/task_insert_color for
examples on how to assign colors.
To get statistics on the time spend in runtime overhead, one can use the statistics plugin of ViTE. In Preferences,
select Plugins. In "States Type", select "Worker State". Then click on "Reload" to update the histogram. The red
"Idle" percentages are due to lack of parallelism, while the brown "Overhead" and "Scheduling" percentages are
due to the overhead of the runtime and of the scheduler.
To identify tasks precisely, the application can also set the field starpu_task::tag_id or setting STARPU_TAG_ONLY
when calling starpu_task_insert(). The value of the tag will then show up in the trace.
One can also introduce user-defined events in the diagram thanks to the starpu_fxt_trace_user_event_string() func-
tion.
One can also set the iteration number, by just calling starpu_iteration_push() at the beginning of submission loops
and starpu_iteration_pop() at the end of submission loops. These iteration numbers will show up in traces for all
tasks submitted from there.
Coordinates can also be given to data with the starpu_data_set_coordinates() or starpu_data_set_coordinates_←↩
array() function. In the trace, tasks will then be assigned the coordinates of the first data they write to.
Traces can also be inspected by hand by using the tool fxt_print, for instance:

$ fxt_print -o -f /tmp/prof_file_something

Timings are in nanoseconds (while timings as seen in ViTE are in milliseconds).

Generated by Doxygen

http://vite.gforge.inria.fr/

14.1 Off-line Performance Feedback 97

14.1.1.2 Creating a DAG With Graphviz

Another generated trace file is a task graph described using the DOT language. The file, created in the current
directory, is named dag.dot file in the current directory. It is possible to get a graphical output of the graph by
using the graphviz library:

$ dot -Tpdf dag.dot -o output.pdf

14.1.1.3 Getting Task Details

Another generated trace file gives details on the executed tasks. The file, created in the current directory, is named
tasks.rec. This file is in the recutils format, i.e. Field: value lines, and empty lines to separate each task.
This can be used as a convenient input for various ad-hoc analysis tools. By default it only contains information
about the actual execution. Performance models can be obtained by running starpu_tasks_rec_complete
on it:

$ starpu_tasks_rec_complete tasks.rec tasks2.rec

which will add EstimatedTime lines which contain the performance model-estimated time (in µs) for each worker
starting from 0. Since it needs the performance models, it needs to be run the same way as the application
execution, or at least with STARPU_HOSTNAME set to the hostname of the machine used for execution, to get the
performance models of that machine.
Another possibility is to obtain the performance models as an auxiliary perfmodel.rec file, by using the
starpu_perfmodel_recdump utility:

$ starpu_perfmodel_recdump tasks.rec -o perfmodel.rec

14.1.1.4 Monitoring Activity

Another generated trace file is an activity trace. The file, created in the current directory, is named activity.←↩
data. A profile of the application showing the activity of StarPU during the execution of the program can be
generated:

$ starpu_workers_activity activity.data

This will create a file named activity.eps in the current directory. This picture is composed of two parts. The
first part shows the activity of the different workers. The green sections indicate which proportion of the time was
spent executed kernels on the processing unit. The red sections indicate the proportion of time spent in StartPU: an
important overhead may indicate that the granularity may be too low, and that bigger tasks may be appropriate to
use the processing unit more efficiently. The black sections indicate that the processing unit was blocked because
there was no task to process: this may indicate a lack of parallelism which may be alleviated by creating more tasks
when it is possible.
The second part of the picture activity.eps is a graph showing the evolution of the number of tasks available in
the system during the execution. Ready tasks are shown in black, and tasks that are submitted but not schedulable
yet are shown in grey.

14.1.1.5 Getting Modular Schedular Animation

When using modular schedulers (i.e. schedulers which use a modular architecture, and whose name start with
"modular-"), the call to starpu_fxt_tool will also produce a trace.html file which can be viewed in a
javascript-enabled web browser. It shows the flow of tasks between the components of the modular scheduler.

14.1.2 Limiting The Scope Of The Trace

For computing statistics, it is useful to limit the trace to a given portion of the time of the whole execution. This can
be achieved by calling

starpu_fxt_autostart_profiling(0)

before calling starpu_init(), to prevent tracing from starting immediately. Then

starpu_fxt_start_profiling();

Generated by Doxygen

98 Offline Performance Tools

and

starpu_fxt_stop_profiling();

can be used around the portion of code to be traced. This will show up as marks in the trace, and states of workers
will only show up for that portion.

14.2 Performance Of Codelets

The performance model of codelets (see Performance Model Example) can be examined by using the tool
starpu_perfmodel_display:

$ starpu_perfmodel_display -l
file: <malloc_pinned.hannibal>
file: <starpu_slu_lu_model_21.hannibal>
file: <starpu_slu_lu_model_11.hannibal>
file: <starpu_slu_lu_model_22.hannibal>
file: <starpu_slu_lu_model_12.hannibal>

Here, the codelets of the example lu are available. We can examine the performance of the kernel 22 (in micro-
seconds), which is history-based:

$ starpu_perfmodel_display -s starpu_slu_lu_model_22
performance model for cpu
hash size mean dev n
57618ab0 19660800 2.851069e+05 1.829369e+04 109
performance model for cuda_0
hash size mean dev n
57618ab0 19660800 1.164144e+04 1.556094e+01 315
performance model for cuda_1
hash size mean dev n
57618ab0 19660800 1.164271e+04 1.330628e+01 360
performance model for cuda_2
hash size mean dev n
57618ab0 19660800 1.166730e+04 3.390395e+02 456

We can see that for the given size, over a sample of a few hundreds of execution, the GPUs are about 20 times
faster than the CPUs (numbers are in us). The standard deviation is extremely low for the GPUs, and less than 10%
for CPUs.
This tool can also be used for regression-based performance models. It will then display the regression formula,
and in the case of non-linear regression, the same performance log as for history-based performance models:

$ starpu_perfmodel_display -s non_linear_memset_regression_based
performance model for cpu_impl_0
Regression : #sample = 1400
Linear: y = alpha size ^ beta
alpha = 1.335973e-03
beta = 8.024020e-01
Non-Linear: y = a size ^b + c
a = 5.429195e-04
b = 8.654899e-01
c = 9.009313e-01
hash size mean stddev n
a3d3725e 4096 4.763200e+00 7.650928e-01 100
870a30aa 8192 1.827970e+00 2.037181e-01 100
48e988e9 16384 2.652800e+00 1.876459e-01 100
961e65d2 32768 4.255530e+00 3.518025e-01 100
...

The same can also be achieved by using StarPU's library API, see Performance Model and notably the function
starpu_perfmodel_load_symbol(). The source code of the tool starpu_perfmodel_display can be a useful
example.
An XML output can also be printed by using the -x option:

tools/starpu_perfmodel_display -x -s non_linear_memset_regression_based
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE StarPUPerfmodel SYSTEM "starpu-perfmodel.dtd">
<!-- symbol non_linear_memset_regression_based -->
<!-- All times in us -->

Generated by Doxygen

14.2 Performance Of Codelets 99

<perfmodel version="45">
<combination>

<device type="CPU" id="0" ncores="1"/>
<implementation id="0">

<!-- cpu0_impl0 (Comb0) -->
<!-- time = a size ^b + c -->
<nl_regression a="5.429195e-04" b="8.654899e-01" c="9.009313e-01"/>
<entry footprint="a3d3725e" size="4096" flops="0.000000e+00" mean="4.763200e+00" deviation="7.650928e-01" nsample="100"/>
<entry footprint="870a30aa" size="8192" flops="0.000000e+00" mean="1.827970e+00" deviation="2.037181e-01" nsample="100"/>
<entry footprint="48e988e9" size="16384" flops="0.000000e+00" mean="2.652800e+00" deviation="1.876459e-01" nsample="100"/>
<entry footprint="961e65d2" size="32768" flops="0.000000e+00" mean="4.255530e+00" deviation="3.518025e-01" nsample="100"/>

</implementation>
</combination>

</perfmodel>

The tool starpu_perfmodel_plot can be used to draw performance models. It writes a .gp file in the current
directory, to be run with the tool gnuplot, which shows the corresponding curve.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
 (

m
s
)

Total data size

Model for codelet non_linear_memset_regression_based.type

Non-Linear Regression cpu_impl_0
Measured cpu_impl_0

When the field starpu_task::flops is set (or STARPU_FLOPS is passed to starpu_task_insert()), starpu_←↩
perfmodel_plot can directly draw a GFlops/s curve, by simply adding the -f option:

$ starpu_perfmodel_plot -f -s chol_model_11

This will however disable displaying the regression model, for which we can not compute GFlops/s.

Generated by Doxygen

100 Offline Performance Tools

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

G
F

lo
p

s

Total data size

Model for codelet chol_model_11.type

Average cpu0_ncore0_impl0

When the FxT trace file prof_file_something has been generated, it is possible to get a profiling of each
codelet by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something
$ starpu_codelet_profile distrib.data codelet_name

This will create profiling data files, and a distrib.data.gp file in the current directory, which draws the distri-
bution of codelet time over the application execution, according to data input size.

Generated by Doxygen

14.2 Performance Of Codelets 101

 0.001

 0.01

 0.1

 1

 10

 1000 10000 100000 1e+06 1e+07 1e+08

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Total data size

non_linear_memset_regression_ba arch 0
non_linear_memset_regression_ba arch 1
non_linear_memset_regression_ba arch 2
non_linear_memset_regression_ba arch 3

This is also available in the tool starpu_perfmodel_plot, by passing it the fxt trace:

$ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0

It will produce a .gp file which contains both the performance model curves, and the profiling measurements.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
 (

m
s
)

Total data size

Model for codelet non_linear_memset_regression_based

Profiling cpu0_ncore0_impl0
Non-Linear Regression cpu0_ncore0_impl0

Average cpu0_ncore0_impl0

Generated by Doxygen

102 Offline Performance Tools

If you have the statistical tool R installed, you can additionally use

$ starpu_codelet_histo_profile distrib.data

Which will create one .pdf file per codelet and per input size, showing a histogram of the codelet execution time
distribution.

Histogram of val[val > quantile(val, 0.01) & val < quantile(val, 0.99)]

val[val > quantile(val, 0.01) & val < quantile(val, 0.99)]

F
re

qu
en

cy

0.070 0.072 0.074 0.076 0.078

0
5

10
15

20

14.3 Data trace and tasks length

It is possible to get statistics about tasks length and data size by using :

$ starpu_fxt_data_trace filename [codelet1 codelet2 ... codeletn]

Where filename is the FxT trace file and codeletX the names of the codelets you want to profile (if no names are
specified, starpu_fxt_data_trace will profile them all). This will create a file, data_trace.gp which can
be executed to get a .eps image of these results. On the image, each point represents a task, and each color
corresponds to a codelet.

Generated by Doxygen

14.4 Trace Statistics 103

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.001 0.01 0.1 1 10 100

d
a

ta
 s

iz
e

 (
B

)

tasks size (ms)

Data trace

DPOTRFTRSM
DGEMM

14.4 Trace Statistics

More than just codelet performance, it is interesting to get statistics over all kinds of StarPU states (allocations,
data transfers, etc.). This is particularly useful to check what may have gone wrong in the accurracy of the SimGrid
simulation.
This requires the R statistical tool, with the plyr, ggplot2 and data.table packages. If your system distri-
bution does not have packages for these, one can fetch them from CRAN:

$ R
> install.packages("plyr")
> install.packages("ggplot2")
> install.packages("data.table")
> install.packages("knitr")

The pj_dump tool from pajeng is also needed (see https://github.com/schnorr/pajeng)
One can then get textual or .csv statistics over the trace states:

$ starpu_paje_state_stats -v native.trace simgrid.trace
"Value" "Events_native.csv" "Duration_native.csv" "Events_simgrid.csv" "Duration_simgrid.csv"
"Callback" 220 0.075978 220 0
"chol_model_11" 10 565.176 10 572.8695
"chol_model_21" 45 9184.828 45 9170.719
"chol_model_22" 165 64712.07 165 64299.203
$ starpu_paje_state_stats native.trace simgrid.trace

An other way to get statistics of StarPU states (without installing R and pj_dump) is to use the starpu_trace←↩
_state_stats.py script which parses the generated trace.rec file instead of the paje.trace file. The
output is similar to the previous script but it doesn't need any dependencies.
The different prefixes used in trace.rec are:

E: Event type
N: Event name
C: Event category
W: Worker ID
T: Thread ID
S: Start time

Generated by Doxygen

https://github.com/schnorr/pajeng

104 Offline Performance Tools

Here's an example on how to use it:

$ starpu_trace_state_stats.py trace.rec | column -t -s ","
"Name" "Count" "Type" "Duration"
"Callback" 220 Runtime 0.075978
"chol_model_11" 10 Task 565.176
"chol_model_21" 45 Task 9184.828
"chol_model_22" 165 Task 64712.07

starpu_trace_state_stats.py can also be used to compute the different efficiencies. Refer to the usage
description to show some examples.
And one can plot histograms of execution times, of several states for instance:

$ starpu_paje_draw_histogram -n chol_model_11,chol_model_21,chol_model_22 native.trace simgrid.trace

and see the resulting pdf file:

chol_model_11 chol_model_21 chol_model_22

0

20

40

0

20

40

60

exam
ple.native.trace.csv

exam
ple.sim

grid.trace.csv

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Time [ms]

C
ou

nt

Histograms for state distribution

A quick statistical report can be generated by using:

$ starpu_paje_summary native.trace simgrid.trace

it includes gantt charts, execution summaries, as well as state duration charts and time distribution histograms.
Other external Paje analysis tools can be used on these traces, one just needs to sort the traces by timestamp order
(which not guaranteed to make recording more efficient):

$ starpu_paje_sort paje.trace

Generated by Doxygen

14.5 Theoretical Lower Bound On Execution Time 105

14.5 Theoretical Lower Bound On Execution Time

StarPU can record a trace of what tasks are needed to complete the application, and then, by using a linear system,
provide a theoretical lower bound of the execution time (i.e. with an ideal scheduling).
The computed bound is not really correct when not taking into account dependencies, but for an application which
have enough parallelism, it is very near to the bound computed with dependencies enabled (which takes a huge lot
more time to compute), and thus provides a good-enough estimation of the ideal execution time.
Theoretical Lower Bound On Execution Time Example provides an example on how to use this.

14.6 Theoretical Lower Bound On Execution Time Example

For kernels with history-based performance models (and provided that they are completely calibrated), StarPU
can very easily provide a theoretical lower bound for the execution time of a whole set of tasks. See for instance
examples/lu/lu_example.c: before submitting tasks, call the function starpu_bound_start(), and after com-
plete execution, call starpu_bound_stop(). starpu_bound_print_lp() or starpu_bound_print_mps() can then be used
to output a Linear Programming problem corresponding to the schedule of your tasks. Run it through lp_solve or
any other linear programming solver, and that will give you a lower bound for the total execution time of your tasks. If
StarPU was compiled with the library glpk installed, starpu_bound_compute() can be used to solve it immediately
and get the optimized minimum, in ms. Its parameter integer allows to decide whether integer resolution should
be computed and returned
The deps parameter tells StarPU whether to take tasks, implicit data, and tag dependencies into account. Tags
released in a callback or similar are not taken into account, only tags associated with a task are. It must be
understood that the linear programming problem size is quadratic with the number of tasks and thus the time to
solve it will be very long, it could be minutes for just a few dozen tasks. You should probably use lp_solve
-timeout 1 test.pl -wmps test.mps to convert the problem to MPS format and then use a better
solver, glpsol might be better than lp_solve for instance (the -pcost option may be useful), but sometimes
doesn't manage to converge. cbc might look slower, but it is parallel. For lp_solve, be sure to try at least all
the -B options. For instance, we often just use lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd
-Bs -BB -Bo -Bc -Bi , and the -gr option can also be quite useful. The resulting schedule can be observed
by using the tool starpu_lp2paje, which converts it into the Paje format.
Data transfer time can only be taken into account when deps is set. Only data transfers inferred from implicit
data dependencies between tasks are taken into account. Other data transfers are assumed to be completely
overlapped.
Setting deps to 0 will only take into account the actual computations on processing units. It however still properly
takes into account the varying performances of kernels and processing units, which is quite more accurate than just
comparing StarPU performances with the fastest of the kernels being used.
The prio parameter tells StarPU whether to simulate taking into account the priorities as the StarPU scheduler
would, i.e. schedule prioritized tasks before less prioritized tasks, to check to which extend this results to a less
optimal solution. This increases even more computation time.

14.7 Trace visualization with StarVZ

Creating views with StarVZ (see: https://github.com/schnorr/starvz) is made up of two steps. The
initial stage consists of a pre-processing of the traces generated by the application, while the second one consists
of the analysis itself and is carried out with R packages' aid. StarVZ is available at CRAN (https://cran.←↩
r-project.org/package=starvz) and depends on pj_dump (from pajeng) and rec2csv (from recutils).
To download and install StarVZ, it is necessary to have R, pajeng, and recutils:

For pj_dump and rec2csv
apt install -y pajeng recutils

For R
apt install -y r-base libxml2-dev libssl-dev libcurl4-openssl-dev libgit2-dev libboost-dev

To install the StarVZ, the following command can be used:

echo "install.packages(’starvz’, repos = ’https://cloud.r-project.org’)" | R --vanilla

To generate traces from an application, it is necessary to set STARPU_GENERATE_TRACE and build StarPU with
FxT. Then, StarVZ can be used on a folder with StarPU FxT traces to produce a default view:

Generated by Doxygen

https://github.com/schnorr/starvz
https://cran.r-project.org/package=starvz
https://cran.r-project.org/package=starvz

106 Offline Performance Tools

export PATH=$(Rscript -e ’cat(system.file("tools/", package = "starvz"), sep="\n")’):$PATH

starvz /foo/path-to-fxt-files

An example of default view:

C
P

B
: 2

85

11
42

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10

CUDA0_0A
pp

lic
at

io
n

W
or

ke
rs

cl_update null save_cl_bottom save_cl_top

0

2000

4000

6000

S
ub

m
itt

ed

scheduler

CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7
CPU8
CPU9

CPU10

CUDA0_0

S
ta

rP
U

 W
or

ke
rs

Deinitializing

FetchingInput

Idle

Initializing

Overhead

Progressing

PushingOutput

Scheduling

Sleeping

0

20

40

60

 0 300 600 900 1200
Time [ms]

R
ea

dy

scheduler

One can also use existing trace files (paje.trace, tasks.rec, data.rec, papi.rec and dag.dot) skipping the StarVZ
internal call to starpu_fxt_tool with:

starvz --use-paje-trace /foo/path-to-trace-files

Alternatively, each StarVZ step can be executed separately. Step 1 can be used on a folder with:

starvz -1 /foo/path-to-fxt-files

Then the second step can be executed directly in R. StarVZ enables a set of different plots that can be configured
on a .yaml file. A default file is provided (default.yaml); also, the options can be changed directly in R.

Generated by Doxygen

14.8 Memory Feedback 107

library(starvz)
library(dplyr)

dtrace <- starvz_read("./", selective = FALSE)

show idleness ratio
dtrace$config$st$idleness = TRUE

show ABE bound
dtrace$config$stabeactive = TRUE

find the last task with dplyr
dtrace$config$st$tasks$list = dtrace$Application %>% filter(End == max(End)) %>% .$JobId
show last task dependencies
dtrace$config$st$tasks$active = TRUE
dtrace$config$st$tasks$levels = 50

plot <- starvz_plot(dtrace)

An example of visualization follows:

10.09%

6.99%

10.98%

8.17%

3.71%

6.36%

3.95%

12.07%

11.84%

12.81%

12.11%

31.3%

A
B

E
: 8

97

11
42

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

CPU9

CPU10

CUDA0_0

 0 300 600 900 1200
Time [ms]

A
pp

lic
at

io
n

W
or

ke
rs

cl_update null save_cl_bottom save_cl_top 10360

14.8 Memory Feedback

It is possible to enable memory statistics. To do so, you need to pass the option --enable-memory-stats when running
configure. It is then possible to call the function starpu_data_display_memory_stats() to display statistics about
the current data handles registered within StarPU.
Moreover, statistics will be displayed at the end of the execution on data handles which have not been cleared out.
This can be disabled by setting the environment variable STARPU_MEMORY_STATS to 0.
For example, if you do not unregister data at the end of the complex example, you will get something similar to:

$ STARPU_MEMORY_STATS=0 ./examples/interface/complex
Complex[0] = 45.00 + 12.00 i
Complex[0] = 78.00 + 78.00 i
Complex[0] = 45.00 + 12.00 i
Complex[0] = 45.00 + 12.00 i

Generated by Doxygen

108 Offline Performance Tools

$ STARPU_MEMORY_STATS=1 ./examples/interface/complex
Complex[0] = 45.00 + 12.00 i
Complex[0] = 78.00 + 78.00 i
Complex[0] = 45.00 + 12.00 i
Complex[0] = 45.00 + 12.00 i

#---------------------
Memory stats:
#-------
Data on Node #3
#-----
Data : 0x553ff40
Size : 16

#--
Data access stats
/!\ Work Underway
Node #0
Direct access : 4
Loaded (Owner) : 0
Loaded (Shared) : 0
Invalidated (was Owner) : 0

Node #3
Direct access : 0
Loaded (Owner) : 0
Loaded (Shared) : 1
Invalidated (was Owner) : 0

#-----
Data : 0x5544710
Size : 16

#--
Data access stats
/!\ Work Underway
Node #0
Direct access : 2
Loaded (Owner) : 0
Loaded (Shared) : 1
Invalidated (was Owner) : 1

Node #3
Direct access : 0
Loaded (Owner) : 1
Loaded (Shared) : 0
Invalidated (was Owner) : 0

14.9 Data Statistics

Different data statistics can be displayed at the end of the execution of the application. To enable them, you need to
define the environment variable STARPU_ENABLE_STATS. When calling starpu_shutdown() various statistics will
be displayed, execution, MSI cache statistics, allocation cache statistics, and data transfer statistics. The display
can be disabled by setting the environment variable STARPU_STATS to 0.

$./examples/cholesky/cholesky_tag
Computation took (in ms)
518.16
Synthetic GFlops : 44.21
#---------------------
MSI cache stats :
TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
...

$ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
Computation took (in ms)
518.16
Synthetic GFlop/s : 44.21

Generated by Doxygen

Chapter 15

Frequently Asked Questions

15.1 How To Initialize A Computation Library Once For Each Worker?

Some libraries need to be initialized once for each concurrent instance that may run on the machine. For instance,
a C++ computation class which is not thread-safe by itself, but for which several instanciated objects of that class
can be used concurrently. This can be used in StarPU by initializing one such object per worker. For instance, the
libstarpufft example does the following to be able to use FFTW on CPUs.
Some global array stores the instanciated objects:

fftw_plan plan_cpu[STARPU_NMAXWORKERS];

At initialisation time of libstarpu, the objects are initialized:

int workerid;
for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)
{

switch (starpu_worker_get_type(workerid))
{

case STARPU_CPU_WORKER:
plan_cpu[workerid] = fftw_plan(...);
break;

}
}

And in the codelet body, they are used:

static void fft(void *descr[], void *_args)
{

int workerid = starpu_worker_get_id();
fftw_plan plan = plan_cpu[workerid];
...

fftw_execute(plan, ...);
}

This however is not sufficient for FFT on CUDA: initialization has to be done from the workers themselves. This can
be done thanks to starpu_execute_on_each_worker(). For instance libstarpufft does the following.

static void fft_plan_gpu(void *args)
{

plan plan = args;
int n2 = plan->n2[0];
int workerid = starpu_worker_get_id();

cufftPlan1d(&plan->plans[workerid].plan_cuda, n, _CUFFT_C2C, 1);
cufftSetStream(plan->plans[workerid].plan_cuda, starpu_cuda_get_local_stream());

}
void starpufft_plan(void)
{

starpu_execute_on_each_worker(fft_plan_gpu, plan, STARPU_CUDA);
}

15.2 Using The Driver API

Running Drivers

110 Frequently Asked Questions

int ret;
struct starpu_driver =
{

.type = STARPU_CUDA_WORKER,

.id.cuda_id = 0
};
ret = starpu_driver_init(&d);
if (ret != 0)

error();
while (some_condition)
{

ret = starpu_driver_run_once(&d);
if (ret != 0)

error();
}
ret = starpu_driver_deinit(&d);
if (ret != 0)

error();

To add a new kind of device to the structure starpu_driver, one needs to:

1. Add a member to the union starpu_driver::id

2. Modify the internal function _starpu_launch_drivers() to make sure the driver is not always
launched.

3. Modify the function starpu_driver_run() so that it can handle another kind of architecture.

4. Write the new function _starpu_run_foobar() in the corresponding driver.

15.3 On-GPU Rendering

Graphical-oriented applications need to draw the result of their computations, typically on the very GPU where these
happened. Technologies such as OpenGL/CUDA interoperability permit to let CUDA directly work on the Open←↩
GL buffers, making them thus immediately ready for drawing, by mapping OpenGL buffer, textures or renderbuffer
objects into CUDA. CUDA however imposes some technical constraints: peer memcpy has to be disabled, and the
thread that runs OpenGL has to be the one that runs CUDA computations for that GPU.
To achieve this with StarPU, pass the option --disable-cuda-memcpy-peer to configure (TODO: make it dy-
namic), OpenGL/GLUT has to be initialized first, and the interoperability mode has to be enabled by using the field
starpu_conf::cuda_opengl_interoperability, and the driver loop has to be run by the application, by using the field
starpu_conf::not_launched_drivers to prevent StarPU from running it in a separate thread, and by using starpu_←↩
driver_run() to run the loop. The examples gl_interop and gl_interop_idle show how it articulates in a
simple case, where rendering is done in task callbacks. The former uses glutMainLoopEvent to make GLUT
progress from the StarPU driver loop, while the latter uses glutIdleFunc to make StarPU progress from the
GLUT main loop.
Then, to use an OpenGL buffer as a CUDA data, StarPU simply needs to be given the CUDA pointer at registration,
for instance:

/* Get the CUDA worker id */
for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)

if (starpu_worker_get_type(workerid) == STARPU_CUDA_WORKER)
break;

/* Build a CUDA pointer pointing at the OpenGL buffer */
cudaGraphicsResourceGetMappedPointer((void**)&output, &num_bytes, resource);

/* And register it to StarPU */
starpu_vector_data_register(&handle, starpu_worker_get_memory_node

(workerid), output, num_bytes / sizeof(float4), sizeof(float4));

/* The handle can now be used as usual */
starpu_task_insert(&cl, STARPU_RW, handle, 0);

/* ... */

/* This gets back data into the OpenGL buffer */
starpu_data_unregister(handle);

and display it e.g. in the callback function.

Generated by Doxygen

15.4 Using StarPU With MKL 11 (Intel Composer XE 2013) 111

15.4 Using StarPU With MKL 11 (Intel Composer XE 2013)

Some users had issues with MKL 11 and StarPU (versions 1.1rc1 and 1.0.5) on Linux with MKL, using 1 thread for
MKL and doing all the parallelism using StarPU (no multithreaded tasks), setting the environment variable MKL_←↩
NUM_THREADS to 1, and using the threaded MKL library, with iomp5.
Using this configuration, StarPU only uses 1 core, no matter the value of STARPU_NCPU. The problem is actually
a thread pinning issue with MKL.
The solution is to set the environment variable KMP_AFFINITY to disabled (http://software.intel.←↩
com/sites/products/documentation/studio/composer/en-us/2011Update/compiler←↩
_c/optaps/common/optaps_openmp_thread_affinity.htm).

15.5 Thread Binding on NetBSD

When using StarPU on a NetBSD machine, if the topology discovery library hwloc is used, thread binding will fail.
To prevent the problem, you should at least use the version 1.7 of hwloc, and also issue the following call:

$ sysctl -w security.models.extensions.user_set_cpu_affinity=1

Or add the following line in the file /etc/sysctl.conf

security.models.extensions.user_set_cpu_affinity=1

15.6 StarPU permanently eats 100% of all CPUs

Yes, this is on purpose.
By default, StarPU uses active polling on task queues, so as to minimize wake-up latency for better overall perfor-
mance.
If eating CPU time is a problem (e.g. application running on a desktop), pass option --enable-blocking-drivers to
configure. This will add some overhead when putting CPU workers to sleep or waking them, but avoid eating
100% CPU permanently.

15.7 Interleaving StarPU and non-StarPU code

If your application only partially uses StarPU, and you do not want to call starpu_init() / starpu_shutdown() at the
beginning/end of each section, StarPU workers will poll for work between the sections. To avoid this behavior, you
can "pause" StarPU with the starpu_pause() function. This will prevent the StarPU workers from accepting new
work (tasks that are already in progress will not be frozen), and stop them from polling for more work.
Note that this does not prevent you from submitting new tasks, but they won't execute until starpu_resume() is called.
Also note that StarPU must not be paused when you call starpu_shutdown(), and that this function pair works in a
push/pull manner, i.e you need to match the number of calls to these functions to clear their effect.
One way to use these functions could be:

starpu_init(NULL);
starpu_pause(); // To submit all the tasks without a single one executing
submit_some_tasks();
starpu_resume(); // The tasks start executing

starpu_task_wait_for_all();
starpu_pause(); // Stop the workers from polling

starpu_resume();

starpu_shutdown();

15.8 When running with CUDA or OpenCL devices, I am seeing less CPU cores

Yes, this is on purpose.
Since GPU devices are way faster than CPUs, StarPU needs to react quickly when a task is finished, to feed the
GPU with another task (StarPU actually submits a couple of tasks in advance so as to pipeline this, but filling the

Generated by Doxygen

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

112 Frequently Asked Questions

pipeline still has to be happening often enough), and thus it has to dedicate threads for this, and this is a very
CPU-consuming duty. StarPU thus dedicates one CPU core for driving each GPU by default.
Such dedication is also useful when a codelet is hybrid, i.e. while kernels are running on the GPU, the codelet can
run some computation, which thus be run by the CPU core instead of driving the GPU.
One can choose to dedicate only one thread for all the CUDA devices by setting the STARPU_CUDA_THREAD_←↩
PER_DEV environment variable to 1. The application however should use STARPU_CUDA_ASYNC on its CUDA
codelets (asynchronous execution), otherwise the execution of a synchronous CUDA codelet will monopolize the
thread, and other CUDA devices will thus starve while it is executing.

15.9 StarPU does not see my CUDA device

First make sure that CUDA is properly running outside StarPU: build and run the following program with -lcudart
:

#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>

int main(void)
{

int n, i, version;
cudaError_t err;

err = cudaGetDeviceCount(&n);
if (err)
{

fprintf(stderr,"cuda error %d\n", err);
exit(1);

}
cudaDriverGetVersion(&version);
printf("driver version %d\n", version);
cudaRuntimeGetVersion(&version);
printf("runtime version %d\n", version);
printf("\n");

for (i = 0; i < n; i++)
{

struct cudaDeviceProp props;
printf("CUDA%d\n", i);
err = cudaGetDeviceProperties(&props, i);
if (err)
{

fprintf(stderr,"cuda error %d\n", err);
continue;

}
printf("%s\n", props.name);
printf("%0.3f GB\n", (float) props.totalGlobalMem / (1<<30));
printf("%u MP\n", props.multiProcessorCount);
printf("\n");

}
return 0;

}

If that program does not find your device, the problem is not at the StarPU level, but the CUDA drivers, check the
documentation of your CUDA setup.

15.10 StarPU does not see my OpenCL device

First make sure that OpenCL is properly running outside StarPU: build and run the following program with -l←↩
OpenCL :

#include <CL/cl.h>
#include <stdio.h>
#include <assert.h>

int main(void)
{

cl_device_id did[16];
cl_int err;
cl_platform_id pid, pids[16];
cl_uint nbplat, nb;
char buf[128];
size_t size;
int i, j;

Generated by Doxygen

15.11 I keep getting a "Incorrect performance model file" error 113

err = clGetPlatformIDs(sizeof(pids)/sizeof(pids[0]), pids, &nbplat);
assert(err == CL_SUCCESS);
printf("%u platforms\n", nbplat);
for (j = 0; j < nbplat; j++)
{

pid = pids[j];
printf(" platform %d\n", j);
err = clGetPlatformInfo(pid, CL_PLATFORM_VERSION, sizeof(buf)-1, buf, &size);
assert(err == CL_SUCCESS);
buf[size] = 0;
printf(" platform version %s\n", buf);

err = clGetDeviceIDs(pid, CL_DEVICE_TYPE_ALL, sizeof(did)/sizeof(did[0]), did, &nb);
assert(err == CL_SUCCESS);
printf("%d devices\n", nb);
for (i = 0; i < nb; i++)
{

err = clGetDeviceInfo(did[i], CL_DEVICE_VERSION, sizeof(buf)-1, buf, &size);
buf[size] = 0;
printf(" device %d version %s\n", i, buf);

}
}

return 0;
}

If that program does not find your device, the problem is not at the StarPU level, but the OpenCL drivers, check the
documentation of your OpenCL implementation.

15.11 I keep getting a "Incorrect performance model file" error

The performance model file, used by StarPU to record the performance of codelets, seem to have been corrupted.
Perhaps a previous run of StarPU stopped abruptly, and thus could not save it properly. You can have a look at the
file if you can fix it, but the simplest way is to just remove the file and run again, StarPU will just have to re-perform
calibration for the corresponding codelet.

Generated by Doxygen

114 Frequently Asked Questions

Generated by Doxygen

Part IV

StarPU Extensions

Chapter 16

Out Of Core

16.1 Introduction

When using StarPU, one may need to store more data than what the main memory (RAM) can store. This part
describes the method to add a new memory node on a disk and to use it.
Similarly to what happens with GPUs (it's actually exactly the same code), when available main memory becomes
scarse, StarPU will evict unused data to the disk, thus leaving room for new allocations. Whenever some evicted
data is needed again for a task, StarPU will automatically fetch it back from the disk.
The principle is that one first registers a disk location, seen by StarPU as a void∗, which can be for instance a
Unix path for the stdio, unistd or unistd_o_direct backends, or a leveldb database for the leveldb
backend, an HDF5 file path for the HDF5 backend, etc. The disk backend opens this place with the plug() method.
StarPU can then start using it to allocate room and store data there with the disk write method, without user
intervention.
The user can also use starpu_disk_open() to explicitly open an object within the disk, e.g. a file name in the stdio
or unistd cases, or a database key in the leveldb case, and then use starpu_∗_register functions to
turn it into a StarPU data handle. StarPU will then use this file as external source of data, and automatically read
and write data as appropriate.
In any case, the user also needs to set STARPU_LIMIT_CPU_MEM to the amount of data that StarPU will be
allowed to afford. By default StarPU will use the machine memory size, but part of it is taken by the kernel, the
system, daemons, and the application's own allocated data, whose size can not be predicted. That is why the user
needs to specify what StarPU can afford.
Some Out-of-core tests are worth giving a read, see tests/disk/∗.c

16.2 Use a new disk memory

To use a disk memory node, you have to register it with this function:

int new_dd = starpu_disk_register(&starpu_disk_unistd_ops, (void

*) "/tmp/", 1024*1024*200);

Here, we use the unistd library to realize the read/write operations, i.e. fread/fwrite. This structure must
have a path where to store files, as well as the maximum size the software can afford storing on the disk.
Don't forget to check if the result is correct!
This can also be achieved by just setting environment variables STARPU_DISK_SWAP, STARPU_DISK_SWAP←↩
_BACKEND and STARPU_DISK_SWAP_SIZE :

export STARPU_DISK_SWAP=/tmp
export STARPU_DISK_SWAP_BACKEND=unistd
export STARPU_DISK_SWAP_SIZE=200

The backend can be set to stdio (some caching is done by libc and the kernel), unistd (only caching in the
kernel), unistd_o_direct (no caching), leveldb, or hdf5.
It is important to understand that when the backend is not set to unistd_o_direct, some caching will occur at
the kernel level (the page cache), which will also consume memory... STARPU_LIMIT_CPU_MEM might need to
be set to less that half of the machine memory just to leave room for the kernel's page cache, otherwise the kernel

118 Out Of Core

will struggle to get memory. Using unistd_o_direct avoids this caching, thus allowing to set STARPU_LIM←↩
IT_CPU_MEM to the machine memory size (minus some memory for normal kernel operations, system daemons,
and application data).
When the register call is made, StarPU will benchmark the disk. This can take some time.
Warning: the size thus has to be at least STARPU_DISK_SIZE_MIN bytes !
StarPU will then automatically try to evict unused data to this new disk. One can also use the standard StarPU
memory node API to prefetch data etc., see the Standard Memory Library and the Data Interfaces.
The disk is unregistered during the starpu_shutdown().

16.3 Data Registration

StarPU will only be able to achieve Out-Of-Core eviction if it controls memory allocation. For instance, if the appli-
cation does the following:

p = malloc(1024*1024*sizeof(float));
fill_with_data(p);
starpu_matrix_data_register(&h, STARPU_MAIN_RAM, (uintptr_t) p, 1

024, 1024, 1024, sizeof(float));

StarPU will not be able to release the corresponding memory since it's the application which allocated it, and StarPU
can not know how, and thus how to release it. One thus have to use the following instead:

starpu_matrix_data_register(&h, -1, NULL, 1024, 1024, 1024, sizeof(float));
starpu_task_insert(cl_fill_with_data, STARPU_W, h, 0);

Which makes StarPU automatically do the allocation when the task running cl_fill_with_data gets executed. And
then if its needs to, it will be able to release it after having pushed the data to the disk. Since no initial buffer is
provided to starpu_matrix_data_register(), the handle does not have any initial value right after this call, and thus
the very first task using the handle needs to use the STARPU_W mode like above, STARPU_R or STARPU_RW
would not make sense.
By default, StarPU will try to push any data handle to the disk. To specify whether a given handle should be pushed
to the disk, starpu_data_set_ooc_flag() should be used.

16.4 Using Wont Use

By default, StarPU uses a Least-Recently-Used (LRU) algorithm to determine which data should be evicted to the
disk. This algorithm can be hinted by telling which data will no be used in the coming future thanks to starpu_←↩
data_wont_use(), for instance:

starpu_task_insert(&cl_work, STARPU_RW, h, 0);
starpu_data_wont_use(h);

StarPU will mark the data as "inactive" and tend to evict to the disk that data rather than others.

16.5 Examples: disk_copy

/* Try to write into disk memory

* Use mechanism to push datas from main ram to disk ram

*/

#include <starpu.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

/* size of one vector */
#define NX (30*1000000/sizeof(double))
#define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__);

}} while(0)

int main(int argc, char **argv)
{

double * A,*B,*C,*D,*E,*F;

/* limit main ram to force to push in disk */

Generated by Doxygen

16.5 Examples: disk_copy 119

setenv("STARPU_LIMIT_CPU_MEM", "160", 1);

/* Initialize StarPU with default configuration */
int ret = starpu_init(NULL);

if (ret == -ENODEV) goto enodev;

/* register a disk */
int new_dd = starpu_disk_register(&starpu_disk_unistd_ops

, (void *) "/tmp/", 1024*1024*200);
/* can’t write on /tmp/ */
if (new_dd == -ENOENT) goto enoent;

/* allocate two memory spaces */
starpu_malloc_flags((void **)&A, NX*sizeof(double), STARPU_MALLOC_COUNT

);
starpu_malloc_flags((void **)&F, NX*sizeof(double), STARPU_MALLOC_COUNT

);

FPRINTF(stderr, "TEST DISK MEMORY \n");

unsigned int j;
/* initialization with bad values */
for(j = 0; j < NX; ++j)
{

A[j] = j;
F[j] = -j;

}

starpu_data_handle_t vector_handleA, vector_handleB, vector_handleC,
vector_handleD, vector_handleE, vector_handleF;

/* register vector in starpu */
starpu_vector_data_register(&vector_handleA, STARPU_MAIN_RAM

, (uintptr_t)A, NX, sizeof(double));
starpu_vector_data_register(&vector_handleB, -1, (uintptr_t) NULL, NX,

sizeof(double));
starpu_vector_data_register(&vector_handleC, -1, (uintptr_t) NULL, NX,

sizeof(double));
starpu_vector_data_register(&vector_handleD, -1, (uintptr_t) NULL, NX,

sizeof(double));
starpu_vector_data_register(&vector_handleE, -1, (uintptr_t) NULL, NX,

sizeof(double));
starpu_vector_data_register(&vector_handleF, STARPU_MAIN_RAM

, (uintptr_t)F, NX, sizeof(double));

/* copy vector A->B, B->C... */
starpu_data_cpy(vector_handleB, vector_handleA, 0, NULL, NULL);
starpu_data_cpy(vector_handleC, vector_handleB, 0, NULL, NULL);
starpu_data_cpy(vector_handleD, vector_handleC, 0, NULL, NULL);
starpu_data_cpy(vector_handleE, vector_handleD, 0, NULL, NULL);
starpu_data_cpy(vector_handleF, vector_handleE, 0, NULL, NULL);

/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */

/* free them */
starpu_data_unregister(vector_handleA);
starpu_data_unregister(vector_handleB);
starpu_data_unregister(vector_handleC);
starpu_data_unregister(vector_handleD);
starpu_data_unregister(vector_handleE);
starpu_data_unregister(vector_handleF);

/* check if computation is correct */
int try = 1;
for (j = 0; j < NX; ++j)

if (A[j] != F[j])
{

printf("Fail A %f != F %f \n", A[j], F[j]);
try = 0;

}

/* free last vectors */
starpu_free_flags(A, NX*sizeof(double), STARPU_MALLOC_COUNT);
starpu_free_flags(F, NX*sizeof(double), STARPU_MALLOC_COUNT);

/* terminate StarPU, no task can be submitted after */
starpu_shutdown();

if(try)
FPRINTF(stderr, "TEST SUCCESS\n");

else
FPRINTF(stderr, "TEST FAIL\n");

return (try ? EXIT_SUCCESS : EXIT_FAILURE);

enodev:

Generated by Doxygen

120 Out Of Core

return 77;
enoent:

return 77;
}

16.6 Examples: disk_compute
/* Try to write into disk memory

* Use mechanism to push datas from main ram to disk ram

*/

#include <starpu.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <math.h>

#define NX (1024)

int main(int argc, char **argv)
{

/* Initialize StarPU with default configuration */
int ret = starpu_init(NULL);

if (ret == -ENODEV) goto enodev;

/* Initialize path and name */
char pid_str[16];
int pid = getpid();
snprintf(pid_str, sizeof(pid_str), "%d", pid);

const char *name_file_start = "STARPU_DISK_COMPUTE_DATA_";
const char *name_file_end = "STARPU_DISK_COMPUTE_DATA_RESULT_";

char * path_file_start = malloc(strlen(base) + 1 + strlen(name_file_start) + 1);
strcpy(path_file_start, base);
strcat(path_file_start, "/");
strcat(path_file_start, name_file_start);

char * path_file_end = malloc(strlen(base) + 1 + strlen(name_file_end) + 1);
strcpy(path_file_end, base);
strcat(path_file_end, "/");
strcat(path_file_end, name_file_end);

/* register a disk */
int new_dd = starpu_disk_register(&starpu_disk_unistd_ops

, (void *) base, 1024*1024*1);
/* can’t write on /tmp/ */
if (new_dd == -ENOENT) goto enoent;

unsigned dd = (unsigned) new_dd;

printf("TEST DISK MEMORY \n");

/* Imagine, you want to compute datas */
int *A;
int *C;

starpu_malloc_flags((void **)&A, NX*sizeof(int), STARPU_MALLOC_COUNT
);

starpu_malloc_flags((void **)&C, NX*sizeof(int), STARPU_MALLOC_COUNT
);

unsigned int j;
/* you register them in a vector */
for(j = 0; j < NX; ++j)
{

A[j] = j;
C[j] = 0;

}

/* you create a file to store the vector ON the disk */
FILE * f = fopen(path_file_start, "wb+");
if (f == NULL)

goto enoent2;

/* store it in the file */
fwrite(A, sizeof(int), NX, f);

/* close the file */
fclose(f);

Generated by Doxygen

16.6 Examples: disk_compute 121

/* create a file to store result */
f = fopen(path_file_end, "wb+");
if (f == NULL)

goto enoent2;

/* replace all datas by 0 */
fwrite(C, sizeof(int), NX, f);

/* close the file */
fclose(f);

/* And now, you want to use your datas in StarPU */
/* Open the file ON the disk */
void * data = starpu_disk_open(dd, (void *) name_file_start, NX*sizeof(int));
void * data_result = starpu_disk_open(dd, (void *) name_file_end, NX*sizeof(int));

starpu_data_handle_t vector_handleA, vector_handleC;

/* register vector in starpu */
starpu_vector_data_register(&vector_handleA, dd, (uintptr_t) data, NX,

sizeof(int));

/* and do what you want with it, here we copy it into an other vector */
starpu_vector_data_register(&vector_handleC, dd, (uintptr_t) data_result

, NX, sizeof(int));

starpu_data_cpy(vector_handleC, vector_handleA, 0, NULL, NULL);

/* free them */
starpu_data_unregister(vector_handleA);
starpu_data_unregister(vector_handleC);

/* close them in StarPU */
starpu_disk_close(dd, data, NX*sizeof(int));
starpu_disk_close(dd, data_result, NX*sizeof(int));

/* check results */
f = fopen(path_file_end, "rb+");
if (f == NULL)

goto enoent;
/* take datas */
int size = fread(C, sizeof(int), NX, f);

/* close the file */
fclose(f);

int try = 1;
for (j = 0; j < NX; ++j)

if (A[j] != C[j])
{

printf("Fail A %d != C %d \n", A[j], C[j]);
try = 0;

}

starpu_free_flags(A, NX*sizeof(int), STARPU_MALLOC_COUNT);
starpu_free_flags(C, NX*sizeof(int), STARPU_MALLOC_COUNT);

unlink(path_file_start);
unlink(path_file_end);

free(path_file_start);
free(path_file_end);

/* terminate StarPU, no task can be submitted after */
starpu_shutdown();

if(try)
printf("TEST SUCCESS\n");

else
printf("TEST FAIL\n");

return (try ? EXIT_SUCCESS : EXIT_FAILURE);

enodev:
return 77;

enoent2:
starpu_free_flags(A, NX*sizeof(int), STARPU_MALLOC_COUNT);
starpu_free_flags(C, NX*sizeof(int), STARPU_MALLOC_COUNT);

enoent:
unlink(path_file_start);
unlink(path_file_end);

free(path_file_start);
free(path_file_end);

starpu_shutdown();
return 77;

}

Generated by Doxygen

122 Out Of Core

16.7 Performances

Scheduling heuristics for Out-of-core are still relatively experimental. The tricky part is that you usually have to find
a compromise between privileging locality (which avoids back and forth with the disk) and privileging the critical
path, i.e. taking into account priorities to avoid lack of parallelism at the end of the task graph.
It is notably better to avoid defining different priorities to tasks with low priority, since that will make the scheduler
want to schedule them by levels of priority, at the depense of locality.
The scheduling algorithms worth trying are thus dmdar and lws, which privilege data locality over priorities. There
will be work on this area in the coming future.

16.8 Feedback Figures

Beyond pure performance feedback, some figures are interesting to have a look at.
Using export STARPU_BUS_STATS=1 (STARPU_BUS_STATS and STARPU_BUS_STATS_FILE to define
a filename in which to display statistics, by default the standard error stream is used) gives an overview of the data
transfers which were needed. The values can also be obtained at runtime by using starpu_bus_get_profiling_info().
An example can be read in src/profiling/profiling_helpers.c.

#---------------------
Data transfer speed for /tmp/sthibault-disk-DJzhAj (node 1):
0 -> 1: 99 MB/s
1 -> 0: 99 MB/s
0 -> 1: 23858 µs
1 -> 0: 23858 µs

#---------------------
TEST DISK MEMORY

#---------------------
Data transfer stats:
Disk 0 -> NUMA 0 0.0000 GB 0.0000 MB/s (transfers : 0 - avg -nan MB)
NUMA 0 -> Disk 0 0.0625 GB 63.6816 MB/s (transfers : 2 - avg 32.0000 MB)
Total transfers: 0.0625 GB
#---------------------

Using export STARPU_ENABLE_STATS=1 gives information for each memory node on data miss/hit and
allocation miss/hit.

#---------------------
MSI cache stats :
memory node NUMA 0
hit : 32 (66.67 %)
miss : 16 (33.33 %)
memory node Disk 0
hit : 0 (0.00 %)
miss : 0 (0.00 %)
#---------------------

#---------------------
Allocation cache stats:
memory node NUMA 0
total alloc : 16
cached alloc: 0 (0.00 %)
memory node Disk 0
total alloc : 8
cached alloc: 0 (0.00 %)
#---------------------

16.9 Disk functions

There are various ways to operate a disk memory node, described by the structure starpu_disk_ops. For instance,
the variable starpu_disk_unistd_ops uses read/write functions.
All structures are in Out Of Core.

Generated by Doxygen

Chapter 17

MPI Support

The integration of MPI transfers within task parallelism is done in a very natural way by the means of asynchronous
interactions between the application and StarPU. This is implemented in a separate libstarpumpi library which
basically provides "StarPU" equivalents of MPI_∗ functions, where void ∗ buffers are replaced with starpu_←↩
data_handle_t, and all GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to use the
usual mpirun command of the MPI implementation to start StarPU on the different MPI nodes.
In case the user wants to run several MPI processes by machine (e.g. one per NUMA node), STARPU_WORK←↩
ERS_GETBIND should be used to make StarPU take into account the binding set by the MPI launcher (otherwise
each StarPU instance would try to bind on all cores of the machine...)
An MPI Insert Task function provides an even more seamless transition to a distributed application, by automatically
issuing all required data transfers according to the task graph and an application-provided distribution.

17.1 Building with MPI support

If a mpicc compiler is already in your PATH, StarPU will automatically enable MPI support in the build. If
mpicc is not in PATH, you can specify its location by passing -with-mpicc=/where/there/is/mpicc to
./configure
It can be useful to enable MPI tests during make check by passing -enable-mpi-check to
./configure. And similarly to mpicc, if mpiexec in not in PATH, you can specify its location by pass-
ing -with-mpiexec=/where/there/is/mpiexec to ./configure, but this is not needed if it is next
to mpicc, configure will look there in addition to PATH.
Similarly, Fortran examples use mpif90, which can be specified manually with -with-mpifort if it can't be
found automatically.

17.2 Example Used In This Documentation

The example below will be used as the base for this documentation. It initializes a token on node 0, and the token
is passed from node to node, incremented by one on each step. The code is not using StarPU yet.

for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;

if (loop == 0 && rank == 0)
{

token = 0;
fprintf(stdout, "Start with token value %d\n", token);

}
else
{

MPI_Recv(&token, 1, MPI_INT, (rank+size-1)%size, tag, MPI_COMM_WORLD);
}

token++;

if (loop == last_loop && rank == last_rank)
{

fprintf(stdout, "Finished: token value %d\n", token);
}
else
{

124 MPI Support

MPI_Send(&token, 1, MPI_INT, (rank+1)%size, tag+1, MPI_COMM_WORLD);
}

}

17.3 About Not Using The MPI Support

Although StarPU provides MPI support, the application programmer may want to keep his MPI communications as
they are for a start, and only delegate task execution to StarPU. This is possible by just using starpu_data_acquire(),
for instance:

for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;

/* Acquire the data to be able to write to it */
starpu_data_acquire(token_handle, STARPU_W);
if (loop == 0 && rank == 0)
{

token = 0;
fprintf(stdout, "Start with token value %d\n", token);

}
else
{

MPI_Recv(&token, 1, MPI_INT, (rank+size-1)%size, tag, MPI_COMM_WORLD);
}

starpu_data_release(token_handle);

/* Task delegation to StarPU to increment the token. The execution might

* be performed on a CPU, a GPU, etc. */
increment_token();

/* Acquire the update data to be able to read from it */
starpu_data_acquire(token_handle, STARPU_R);
if (loop == last_loop && rank == last_rank)
{

fprintf(stdout, "Finished: token value %d\n", token);
}
else
{

MPI_Send(&token, 1, MPI_INT, (rank+1)%size, tag+1, MPI_COMM_WORLD);
}

starpu_data_release(token_handle);
}

In that case, libstarpumpi is not needed. One can also use MPI_Isend() and MPI_Irecv(), by calling
starpu_data_release() after MPI_Wait() or MPI_Test() have notified completion.
It is however better to use libstarpumpi, to save the application from having to synchronize with starpu←↩
_data_acquire(), and instead just submit all tasks and communications asynchronously, and wait for the overall
completion.

17.4 Simple Example

The flags required to compile or link against the MPI layer are accessible with the following commands:

$ pkg-config --cflags starpumpi-1.3 # options for the compiler
$ pkg-config --libs starpumpi-1.3 # options for the linker

void increment_token(void)
{

struct starpu_task *task = starpu_task_create();

task->cl = &increment_cl;
task->handles[0] = token_handle;

starpu_task_submit(task);
}

int main(int argc, char **argv)
{

int rank, size;

starpu_mpi_init_conf(&argc, &argv, 1, MPI_COMM_WORLD, NULL);
starpu_mpi_comm_rank(MPI_COMM_WORLD, &rank);
starpu_mpi_comm_size(MPI_COMM_WORLD, &size);

starpu_vector_data_register(&token_handle, STARPU_MAIN_RAM, (

Generated by Doxygen

17.5 How to Initialize StarPU-MPI 125

uintptr_t)&token, 1, sizeof(unsigned));

unsigned nloops = NITER;
unsigned loop;

unsigned last_loop = nloops - 1;
unsigned last_rank = size - 1;

for (loop = 0; loop < nloops; loop++)
{

int tag = loop*size + rank;

if (loop == 0 && rank == 0)
{

starpu_data_acquire(token_handle, STARPU_W);
token = 0;
fprintf(stdout, "Start with token value %d\n", token);
starpu_data_release(token_handle);

}
else
{

starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
MPI_COMM_WORLD, NULL, NULL);

}

increment_token();

if (loop == last_loop && rank == last_rank)
{

starpu_data_acquire(token_handle, STARPU_R);
fprintf(stdout, "Finished: token value %d\n", token);
starpu_data_release(token_handle);

}
else
{

starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
MPI_COMM_WORLD, NULL, NULL);

}
}

starpu_task_wait_for_all();

starpu_mpi_shutdown();

if (rank == last_rank)
{

fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
STARPU_ASSERT(token == nloops*size);

}

We have here replaced MPI_Recv() and MPI_Send() with starpu_mpi_irecv_detached() and starpu_mpi←↩
_isend_detached(), which just submit the communication to be performed. The implicit sequential consistency
dependencies provide synchronization between mpi reception and emission and the corresponding tasks. The only
remaining synchronization with starpu_data_acquire() is at the beginning and the end.

17.5 How to Initialize StarPU-MPI

As seen in the previous example, one has to call starpu_mpi_init_conf() to initialize StarPU-MPI. The third parameter
of the function indicates if MPI should be initialized by StarPU or if the application did it itself. If the application
initializes MPI itself, it must call MPI_Init_thread() with MPI_THREAD_SERIALIZED or MPI_THREAD←↩
_MULTIPLE, since StarPU-MPI uses a separate thread to perform the communications. MPI_THREAD_MULT←↩
IPLE is necessary if the application also performs some MPI communications.

17.6 Point To Point Communication

The standard point to point communications of MPI have been implemented. The semantic is similar to the MPI
one, but adapted to the DSM provided by StarPU. A MPI request will only be submitted when the data is available
in the main memory of the node submitting the request.
There are two types of asynchronous communications: the classic asynchronous communications and the detached
communications. The classic asynchronous communications (starpu_mpi_isend() and starpu_mpi_irecv()) need
to be followed by a call to starpu_mpi_wait() or to starpu_mpi_test() to wait for or to test the completion of the
communication. Waiting for or testing the completion of detached communications is not possible, this is done
internally by StarPU-MPI, on completion, the resources are automatically released. This mechanism is similar to

Generated by Doxygen

126 MPI Support

the pthread detach state attribute which determines whether a thread will be created in a joinable or a detached
state.
For send communications, data is acquired with the mode STARPU_R. When using the configure option -
-enable-mpi-pedantic-isend, the mode STARPU_RW is used to make sure there is no more than 1 concurrent
MPI_Isend() call accessing a data and StarPU does not read from it from tasks during the communication.
Internally, all communication are divided in 2 communications, a first message is used to exchange an envelope
describing the data (i.e its tag and its size), the data itself is sent in a second message. All MPI communications
submitted by StarPU uses a unique tag which has a default value, and can be accessed with the functions starpu_←↩
mpi_get_communication_tag() and starpu_mpi_set_communication_tag(). The matching of tags with corresponding
requests is done within StarPU-MPI.
For any userland communication, the call of the corresponding function (e.g starpu_mpi_isend()) will result in the
creation of a StarPU-MPI request, the function starpu_data_acquire_cb() is then called to asynchronously request
StarPU to fetch the data in main memory; when the data is ready and the corresponding buffer has already been
received by MPI, it will be copied in the memory of the data, otherwise the request is stored in the early requests
list. Sending requests are stored in the ready requests list.
While requests need to be processed, the StarPU-MPI progression thread does the following:

1. it polls the ready requests list. For all the ready requests, the appropriate function is called to post the
corresponding MPI call. For example, an initial call to starpu_mpi_isend() will result in a call to MPI_←↩
Isend(). If the request is marked as detached, the request will then be added in the detached requests
list.

2. it posts a MPI_Irecv() to retrieve a data envelope.

3. it polls the detached requests list. For all the detached requests, it tests its completion of the MPI request by
calling MPI_Test(). On completion, the data handle is released, and if a callback was defined, it is called.

4. finally, it checks if a data envelope has been received. If so, if the data envelope matches a request in the
early requests list (i.e the request has already been posted by the application), the corresponding MPI call is
posted (similarly to the first step above).

If the data envelope does not match any application request, a temporary handle is created to receive the
data, a StarPU-MPI request is created and added into the ready requests list, and thus will be processed in
the first step of the next loop.

MPIPtpCommunication gives the list of all the point to point communications defined in StarPU-MPI.

17.7 Exchanging User Defined Data Interface

New data interfaces defined as explained in Defining A New Data Interface can also be used within StarPU-MPI and
exchanged between nodes. Two functions needs to be defined through the type starpu_data_interface_ops. The
function starpu_data_interface_ops::pack_data takes a handle and returns a contiguous memory buffer allocated
with

starpu_malloc_flags(ptr, size, 0)

along with its size where data to be conveyed to another node should be copied.

static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr,
ssize_t *count)

{
STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

*count = complex_get_size(handle);

*ptr = starpu_malloc_on_node_flags(node, *count, 0);
memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary, complex_interface->nx*

sizeof(double));

return 0;
}

The inverse operation is implemented in the function starpu_data_interface_ops::unpack_data which takes a con-
tiguous memory buffer and recreates the data handle.

Generated by Doxygen

17.7 Exchanging User Defined Data Interface 127

static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr,
size_t count)

{
STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, node);

memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double), complex_interface->nx*
sizeof(double));

return 0;
}

static struct starpu_data_interface_ops interface_complex_ops =
{

...

.pack_data = complex_pack_data,

.unpack_data = complex_unpack_data
};

Instead of defining pack and unpack operations, users may want to attach a MPI type to their user-defined data inter-
face. The function starpu_mpi_interface_datatype_register() allows to do so. This function takes 3 parameters: the
interface ID for which the MPI datatype is going to be defined, a function's pointer that will create the MPI datatype,
and a function's pointer that will free the MPI datatype. If for some data an MPI datatype can not be built (e.g.
complex data structure), the creation function can return -1, StarPU-MPI will then fallback to using pack/unpack.
The functions to create and free the MPI datatype are defined and registered as follows.

void starpu_complex_interface_datatype_allocate(starpu_data_handle_t handle,
MPI_Datatype *mpi_datatype)

{
int ret;

int blocklengths[2];
MPI_Aint displacements[2];
MPI_Datatype types[2] = {MPI_DOUBLE, MPI_DOUBLE};

struct starpu_complex_interface *complex_interface = (struct starpu_complex_interface *)
starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);

MPI_Get_address(complex_interface, displacements);
MPI_Get_address(&complex_interface->imaginary, displacements+1);
displacements[1] -= displacements[0];
displacements[0] = 0;

blocklengths[0] = complex_interface->nx;
blocklengths[1] = complex_interface->nx;

ret = MPI_Type_create_struct(2, blocklengths, displacements, types, mpi_datatype);
STARPU_ASSERT_MSG(ret == MPI_SUCCESS, "MPI_Type_contiguous failed");

ret = MPI_Type_commit(mpi_datatype);
STARPU_ASSERT_MSG(ret == MPI_SUCCESS, "MPI_Type_commit failed");

}

void starpu_complex_interface_datatype_free(MPI_Datatype *mpi_datatype)
{

MPI_Type_free(mpi_datatype);
}

static struct starpu_data_interface_ops interface_complex_ops =
{

...
};

interface_complex_ops.interfaceid = starpu_data_interface_get_next_id
();

starpu_mpi_interface_datatype_register(interface_complex_ops.
interfaceid, starpu_complex_interface_datatype_allocate, starpu_complex_interface_datatype_free);

starpu_data_interface handle;
starpu_complex_data_register(&handle, STARPU_MAIN_RAM, real, imaginary, 2);
...

It is also possible to use starpu_mpi_datatype_register() to register the functions through a handle rather than the
interface ID, but note that in that case it is important to make sure no communication is going to occur before the
function starpu_mpi_datatype_register() is called. This would otherwise produce an undefined result as the data
may be received before the function is called, and so the MPI datatype would not be known by the StarPU-MPI
communication engine, and the data would be processed with the pack and unpack operations. One would thus
need to synchronize all nodes:

Generated by Doxygen

128 MPI Support

starpu_data_interface handle;
starpu_complex_data_register(&handle, STARPU_MAIN_RAM, real, imaginary, 2);
starpu_mpi_datatype_register(handle, starpu_complex_interface_datatype_allocate

, starpu_complex_interface_datatype_free);

starpu_mpi_barrier(MPI_COMM_WORLD);

17.8 MPI Insert Task Utility

To save the programmer from having to explicit all communications, StarPU provides an "MPI Insert Task Utility".
The principe is that the application decides a distribution of the data over the MPI nodes by allocating it and notifying
StarPU of this decision, i.e. tell StarPU which MPI node "owns" which data. It also decides, for each handle, an MPI
tag which will be used to exchange the content of the handle. All MPI nodes then process the whole task graph, and
StarPU automatically determines which node actually execute which task, and trigger the required MPI transfers.
The list of functions is described in MPIInsertTask.
Here an stencil example showing how to use starpu_mpi_task_insert(). One first needs to define a distribution
function which specifies the locality of the data. Note that the data needs to be registered to MPI by calling starpu←↩
_mpi_data_register(). This function allows to set the distribution information and the MPI tag which should be
used when communicating the data. It also allows to automatically clear the MPI communication cache when
unregistering the data.

/* Returns the MPI node number where data is */
int my_distrib(int x, int y, int nb_nodes)
{

/* Block distrib */
return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;

// /* Other examples useful for other kinds of computations */
// /* / distrib */
// return (x+y) % nb_nodes;

// /* Block cyclic distrib */
// unsigned side = sqrt(nb_nodes);
// return x % side + (y % side) * size;

}

Now the data can be registered within StarPU. Data which are not owned but will be needed for computations can
be registered through the lazy allocation mechanism, i.e. with a home_node set to -1. StarPU will automatically
allocate the memory when it is used for the first time.
One can note an optimization here (the else if test): we only register data which will be needed by the tasks
that we will execute.

unsigned matrix[X][Y];
starpu_data_handle_t data_handles[X][Y];

for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

int mpi_rank = my_distrib(x, y, size);
if (mpi_rank == my_rank)

/* Owning data */
starpu_variable_data_register(&data_handles[x][y], STARPU_MAIN_RAM

, (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)

|| my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
/* I don’t own this index, but will need it for my computations */
starpu_variable_data_register(&data_handles[x][y], -1, (uintptr_t)

NULL, sizeof(unsigned));
else

/* I know it’s useless to allocate anything for this */
data_handles[x][y] = NULL;

if (data_handles[x][y])
{

starpu_mpi_data_register(data_handles[x][y], x*X+y, mpi_rank);
}

}
}

Now starpu_mpi_task_insert() can be called for the different steps of the application.

for(loop=0 ; loop<niter; loop++)
for (x = 1; x < X-1; x++)

for (y = 1; y < Y-1; y++)
starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,

Generated by Doxygen

17.9 Pruning MPI Task Insertion 129

STARPU_RW, data_handles[x][y],
STARPU_R, data_handles[x-1][y],
STARPU_R, data_handles[x+1][y],
STARPU_R, data_handles[x][y-1],
STARPU_R, data_handles[x][y+1],
0);

starpu_task_wait_for_all();

I.e. all MPI nodes process the whole task graph, but as mentioned above, for each task, only the MPI node which
owns the data being written to (here, data_handles[x][y]) will actually run the task. The other MPI nodes
will automatically send the required data.
To tune the placement of tasks among MPI nodes, one can use STARPU_EXECUTE_ON_NODE or STARPU_←↩
EXECUTE_ON_DATA to specify an explicit node, or the node of a given data (e.g. one of the parameters), or use
starpu_mpi_node_selection_register_policy() and STARPU_NODE_SELECTION_POLICY to provide a dynamic
policy.
A function starpu_mpi_task_build() is also provided with the aim to only construct the task structure. All MPI nodes
need to call the function, which posts the required send/recv on the various nodes which have to. Only the node
which is to execute the task will then return a valid task structure, others will return NULL. This node must submit
the task. All nodes then need to call the function starpu_mpi_task_post_build() – with the same list of arguments as
starpu_mpi_task_build() – to post all the necessary data communications meant to happen after the task execution.

struct starpu_task *task;
task = starpu_mpi_task_build(MPI_COMM_WORLD, &cl,

STARPU_RW, data_handles[0],
STARPU_R, data_handles[1],
0);

if (task) starpu_task_submit(task);
starpu_mpi_task_post_build(MPI_COMM_WORLD, &cl,

STARPU_RW, data_handles[0],
STARPU_R, data_handles[1],
0);

17.9 Pruning MPI Task Insertion

Making all MPI nodes process the whole graph can be a concern with a growing number of nodes. To avoid this,
the application can prune the task for loops according to the data distribution, so as to only submit tasks on nodes
which have to care about them (either to execute them, or to send the required data).
A way to do some of this quite easily can be to just add an if like this:

for(loop=0 ; loop<niter; loop++)
for (x = 1; x < X-1; x++)

for (y = 1; y < Y-1; y++)
if (my_distrib(x,y,size) == my_rank
|| my_distrib(x-1,y,size) == my_rank
|| my_distrib(x+1,y,size) == my_rank
|| my_distrib(x,y-1,size) == my_rank
|| my_distrib(x,y+1,size) == my_rank)

starpu_mpi_task_insert(MPI_COMM_WORLD, &stencil5_cl,
STARPU_RW, data_handles[x][y],
STARPU_R, data_handles[x-1][y],
STARPU_R, data_handles[x+1][y],
STARPU_R, data_handles[x][y-1],
STARPU_R, data_handles[x][y+1],
0);

starpu_task_wait_for_all();

This permits to drop the cost of function call argument passing and parsing.
If the my_distrib function can be inlined by the compiler, the latter can improve the test.
If the size can be made a compile-time constant, the compiler can considerably improve the test further.
If the distribution function is not too complex and the compiler is very good, the latter can even optimize the for
loops, thus dramatically reducing the cost of task submission.
To estimate quickly how long task submission takes, and notably how much pruning saves, a quick and easy way is
to measure the submission time of just one of the MPI nodes. This can be achieved by running the application on
just one MPI node with the following environment variables:

export STARPU_DISABLE_KERNELS=1
export STARPU_MPI_FAKE_RANK=2
export STARPU_MPI_FAKE_SIZE=1024

Here we have disabled the kernel function call to skip the actual computation time and only keep submission time,
and we have asked StarPU to fake running on MPI node 2 out of 1024 nodes.

Generated by Doxygen

130 MPI Support

17.10 Temporary Data

To be able to use starpu_mpi_task_insert(), one has to call starpu_mpi_data_register(), so that StarPU-MPI can
know what it needs to do for each data. Parameters of starpu_mpi_data_register() are normally the same on all
nodes for a given data, so that all nodes agree on which node owns the data, and which tag is used to transfer its
value.
It can however be useful to register e.g. some temporary data on just one node, without having to register a dumb
handle on all nodes, while only one node will actually need to know about it. In this case, nodes which will not need
the data can just pass NULL to starpu_mpi_task_insert():

starpu_data_handle_t data0 = NULL;
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM,
(uintptr_t) &val0, sizeof(val0));

starpu_mpi_data_register(data0, 0, rank);
}
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data0, 0); /* Executes

on node 0 */

Here, nodes whose rank is not 0 will simply not take care of the data, and consider it to be on another node.
This can be mixed various way, for instance here node 1 determines that it does not have to care about data0,
but knows that it should send the value of its data1 to node 0, which owns data and thus will need the value of
data1 to execute the task:

starpu_data_handle_t data0 = NULL, data1, data;
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM,
(uintptr_t) &val0, sizeof(val0));

starpu_mpi_data_register(data0, -1, rank);
starpu_variable_data_register(&data1, -1, 0, sizeof(val1));
starpu_variable_data_register(&data, STARPU_MAIN_RAM, (

uintptr_t) &val, sizeof(val));
}
else if (rank == 1)
{

starpu_variable_data_register(&data1, STARPU_MAIN_RAM,
(uintptr_t) &val1, sizeof(val1));

starpu_variable_data_register(&data, -1, 0, sizeof(val));
}
starpu_mpi_data_register(data, 42, 0);
starpu_mpi_data_register(data1, 43, 1);
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data, STARPU_R,

data0, STARPU_R, data1, 0); /* Executes on node 0 */

17.11 Per-node Data

Further than temporary data on just one node, one may want per-node data, to e.g. replicate some computation
because that is less expensive than communicating the value over MPI:

starpu_data_handle pernode, data0, data1;
starpu_variable_data_register(&pernode, -1, 0, sizeof(val));
starpu_mpi_data_register(pernode, -1, STARPU_MPI_PER_NODE);

/* Normal data: one on node0, one on node1 */
if (rank == 0)
{

starpu_variable_data_register(&data0, STARPU_MAIN_RAM,
(uintptr_t) &val0, sizeof(val0));

starpu_variable_data_register(&data1, -1, 0, sizeof(val1));
}
else if (rank == 1)
{

starpu_variable_data_register(&data0, -1, 0, sizeof(val1));
starpu_variable_data_register(&data1, STARPU_MAIN_RAM,

(uintptr_t) &val1, sizeof(val1));
}
starpu_mpi_data_register(data0, 42, 0);
starpu_mpi_data_register(data1, 43, 1);

starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, pernode, 0); /* Will be
replicated on all nodes */

starpu_mpi_task_insert(MPI_COMM_WORLD, &cl2, STARPU_RW, data0, STARPU_R,
pernode); /* Will execute on node 0, using its own pernode*/

starpu_mpi_task_insert(MPI_COMM_WORLD, &cl2, STARPU_RW, data1, STARPU_R,
pernode); /* Will execute on node 1, using its own pernode*/

Generated by Doxygen

17.12 Priorities 131

One can turn a normal data into pernode data, by first broadcasting it to all nodes:

starpu_data_handle data;
starpu_variable_data_register(&data, -1, 0, sizeof(val));
starpu_mpi_data_register(data, 42, 0);

/* Compute some value */
starpu_mpi_task_insert(MPI_COMM_WORLD, &cl, STARPU_W, data, 0); /* Node 0

computes it */

/* Get it on all nodes */
starpu_mpi_get_data_on_all_nodes_detached(MPI_COMM_WORLD, data);
/* And turn it per-node */
starpu_mpi_data_set_rank(data, STARPU_MPI_PER_NODE);

The data can then be used just like pernode above.

17.12 Priorities

All send functions have a _prio variant which takes an additional priority parameter, which allows to make Star←↩
PU-MPI change the order of MPI requests before submitting them to MPI. The default priority is 0.
When using the starpu_mpi_task_insert() helper, STARPU_PRIORITY defines both the task priority and the MPI
requests priority.
To test how much MPI priorities have a good effect on performance, you can set the environment variable STAR←↩
PU_MPI_PRIORITIES to 0 to disable the use of priorities in StarPU-MPI.

17.13 MPI Cache Support

StarPU-MPI automatically optimizes duplicate data transmissions: if an MPI node B needs a piece of data D from
MPI node A for several tasks, only one transmission of D will take place from A to B, and the value of D will be kept
on B as long as no task modifies D.
If a task modifies D, B will wait for all tasks which need the previous value of D, before invalidating the value of D.
As a consequence, it releases the memory occupied by D. Whenever a task running on B needs the new value of
D, allocation will take place again to receive it.
Since tasks can be submitted dynamically, StarPU-MPI can not know whether the current value of data D will again
be used by a newly-submitted task before being modified by another newly-submitted task, so until a task is sub-
mitted to modify the current value, it can not decide by itself whether to flush the cache or not. The application can
however explicitly tell StarPU-MPI to flush the cache by calling starpu_mpi_cache_flush() or starpu_mpi_cache_←↩
flush_all_data(), for instance in case the data will not be used at all any more (see for instance the cholesky example
in mpi/examples/matrix_decomposition), or at least not in the close future. If a newly-submitted task
actually needs the value again, another transmission of D will be initiated from A to B. A mere starpu_mpi_cache←↩
_flush_all_data() can for instance be added at the end of the whole algorithm, to express that no data will be reused
after this (or at least that it is not interesting to keep them in cache). It may however be interesting to add fine-graph
starpu_mpi_cache_flush() calls during the algorithm; the effect for the data deallocation will be the same, but it will
additionally release some pressure from the StarPU-MPI cache hash table during task submission.
One can determine whether a piece of data is cached with starpu_mpi_cached_receive() and starpu_mpi_cached←↩
_send().
Functions starpu_mpi_cached_receive_set() and starpu_mpi_cached_send_set() are automatically called by
starpu_mpi_task_insert() but can also be called directly by the application. Functions starpu_mpi_cached_←↩
send_clear() and starpu_mpi_cached_receive_clear() must be called to clear data from the cache. They are also
automatically called when using starpu_mpi_task_insert().
The whole caching behavior can be disabled thanks to the STARPU_MPI_CACHE environment variable. The
variable STARPU_MPI_CACHE_STATS can be set to 1 to enable the runtime to display messages when data are
added or removed from the cache holding the received data.

17.14 MPI Data Migration

The application can dynamically change its mind about the data distribution, to balance the load over MPI nodes
for instance. This can be done very simply by requesting an explicit move and then change the registered rank.
For instance, we here switch to a new distribution function my_distrib2: we first register any data which wasn't
registered already and will be needed, then migrate the data, and register the new location.

Generated by Doxygen

132 MPI Support

for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

int mpi_rank = my_distrib2(x, y, size);
if (!data_handles[x][y] && (mpi_rank == my_rank

|| my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
|| my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size)))

/* Register newly-needed data */
starpu_variable_data_register(&data_handles[x][y], -1, (uintptr_t)

NULL, sizeof(unsigned));
if (data_handles[x][y])
{

/* Migrate the data */
starpu_mpi_data_migrate(MPI_COMM_WORLD, data_handles[x][y], mpi_rank);

}
}

}

From then on, further tasks submissions will use the new data distribution, which will thus change both MPI com-
munications and task assignments.
Very importantly, since all nodes have to agree on which node owns which data so as to determine MPI communi-
cations and task assignments the same way, all nodes have to perform the same data migration, and at the same
point among task submissions. It thus does not require a strict synchronization, just a clear separation of task
submissions before and after the data redistribution.
Before data unregistration, it has to be migrated back to its original home node (the value, at least), since that is
where the user-provided buffer resides. Otherwise the unregistration will complain that it does not have the latest
value on the original home node.

for(x = 0; x < X; x++)
{

for (y = 0; y < Y; y++)
{

if (data_handles[x][y])
{

int mpi_rank = my_distrib(x, y, size);
/* Get back data to original place where the user-provided buffer is. */
starpu_mpi_get_data_on_node_detached(MPI_COMM_WORLD,

data_handles[x][y], mpi_rank, NULL, NULL);
/* And unregister it */
starpu_data_unregister(data_handles[x][y]);

}
}

}

17.15 MPI Collective Operations

The functions are described in MPICollectiveOperations.

if (rank == root)
{

/* Allocate the vector */
vector = malloc(nblocks * sizeof(float *));
for(x=0 ; x<nblocks ; x++)
{

starpu_malloc((void **)&vector[x], block_size*sizeof(float));
}

}

/* Allocate data handles and register data to StarPU */
data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
for(x = 0; x < nblocks ; x++)
{

int mpi_rank = my_distrib(x, nodes);
if (rank == root)
{

starpu_vector_data_register(&data_handles[x], STARPU_MAIN_RAM
, (uintptr_t)vector[x], blocks_size, sizeof(float));

}
else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1)))
{

/* I own this index, or i will need it for my computations */
starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,

block_size, sizeof(float));
}
else
{

/* I know it’s useless to allocate anything for this */
data_handles[x] = NULL;

Generated by Doxygen

17.16 Make StarPU-MPI Progression Thread Execute Tasks 133

}
if (data_handles[x])
{

starpu_mpi_data_register(data_handles[x], x*nblocks+y, mpi_rank);
}

}

/* Scatter the matrix among the nodes */
starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD, NULL,

NULL, NULL, NULL);

/* Calculation */
for(x = 0; x < nblocks ; x++)
{

if (data_handles[x])
{

int owner = starpu_data_get_rank(data_handles[x]);
if (owner == rank)
{

starpu_task_insert(&cl, STARPU_RW, data_handles[x], 0);
}

}
}

/* Gather the matrix on main node */
starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD, NULL, NULL,

NULL, NULL);

Other collective operations would be easy to define, just ask starpu-devel for them!

17.16 Make StarPU-MPI Progression Thread Execute Tasks

The default behaviour of StarPU-MPI is to spawn an MPI thread to take care only of MPI communications in an
active fashion (i.e the StarPU-MPI thread sleeps only when there is no active request submitted by the application),
with the goal of being as reactive as possible to communications. Knowing that, users usually leave one free core
for the MPI thread when starting a distributed execution with StarPU-MPI. However, this could result in a loss of
performance for applications that does not require an extreme reactivity to MPI communications.
The starpu_mpi_init_conf() routine allows the user to give the starpu_conf configuration structure of StarPU (usually
given to the starpu_init() routine) to StarPU-MPI, so that StarPU-MPI reserves for its own use one of the CPU drivers
of the current computing node, or one of the CPU cores, and then calls starpu_init() internally.
This allows the MPI communication thread to call a StarPU CPU driver to run tasks when there is no active requests
to take care of, and thus recover the computational power of the "lost" core. Since there is a trade-off between
executing tasks and polling MPI requests, which is how much the application wants to lose in reactivity to MPI
communications to get back the computing power of the core dedicated to the StarPU-MPI thread, there are two
environment variables to pilot the behaviour of the MPI thread so that users can tune this trade-off depending of the
behaviour of the application.
The STARPU_MPI_DRIVER_CALL_FREQUENCY environment variable sets how many times the MPI progression
thread goes through the MPI_Test() loop on each active communication request (and thus try to make communica-
tions progress by going into the MPI layer) before executing tasks. The default value for this environment variable
is 0, which means that the support for interleaving task execution and communication polling is deactivated, thus
returning the MPI progression thread to its original behaviour.
The STARPU_MPI_DRIVER_TASK_FREQUENCY environment variable sets how many tasks are executed by the
MPI communication thread before checking all active requests again. While this environment variable allows a better
use of the core dedicated to StarPU-MPI for computations, it also decreases the reactivity of the MPI communication
thread as much.

17.17 Debugging MPI

Communication trace will be enabled when the environment variable STARPU_MPI_COMM is set to 1, and StarPU
has been configured with the option --enable-verbose.
Statistics will be enabled for the communication cache when the environment variable STARPU_MPI_CACHE_←↩
STATS is set to 1. It prints messages on the standard output when data are added or removed from the received
communication cache.
When the environment variable STARPU_COMM_STATS is set to 1, StarPU will display at the end of the execution
for each node the volume and the bandwidth of data sent to all the other nodes.
Here an example of such a trace.

Generated by Doxygen

134 MPI Support

[starpu_comm_stats][3] TOTAL: 476.000000 B 0.000454 MB 0.000098 B/s 0.000000 MB/s
[starpu_comm_stats][3:0] 248.000000 B 0.000237 MB 0.000051 B/s 0.000000 MB/s
[starpu_comm_stats][3:2] 50.000000 B 0.000217 MB 0.000047 B/s 0.000000 MB/s

[starpu_comm_stats][2] TOTAL: 288.000000 B 0.000275 MB 0.000059 B/s 0.000000 MB/s
[starpu_comm_stats][2:1] 70.000000 B 0.000103 MB 0.000022 B/s 0.000000 MB/s
[starpu_comm_stats][2:3] 288.000000 B 0.000172 MB 0.000037 B/s 0.000000 MB/s

[starpu_comm_stats][1] TOTAL: 188.000000 B 0.000179 MB 0.000038 B/s 0.000000 MB/s
[starpu_comm_stats][1:0] 80.000000 B 0.000114 MB 0.000025 B/s 0.000000 MB/s
[starpu_comm_stats][1:2] 188.000000 B 0.000065 MB 0.000014 B/s 0.000000 MB/s

[starpu_comm_stats][0] TOTAL: 376.000000 B 0.000359 MB 0.000077 B/s 0.000000 MB/s
[starpu_comm_stats][0:1] 376.000000 B 0.000141 MB 0.000030 B/s 0.000000 MB/s
[starpu_comm_stats][0:3] 10.000000 B 0.000217 MB 0.000047 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using StarPU tool starpu_mpi_comm_matrix.py, this will pro-
duce 2 PDF files, one plot for the bandwidth, and one plot for the data volume.

17.18 More MPI examples

MPI examples are available in the StarPU source code in mpi/examples:

• comm shows how to use communicators with StarPU-MPI

• complex is a simple example using a user-define data interface over MPI (complex numbers),

• stencil5 is a simple stencil example using starpu_mpi_task_insert(),

• matrix_decomposition is a cholesky decomposition example using starpu_mpi_task_insert(). The
non-distributed version can check for <algorithm correctness in 1-node configuration, the distributed version
uses exactly the same source code, to be used over MPI,

• mpi_lu is an LU decomposition example, provided in three versions: plu_example uses explicit MPI data
transfers, plu_implicit_example uses implicit MPI data transfers, plu_outofcore_example
uses implicit MPI data transfers and supports data matrices which do not fit in memory (out-of-core).

17.19 Using the NewMadeleine communication library

NewMadeleine (see http://pm2.gforge.inria.fr/newmadeleine/, part of the PM2 project) is an
optimizing communication library for high-performance networks. NewMadeleine provides its own interface, but
also an MPI interface (called MadMPI). Thus there are two possibilities to use NewMadeleine with StarPU:

• using the NewMadeleine's native interface. StarPU supports this interface from its release 1.3.0, by enabling
the configure option --enable-nmad. In this case, StarPU relies directly on NewMadeleine to make com-
munications progress and NewMadeleine has to be built with the profile pukabi+madmpi.conf.

• using the NewMadeleine's MPI interface (MadMPI). StarPU will use the standard MPI API and New←↩
Madeleine will handle the calls to the MPI API. In this case, StarPU makes communications progress
and thus communication progress has to be disabled in NewMadeleine by compiling it with the profile
pukabi+madmpi-mini.conf.

To build NewMadeleine, download the latest version from the website (or, better, use the Git version to use the most
recent version), then:

cd pm2/scripts
./pm2-build-packages ./<the profile you chose> --prefix=<installation prefix>

With Guix, the NewMadeleine's native interface can be used by setting the parameter --with-input=openmpi=nmad
and MadMPI can be used with --with-input=openmpi=nmad-mini.
Whatever implementation (NewMadeleine or MadMPI) is used by StarPU, the public MPI interface of StarPU (de-
scribed in MPI Support) is the same.

Generated by Doxygen

http://pm2.gforge.inria.fr/newmadeleine/,

17.20 MPI Master Slave Support 135

17.20 MPI Master Slave Support

StarPU provides an other way to execute applications across many nodes. The Master Slave support permits to use
remote cores without thinking about data distribution. This support can be activated with the configure option
--enable-mpi-master-slave. However, you should not activate both MPI support and MPI Master-Slave support.
The existing kernels for CPU devices can be used as such. They only have to be exposed through the name of
the function in the starpu_codelet::cpu_funcs_name field. Functions have to be globally-visible (i.e. not static) for
StarPU to be able to look them up, and -rdynamic must be passed to gcc (or -export-dynamic to ld) so that
symbols of the main program are visible. Optionally, you can choose the use of another function on slaves thanks
to the field starpu_codelet::mpi_ms_funcs.
By default, one core is dedicated on the master node to manage the entire set of slaves. If the implementation of
MPI you are using has a good multiple threads support, you can use the configure option --with-mpi-master-
slave-multiple-thread to dedicate one core per slave.
Choosing the number of cores on each slave device is done by setting the environment variable STARPU_NMPI←↩
MSTHREADS=<number> with <number> being the requested number of cores. By default all the slave's cores
are used.
Setting the number of slaves nodes is done by changing the -n parameter when executing the application with
mpirun or mpiexec.
The master node is by default the node with the MPI rank equal to 0. To select another node, use the environment
variable STARPU_MPI_MASTER_NODE=<number> with <number> being the requested MPI rank node.

Generated by Doxygen

136 MPI Support

dst0

dst1

dst2

dst3

src0 src1 src2 src3

'trace_bw.data' matrix

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

Figure 17.1 Bandwidth Heatmap

dst0

dst1

dst2

dst3

src0 src1 src2 src3

'trace_volume.data' matrix

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Figure 17.2 Data Volume Heatmap

Generated by Doxygen

Chapter 18

FFT Support

StarPU provides libstarpufft, a library whose design is very similar to both fftw and cufft, the difference
being that it takes benefit from both CPUs and GPUs. It should however be noted that GPUs do not have the same
precision as CPUs, so the results may different by a negligible amount.
Different precisions are available, namely float, double and long double precisions, with the following
fftw naming conventions:

• double precision structures and functions are named e.g. starpufft_execute()

• float precision structures and functions are named e.g. starpufftf_execute()

• long double precision structures and functions are named e.g. starpufftl_execute()

The documentation below is given with names for double precision, replace starpufft_ with starpufftf_
or starpufftl_ as appropriate.
Only complex numbers are supported at the moment.
The application has to call starpu_init() before calling starpufft functions.
Either main memory pointers or data handles can be provided.

• To provide main memory pointers, use starpufft_start() or starpufft_execute(). Only one FFT can be performed
at a time, because StarPU will have to register the data on the fly. In the starpufft_start() case, starpufft_←↩
cleanup() needs to be called to unregister the data.

• To provide data handles (which is preferrable), use starpufft_start_handle() (preferred) or starpufft_execute←↩
_handle(). Several FFTs tasks can be submitted for a given plan, which permits e.g. to start a series of FFT
with just one plan. starpufft_start_handle() is preferrable since it does not wait for the task completion, and
thus permits to enqueue a series of tasks.

All functions are defined in FFT Support.

18.1 Compilation

The flags required to compile or link against the FFT library are accessible with the following commands:

$ pkg-config --cflags starpufft-1.3 # options for the compiler
$ pkg-config --libs starpufft-1.3 # options for the linker

Also pass the option -static if the application is to be linked statically.

138 FFT Support

Generated by Doxygen

Chapter 19

MIC Xeon Phi Support

19.1 Compilation

MIC Xeon Phi support actually needs two compilations of StarPU, one for the host and one for the de-
vice. The PATH environment variable has to include the path to the cross-compilation toolchain, for instance
/usr/linux-k1om-4.7/bin . The SINK_PKG_CONFIG_PATH environment variable should include the
path to the cross-compiled hwloc.pc. The script mic-configure can then be used to achieve the two
compilations: it basically calls configure as appropriate from two new directories: build_mic and build←↩
_host. make and make install can then be used as usual and will recurse into both directories. If different
configure options are needed for the host and for the mic, one can use -with-host-param=-with-fxt
for instance to specify the -with-fxt option for the host only, or -with-mic-param=-with-fxt for the
mic only.
One can also run StarPU just natively on the Xeon Phi, i.e. it will only run directly on the Phi without any exchange
with the host CPU. The binaries in build_mic can be run that way.
For MPI support, you will probably have to specify different MPI compiler path or option for the host and the device
builds, for instance:

./mic-configure --with-mic-param=--with-mpicc="/.../mpiicc -mmic" \
--with-host-param=--with-mpicc=/.../mpiicc

In case you have troubles with the coi or scif libraries (the Intel paths are really not standard, it seems...), you
can still make a build in native mode only, by using mic-configure -enable-native-mic (and notably
without -enable-mic since in that case we don't need mic offloading support).

19.2 Porting Applications To MIC Xeon Phi

The simplest way to port an application to MIC Xeon Phi is to set the field starpu_codelet::cpu_funcs_name, to
provide StarPU with the function name of the CPU implementation, so for instance:

struct starpu_codelet cl =
{

.cpu_funcs = {myfunc},

.cpu_funcs_name = {"myfunc"},

.nbuffers = 1,
}

StarPU will thus simply use the existing CPU implementation (cross-rebuilt in the MIC Xeon Phi case). The functions
have to be globally-visible (i.e. not static) for StarPU to be able to look them up, and -rdynamic must be
passed to gcc (or -export-dynamic to ld) so that symbols of the main program are visible.
If you have used the starpu_codelet::where field, you additionally need to add in it STARPU_MIC for the Xeon Phi.
For non-native MIC Xeon Phi execution, the 'main' function of the application, on the sink, should call starpu_←↩
init() immediately upon start-up; the starpu_init() function never returns. On the host, the 'main' function may freely
perform application related initialization calls as usual, before calling starpu_init().
For MIC Xeon Phi, the application may programmatically detect whether executing on the sink or on the host, by
checking whether the STARPU_SINK environment variable is defined (on the sink) or not (on the host).

140 MIC Xeon Phi Support

19.3 Launching Programs

MIC programs are started from the host. StarPU automatically starts the same program on MIC devices. It however
needs to get the MIC-cross-built binary. It will look for the file given by the environment variable STARPU_MIC_←↩
SINK_PROGRAM_NAME or in the directory given by the environment variable STARPU_MIC_SINK_PROGRA←↩
M_PATH, or in the field starpu_conf::mic_sink_program_path. It will also look in the current directory for the same
binary name plus the suffix -mic or _mic.
The testsuite can be started by simply running make check from the top directory. It will recurse into both
build_host to run tests with only the host, and into build_mic to run tests with both the host and the MIC
devices. Single tests with the host and the MIC can be run by starting ./loader-cross.sh ./the_test
from build_mic/tests.

Generated by Doxygen

Chapter 20

Native Fortran Support

StarPU provides the necessary routines and support to natively access most of its functionalities from Fortran 2008+
codes.
All symbols (functions, constants) are defined in fstarpu_mod.f90. Every symbol of the Native Fortran support
API is prefixed by fstarpu_.
Note: Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behaviour.
See Valid API Mixes and Language Mixes for a discussion about valid and unspecified combinations.

20.1 Implementation Details and Specificities

20.1.1 Prerequisites

The Native Fortran support relies on Fortran 2008 specific constructs, as well as on the support of interoperability
of assumed-shape arrays introduced as part of Fortran's Technical Specification ISO/IEC TS 29113:2012, for which
no equivalent are available in previous versions of the standard. It has currently been tested successfully with GNU
GFortran 4.9, GFortran 5.x, GFortran 6.x and the Intel Fortran Compiler >= 2016. It is known not to work with GNU
GFortran < 4.9, Intel Fortran Compiler < 2016.
See Section Using StarPU with Older Fortran Compilers on information on how to write StarPU Fortran code with
older compilers.

20.1.2 Configuration

The Native Fortran API is enabled and its companion fstarpu_mod.f90 Fortran module source file is installed
by default when a Fortran compiler is found, unless the detected Fortran compiler is known not to support the
requirements for the Native Fortran API. The support can be disabled through the configure option --disable-
fortran. Conditional compiled source codes may check for the availability of the Native Fortran Support by testing
whether the preprocessor macro STARPU_HAVE_FC is defined or not.

20.1.3 Examples

Several examples using the Native Fortran API are provided in StarPU's examples/native_fortran/ ex-
amples directory, to showcase the Fortran flavor of various basic and more advanced StarPU features.

20.1.4 Compiling a Native Fortran Application

The Fortran module fstarpu_mod.f90 installed in StarPU's include/ directory provides all the necessary
API definitions. It must be compiled with the same compiler (same vendor, same version) as the application itself,
and the resulting fstarpu_mod.o object file must linked with the application executable.
Each example provided in StarPU's examples/native_fortran/ examples directory comes with its own
dedicated Makefile for out-of-tree build. Such example Makefiles may be used as starting points for building appli-
cation codes with StarPU.

142 Native Fortran Support

20.2 Fortran Translation for Common StarPU API Idioms

All these examples assume that the standard Fortran module iso_c_binding is in use.

• Specifying a NULL pointer

type(c_ptr) :: my_ptr ! variable to store the pointer
! [...]
my_ptr = c_null_ptr ! assign standard constant for null ptr

• Obtaining a pointer to some object:

real(8), dimension(:), allocatable, target :: va
type(c_ptr) :: p_va ! variable to store a pointer to array va
! [...]
p_va = c_loc(va)

• Obtaining a pointer to some subroutine:

! pointed routine definition
recursive subroutine myfunc () bind(C)
! [...]
type(c_funptr) :: p_fun ! variable to store the routine pointer
! [...]
p_fun = c_funloc(my_func)

• Obtaining the size of some object:

real(8) :: a
integer(c_size_t) :: sz_a ! variable to store the size of a
! [...]
sz_a = c_sizeof(a)

• Obtaining the length of an array dimension:

real(8), dimension(:,:), allocatable, target :: vb
intger(c_int) :: ln_vb_1 ! variable to store the length of vb’s dimension 1
intger(c_int) :: ln_vb_2 ! variable to store the length of vb’s dimension 2
! [...]
ln_vb_1 = 1+ubound(vb,1)-lbound(vb,1) ! get length of dimension 1 of vb
ln_vb_2 = 1+ubound(vb,2)-lbound(vb,2) ! get length of dimension 2 of vb

• Specifying a string constant:

type(c_ptr) :: my_cl ! a StarPU codelet
! [...]

! set the name of a codelet to string ’my_codele’t:
call fstarpu_codelet_set_name(my_cl, c_char_"my_codelet"//c_null_char)

! note: using the C_CHAR_ prefix and the //C_NULL_CHAR concatenation at the end ensures
! that the string constant is properly ’\0’ terminated, and compatible with StarPU’s
! internal C routines
!
! note: plain Fortran string constants are not ’\0’ terminated, and as such, must not be
! passed to starpu routines.

• Combining multiple flag constants with a bitwise 'or':

type(c_ptr) :: my_cl ! a pointer for the codelet structure
! [...]

! add a managed buffer to a codelet, specifying both the Read/Write access mode and the Locality hint
call fstarpu_codelet_add_buffer(my_cl, fstarpu_rw.ior.fstarpu_locality)

Generated by Doxygen

20.3 Uses, Initialization and Shutdown 143

20.3 Uses, Initialization and Shutdown

The snippet below show an example of minimal StarPU code using the Native Fortran support. The program should
use the standard module iso_c_binding as well as StarPU's fstarpu_mod. The StarPU runtime engine
is initialized with a call to function fstarpu_init, which returns an integer status of 0 if successful or non-0
otherwise. Eventually, a call to fstarpu_shutdown ends the runtime engine and frees all internal StarPU data
structures.
program nf_initexit

use iso_c_binding ! C interfacing module
use fstarpu_mod ! StarPU interfacing module
implicit none ! Fortran recommended best practice

integer(c_int) :: err ! return status for fstarpu_init

! initialize StarPU with default settings
err = fstarpu_init(c_null_ptr)
if (err /= 0) then

stop 1 ! StarPU initialization failure
end if

! - add StarPU Native Fortran API calls here

! shut StarPU down
call fstarpu_shutdown()

end program nf_initexit

20.4 Fortran Flavor of StarPU's Variadic Insert_task

Fortran does not have a construction similar to C variadic functions on which starpu_insert_task() relies at the
time of this writing. However, Fortran's variable length arrays of c_ptr elements enable to emulate much of the
convenience of C's variadic functions. This is the approach retained for implementing fstarpu_insert_task.
The general syntax for using fstarpu_insert_task is as follows:
call fstarpu_insert_task((/ <codelet ptr> &

[, <access mode flags>, <data handle>]* &
[, <argument type constant>, <argument>]* &
, c_null_ptr /))

There is thus a unique array argument (/ ... /) passed to fstarpu_insert_task which itself contains
the task settings. Each element of the array must be of type type(c_ptr). The last element of the array must
be C_NULL_PTR.
Example extracted from nf_vector.f90:
call fstarpu_insert_task((/ cl_vec, & ! codelet

fstarpu_r, dh_va, & ! a first data handle
fstarpu_rw.ior.fstarpu_locality, dh_vb, & ! a second data handle
c_null_ptr /)) ! no more args

20.5 Functions and Subroutines Expecting Data Structures Arguments

Several StarPU structures that are expected to be passed to the C API, are replaced by function/subroutine wrapper
sets to allocate, set fields and free such structure. This strategy has been prefered over defining native Fortran
equivalent of such structures using Fortran's derived types, to avoid potential layout mismatch between C and
Fortran StarPU data structures. Examples of such data structures wrappers include fstarpu_conf_allocate
and alike, fstarpu_codelet_allocate and alike, fstarpu_data_filter_allocate and alike.
Here is an example of allocating, filling and deallocating a codelet structure:
! a pointer for the codelet structure
type(c_ptr) :: cl_vec
! [...]
! allocate an empty codelet structure
cl_vec = fstarpu_codelet_allocate()
! add a CPU implementation function to the codelet
call fstarpu_codelet_add_cpu_func(cl_vec, c_funloc(cl_cpu_func_vec))
! set the codelet name
call fstarpu_codelet_set_name(cl_vec, c_char_"my_vec_codelet"//c_null_char)
! add a Read-only mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_r)
! add a Read-Write mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_rw.ior.fstarpu_locality)
! [...]
! free codelet structure
call fstarpu_codelet_free(cl_vec)

Generated by Doxygen

144 Native Fortran Support

20.6 Additional Notes about the Native Fortran Support

20.6.1 Using StarPU with Older Fortran Compilers

When using older compilers, Fortran applications may still interoperate with StarPU using C marshalling functions
as exemplified in StarPU's examples/fortran/ and examples/fortran90/ example directories, though
the process will be less convenient.
Basically, the main FORTRAN code calls some C wrapper functions to submit tasks to StarPU. Then, when StarPU
starts a task, another C wrapper function calls the FORTRAN routine for the task.
Note that this marshalled FORTRAN support remains available even when specifying configure option --disable-
fortran (which only disables StarPU's native Fortran layer).

20.6.2 Valid API Mixes and Language Mixes

Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behaviour. Using
fstarpu_ symbols in C code has unspecified behaviour.
For multi-language applications using both C and Fortran source files:

• C source files must use starpu_ symbols exclusively

• Fortran sources must uniformly use either fstarpu_ symbols exclusively, or starpu_ symbols exclusively.
Every other combination has unspecified behaviour.

Generated by Doxygen

Chapter 21

SOCL OpenCL Extensions

SOCL is an OpenCL implementation based on StarPU. It gives a unified access to every available OpenCL device:
applications can now share entities such as Events, Contexts or Command Queues between several OpenCL
implementations.
In addition, command queues that are created without specifying a device provide automatic scheduling of the
submitted commands on OpenCL devices contained in the context to which the command queue is attached.
Setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE flag on a command queue also allows StarPU
to reorder kernels queued on the queue, otherwise they would be serialized and several command queues would
be necessary to see kernels dispatched on the various OpenCL devices.
Note: this is still an area under development and subject to change.
When compiling StarPU, SOCL will be enabled if a valid OpenCL implementation is found on your system. To be
able to run the SOCL test suite, the environment variable SOCL_OCL_LIB_OPENCL needs to be defined to the
location of the file libOpenCL.so of the OCL ICD implementation. You should for example add the following line
in your file .bashrc

export SOCL_OCL_LIB_OPENCL=/usr/lib/x86_64-linux-gnu/libOpenCL.so

You can then run the test suite in the directory socl/examples.

$ make check
...
PASS: basic/basic
PASS: testmap/testmap
PASS: clinfo/clinfo
PASS: matmul/matmul
PASS: mansched/mansched
==================
All 5 tests passed
==================

The environment variable OCL_ICD_VENDORS has to point to the directory where the socl.icd ICD file is installed.
When compiling StarPU, the files are in the directory socl/vendors. With an installed version of StarPU, the
files are installed in the directory $prefix/share/starpu/opencl/vendors.
To run the tests by hand, you have to call for example,

$ LD_PRELOAD=$SOCL_OCL_LIB_OPENCL OCL_ICD_VENDORS=socl/vendors/ socl/examples/clinfo/clinfo
Number of platforms: 2

Plaform Profile: FULL_PROFILE
Plaform Version: OpenCL 1.1 CUDA 4.2.1
Plaform Name: NVIDIA CUDA
Plaform Vendor: NVIDIA Corporation
Plaform Extensions: cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll

Plaform Profile: FULL_PROFILE
Plaform Version: OpenCL 1.0 SOCL Edition (0.1.0)
Plaform Name: SOCL Platform
Plaform Vendor: Inria
Plaform Extensions: cl_khr_icd

....
$

To enable the use of CPU cores via OpenCL, one can set the STARPU_OPENCL_ON_CPUS environment variable
to 1 and STARPU_NCPUS to 0 (to avoid using CPUs both via the OpenCL driver and the normal CPU driver).

146 SOCL OpenCL Extensions

Generated by Doxygen

Chapter 22

SimGrid Support

StarPU can use Simgrid in order to simulate execution on an arbitrary platform. This was tested with SimGrid
from 3.11 to 3.16, and 3.18 to 3.29. SimGrid version 3.25 needs to be configured with -Denable_msg=ON . Other
versions may have compatibility issues. 3.17 notably does not build at all. MPI simulation does not work with version
3.22.

22.1 Preparing Your Application For Simulation

There are a few technical details which need to be handled for an application to be simulated through SimGrid.
If the application uses gettimeofday to make its performance measurements, the real time will be used, which
will be bogus. To get the simulated time, it has to use starpu_timing_now() which returns the virtual timestamp in
us.
For some technical reason, the application's .c file which contains main() has to be recompiled with starpu←↩
_simgrid_wrap.h, which in the SimGrid case will # define main() into starpu_main(), and it is
libstarpu which will provide the real main() and will call the application's main().
To be able to test with crazy data sizes, one may want to only allocate application data if the macro STARPU_S←↩
IMGRID is not defined. Passing a NULL pointer to starpu_data_register functions is fine, data will never
be read/written to by StarPU in SimGrid mode anyway.
To be able to run the application with e.g. CUDA simulation on a system which does not have CUDA installed, one
can fill the starpu_codelet::cuda_funcs with (void∗)1, to express that there is a CUDA implementation, even if one
does not actually provide it. StarPU will not actually run it in SimGrid mode anyway by default (unless the STARP←↩
U_CODELET_SIMGRID_EXECUTE or STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT flags are set in
the codelet)

static struct starpu_codelet cl11 =
{

.cpu_funcs = {chol_cpu_codelet_update_u11},

.cpu_funcs_name = {"chol_cpu_codelet_update_u11"},
#ifdef STARPU_USE_CUDA

.cuda_funcs = {chol_cublas_codelet_update_u11},
#elif defined(STARPU_SIMGRID)

.cuda_funcs = {(void*)1},
#endif

.nbuffers = 1,

.modes = {STARPU_RW},

.model = &chol_model_11
};

22.2 Calibration

The idea is to first compile StarPU normally, and run the application, so as to automatically benchmark the bus and
the codelets.

$./configure && make
$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
[starpu][_starpu_load_history_based_model] Warning: model matvecmult

is not calibrated, forcing calibration for this run. Use the
STARPU_CALIBRATE environment variable to control this.

$...

148 SimGrid Support

$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
TEST PASSED

Note that we force to use the scheduler dmda to generate performance models for the application. The application
may need to be run several times before the model is calibrated.

22.3 Simulation

Then, recompile StarPU, passing --enable-simgrid to configure. Make sure to keep all other configure
options the same, and notably options such as -enable-maxcudadev.

$./configure --enable-simgrid

To specify the location of SimGrid, you can either set the environment variables SIMGRID_CFLAGS and SIMG←↩
RID_LIBS, or use the configure options --with-simgrid-dir, --with-simgrid-include-dir and --with-simgrid-lib-dir,
for example

$./configure --with-simgrid-dir=/opt/local/simgrid

You can then re-run the application.

$ make
$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
TEST FAILED !!!

It is normal that the test fails: since the computation are not actually done (that is the whole point of SimGrid), the
result is wrong, of course.
If the performance model is not calibrated enough, the following error message will be displayed

$ STARPU_SCHED=dmda ./examples/matvecmult/matvecmult
[starpu][_starpu_load_history_based_model] Warning: model matvecmult

is not calibrated, forcing calibration for this run. Use the
STARPU_CALIBRATE environment variable to control this.

[starpu][_starpu_simgrid_execute_job][assert failure] Codelet
matvecmult does not have a perfmodel, or is not calibrated enough

The number of devices can be chosen as usual with STARPU_NCPU, STARPU_NCUDA, and STARPU_NOPE←↩
NCL, and the amount of GPU memory with STARPU_LIMIT_CUDA_MEM, STARPU_LIMIT_CUDA_devid_MEM,
STARPU_LIMIT_OPENCL_MEM, and STARPU_LIMIT_OPENCL_devid_MEM.

22.4 Simulation On Another Machine

The SimGrid support even permits to perform simulations on another machine, your desktop, typically. To achieve
this, one still needs to perform the Calibration step on the actual machine to be simulated, then copy them to your
desktop machine (the $STARPU_HOME/.starpu directory). One can then perform the Simulation step on the
desktop machine, by setting the environment variable STARPU_HOSTNAME to the name of the actual machine, to
make StarPU use the performance models of the simulated machine even on the desktop machine.
If the desktop machine does not have CUDA or OpenCL, StarPU is still able to use SimGrid to simulate execution
with CUDA/OpenCL devices, but the application source code will probably disable the CUDA and OpenCL codelets
in that case. Since during SimGrid execution, the functions of the codelet are actually not called by default, one can
use dummy functions such as the following to still permit CUDA or OpenCL execution.

22.5 Simulation Examples

StarPU ships a few performance models for a couple of systems: attila, mirage, idgraf, and sirocco.
See Section Simulated Benchmarks for the details.

22.6 Simulations On Fake Machines

It is possible to build fake machines which do not exist, by modifying the platform file in $STARPU_HO←↩
ME/.starpu/sampling/bus/machine.platform.xml by hand: one can add more CPUs, add GPUs
(but the performance model file has to be extended as well), change the available GPU memory size, PCI memory
bandwidth, etc.

Generated by Doxygen

22.7 Tweaking Simulation 149

22.7 Tweaking Simulation

The simulation can be tweaked, to be able to tune it between a very accurate simulation and a very simple simulation
(which is thus close to scheduling theory results), see the STARPU_SIMGRID_TRANSFER_COST, STARPU_SI←↩
MGRID_CUDA_MALLOC_COST, STARPU_SIMGRID_CUDA_QUEUE_COST, STARPU_SIMGRID_TASK_SU←↩
BMIT_COST, STARPU_SIMGRID_FETCHING_INPUT_COST and STARPU_SIMGRID_SCHED_COST environ-
ment variables.

22.8 MPI Applications

StarPU-MPI applications can also be run in SimGrid mode. smpi currently requires that StarPU be build statically
only, so -disable-shared needs to be passed to ./configure.
The application needs to be compiled with smpicc, and run using the starpu_smpirun script, for instance:

$ STARPU_SCHED=dmda starpu_smpirun -platform cluster.xml -hostfile hostfile ./mpi/tests/pingpong

Where cluster.xml is a SimGrid-MPI platform description, and hostfile the list of MPI nodes to be used.
StarPU currently only supports homogeneous MPI clusters: for each MPI node it will just replicate the architecture
referred by STARPU_HOSTNAME.
So as to use FxT traces, libfxt also needs to be built statically, and with dynamic linking flags, i.e. with

CFLAGS=-fPIC ./configure --enable-static

22.9 Debugging Applications

By default, SimGrid uses its own implementation of threads, which prevents gdb from being able to in-
spect stacks of all threads. To be able to fully debug an application running with SimGrid, pass the
-cfg=contexts/factory:thread option to the application, to make SimGrid use system threads, which
gdb will be able to manipulate as usual.
It is also worth noting SimGrid 3.21's new parameter -cfg=simix/breakpoint which allows to put a break-
point at a precise (deterministic!) timing of the execution. If for instance in an execution trace we see that something
odd is happening at time 19000ms, we can use -cfg=simix/breakpoint:19.000 and SIGTRAP will be
raised at that point, which will thus interrupt execution within gdb, allowing to inspect e.g. scheduler state, etc.

22.10 Memory Usage

Since kernels are not actually run and data transfers are not actually performed, the data memory does not actually
need to be allocated. This allows for instance to simulate the execution of applications processing very big data on
a small laptop.
The application can for instance pass 1 (or whatever bogus pointer) to starpu data registration functions, instead of
allocating data. This will however require the application to take care of not trying to access the data, and will not
work in MPI mode, which performs transfers.
Another way is to pass the STARPU_MALLOC_SIMULATION_FOLDED flag to the starpu_malloc_flags() function.
This will make it allocate a memory area which one can read/write, but optimized so that this does not actually
consume memory. Of course, the values read from such area will be bogus, but this allows the application to keep
e.g. data load, store, initialization as it is, and also work in MPI mode.
Note however that notably Linux kernels refuse obvious memory overcommitting by default, so a single allocation
can typically not be bigger than the amount of physical memory, see https://www.kernel.org/doc/←↩
Documentation/vm/overcommit-accounting This prevents for instance from allocating a single huge
matrix. Allocating a huge matrix in several tiles is not a problem, however. sysctl vm.overcommit_←↩
memory=1 can also be used to allow such overcommit.
Note however that this folding is done by remapping the same file several times, and Linux kernels will also refuse
to create too many memory areas. sysctl vm.max_map_count can be used to check and change the default
(65535). By default, StarPU uses a 1MiB file, so it hopefully fits in the CPU cache. This however limits the amount
of such folded memory to a bit below 64GiB. The STARPU_MALLOC_SIMULATION_FOLD environment variable
can be used to increase the size of the file.

Generated by Doxygen

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

150 SimGrid Support

Generated by Doxygen

Chapter 23

The StarPU OpenMP Runtime Support (SORS)

StarPU provides the necessary routines and support to implement an OpenMP (http://www.openmp.org/)
runtime compliant with the revision 3.1 of the language specification, and compliant with the task-related data
dependency functionalities introduced in the revision 4.0 of the language. This StarPU OpenMP Runtime Support
(SORS) has been designed to be targetted by OpenMP compilers such as the Klang-OMP compiler. Most supported
OpenMP directives can both be implemented inline or as outlined functions.
All functions are defined in OpenMP Runtime Support.

23.1 Implementation Details and Specificities

23.1.1 Main Thread

When using the SORS, the main thread gets involved in executing OpenMP tasks just like every other threads, in
order to be compliant with the specification execution model. This contrasts with StarPU's usual execution model
where the main thread submit tasks but does not take part in executing them.

23.1.2 Extended Task Semantics

The semantics of tasks generated by the SORS are extended with respect to regular StarPU tasks in that SO←↩
RS' tasks may block and be preempted by SORS call, whereas regular StarPU tasks cannot. SORS tasks may
coexist with regular StarPU tasks. However, only the tasks created using SORS API functions inherit from extended
semantics.

23.2 Configuration

The SORS can be compiled into libstarpu through the configure option --enable-openmp. Conditional
compiled source codes may check for the availability of the OpenMP Runtime Support by testing whether the C
preprocessor macro STARPU_OPENMP is defined or not.

23.3 Initialization and Shutdown

The SORS needs to be executed/terminated by the starpu_omp_init() / starpu_omp_shutdown() instead of starpu←↩
_init() / starpu_shutdown(). This requirement is necessary to make sure that the main thread gets the proper
execution environment to run OpenMP tasks. These calls will usually be performed by a compiler runtime. Thus,
they can be executed from a constructor/destructor such as this:

__attribute__((constructor))
static void omp_constructor(void)
{

int ret = starpu_omp_init();
STARPU_CHECK_RETURN_VALUE(ret, "starpu_omp_init");

}

__attribute__((destructor))
static void omp_destructor(void)
{

http://www.openmp.org/

152 The StarPU OpenMP Runtime Support (SORS)

starpu_omp_shutdown();
}

See also

starpu_omp_init()
starpu_omp_shutdown()

23.4 Parallel Regions and Worksharing

The SORS provides functions to create OpenMP parallel regions as well as mapping work on participating workers.
The current implementation does not provide nested active parallel regions: Parallel regions may be created recur-
sively, however only the first level parallel region may have more than one worker. From an internal point-of-view,
the SORS' parallel regions are implemented as a set of implicit, extended semantics StarPU tasks, following the
execution model of the OpenMP specification. Thus the SORS' parallel region tasks may block and be preempted,
by SORS calls, enabling constructs such as barriers.

23.4.1 Parallel Regions

Parallel regions can be created with the function starpu_omp_parallel_region() which accepts a set of attributes as
parameter. The execution of the calling task is suspended until the parallel region completes. The field starpu←↩
_omp_parallel_region_attr::cl is a regular StarPU codelet. However only CPU codelets are supported for parallel
regions. Here is an example of use:

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d\n", (void *)tid, worker_id);

}

void f(void)
{

struct starpu_omp_parallel_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = parallel_region_f;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
starpu_omp_parallel_region(&attr);
return 0;

}

See also

struct starpu_omp_parallel_region_attr
starpu_omp_parallel_region()

23.4.2 Parallel For

OpenMP for loops are provided by the starpu_omp_for() group of functions. Variants are available for inline or
outlined implementations. The SORS supports static, dynamic, and guided loop scheduling clauses. The
auto scheduling clause is implemented as static. The runtime scheduling clause honors the scheduling
mode selected through the environment variable OMP_SCHEDULE or the starpu_omp_set_schedule() function.
For loops with the ordered clause are also supported. An implicit barrier can be enforced or skipped at the end
of the worksharing construct, according to the value of the nowait parameter.
The canonical family of starpu_omp_for() functions provide each instance with the first iteration number and the
number of iterations (possibly zero) to perform. The alternate family of starpu_omp_for_alt() functions provide each
instance with the (possibly empty) range of iterations to perform, including the first and excluding the last.
The family of starpu_omp_ordered() functions enable to implement OpenMP's ordered construct, a region with a
parallel for loop that is guaranteed to be executed in the sequential order of the loop iterations.

void for_g(unsigned long long i, unsigned long long nb_i, void *arg)
{

(void) arg;

Generated by Doxygen

23.4 Parallel Regions and Worksharing 153

for (; nb_i > 0; i++, nb_i--)
{

array[i] = 1;
}

}

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_for(for_g, NULL, NB_ITERS, CHUNK, starpu_omp_sched_static

, 0, 0);
}

See also

starpu_omp_for()
starpu_omp_for_inline_first()
starpu_omp_for_inline_next()
starpu_omp_for_alt()
starpu_omp_for_inline_first_alt()
starpu_omp_for_inline_next_alt()
starpu_omp_ordered()
starpu_omp_ordered_inline_begin()
starpu_omp_ordered_inline_end()

23.4.3 Sections

OpenMP sections worksharing constructs are supported using the set of starpu_omp_sections() variants. The
general principle is either to provide an array of per-section functions or a single function that will redirect to execution
to the suitable per-section functions. An implicit barrier can be enforced or skipped at the end of the worksharing
construct, according to the value of the nowait parameter.

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;

section_funcs[0] = f;
section_funcs[1] = g;
section_funcs[2] = h;
section_funcs[3] = i;

section_args[0] = arg_f;
section_args[1] = arg_g;
section_args[2] = arg_h;
section_args[3] = arg_i;

starpu_omp_sections(4, section_f, section_args, 0);
}

See also

starpu_omp_sections()
starpu_omp_sections_combined()

23.4.4 Single

OpenMP single workharing constructs are supported using the set of starpu_omp_single() variants. An implicit
barrier can be enforced or skipped at the end of the worksharing construct, according to the value of the nowait
parameter.

void single_f(void *arg)
{

(void) arg;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d -- single\n", (void *)tid, worker_id);

}

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;

Generated by Doxygen

154 The StarPU OpenMP Runtime Support (SORS)

(void) args;
starpu_omp_single(single_f, NULL, 0);

}

The SORS also provides dedicated support for single sections with copyprivate clauses through the
starpu_omp_single_copyprivate() function variants. The OpenMP master directive is supported as well using
the starpu_omp_master() function variants.

See also

starpu_omp_master()
starpu_omp_master_inline()
starpu_omp_single()
starpu_omp_single_inline()
starpu_omp_single_copyprivate()
starpu_omp_single_copyprivate_inline_begin()
starpu_omp_single_copyprivate_inline_end()

23.5 Tasks

The SORS implements the necessary support of OpenMP 3.1 and OpenMP 4.0's so-called explicit tasks, together
with OpenMP 4.0's data dependency management.

23.5.1 Explicit Tasks

Explicit OpenMP tasks are created with the SORS using the starpu_omp_task_region() function. The implemen-
tation supports if, final, untied and mergeable clauses as defined in the OpenMP specification. Unless
specified otherwise by the appropriate clause(s), the created task may be executed by any participating worker of
the current parallel region.
The current SORS implementation requires explicit tasks to be created within the context of an active parallel region.
In particular, an explicit task cannot be created by the main thread outside of a parallel region. Explicit OpenMP
tasks created using starpu_omp_task_region() are implemented as StarPU tasks with extended semantics, and
may as such be blocked and preempted by SORS routines.
The current SORS implementation supports recursive explicit tasks creation, to ensure compliance with the Open←↩
MP specification. However, it should be noted that StarPU is not designed nor optimized for efficiently scheduling
of recursive task applications.
The code below shows how to create 4 explicit tasks within a parallel region.

void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d: explicit task \"g\"\n", (void *)tid, worker_id);

}

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;

memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}

See also

struct starpu_omp_task_region_attr
starpu_omp_task_region()

Generated by Doxygen

23.5 Tasks 155

23.5.2 Data Dependencies

The SORS implements inter-tasks data dependencies as specified in OpenMP 4.0. Data dependencies are ex-
pressed using regular StarPU data handles (starpu_data_handle_t) plugged into the task's attr.cl codelet. The
family of starpu_vector_data_register() -like functions and the starpu_data_lookup() function may be used to reg-
ister a memory area and to retrieve the current data handle associated with a pointer respectively. The testcase
./tests/openmp/task_02.c gives a detailed example of using OpenMP 4.0 tasks dependencies with the
SORS implementation.
Note: the OpenMP 4.0 specification only supports data dependencies between sibling tasks, that is tasks created by
the same implicit or explicit parent task. The current SORS implementation also only supports data dependencies
between sibling tasks. Consequently the behaviour is unspecified if dependencies are expressed beween tasks that
have not been created by the same parent task.

23.5.3 TaskWait and TaskGroup

The SORS implements both the taskwait and taskgroup OpenMP task synchronization constructs specified
in OpenMP 4.0, with the starpu_omp_taskwait() and starpu_omp_taskgroup() functions respectively.
An example of starpu_omp_taskwait() use, creating two explicit tasks and waiting for their completion:

void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_taskwait();

An example of starpu_omp_taskgroup() use, creating a task group of two explicit tasks:

void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}

void taskgroup_f(void *arg)
{

(void)arg;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}

void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_taskgroup(taskgroup_f, (void *)NULL);

}

Generated by Doxygen

156 The StarPU OpenMP Runtime Support (SORS)

See also

starpu_omp_task_region()
starpu_omp_taskwait()
starpu_omp_taskgroup()
starpu_omp_taskgroup_inline_begin()
starpu_omp_taskgroup_inline_end()

23.6 Synchronization Support

The SORS implements objects and method to build common OpenMP synchronization constructs.

23.6.1 Simple Locks

The SORS Simple Locks are opaque starpu_omp_lock_t objects enabling multiple tasks to synchronize with each
others, following the Simple Lock constructs defined by the OpenMP specification. In accordance with such specifi-
cation, simple locks may not by acquired multiple times by the same task, without being released in-between; oth-
erwise, deadlocks may result. Codes requiring the possibility to lock multiple times recursively should use Nestable
Locks (NestableLock). Codes NOT requiring the possibility to lock multiple times recursively should use Simple
Locks as they incur less processing overhead than Nestable Locks.

See also

starpu_omp_lock_t
starpu_omp_init_lock()
starpu_omp_destroy_lock()
starpu_omp_set_lock()
starpu_omp_unset_lock()
starpu_omp_test_lock()

23.6.2 Nestable Locks

The SORS Nestable Locks are opaque starpu_omp_nest_lock_t objects enabling multiple tasks to synchronize
with each others, following the Nestable Lock constructs defined by the OpenMP specification. In accordance with
such specification, nestable locks may by acquired multiple times recursively by the same task without deadlocking.
Nested locking and unlocking operations must be well parenthesized at any time, otherwise deadlock and/or unde-
fined behaviour may occur. Codes requiring the possibility to lock multiple times recursively should use Nestable
Locks. Codes NOT requiring the possibility to lock multiple times recursively should use Simple Locks (SimpleLock)
instead, as they incur less processing overhead than Nestable Locks.

See also

starpu_omp_nest_lock_t
starpu_omp_init_nest_lock()
starpu_omp_destroy_nest_lock()
starpu_omp_set_nest_lock()
starpu_omp_unset_nest_lock()
starpu_omp_test_nest_lock()

23.6.3 Critical Sections

The SORS implements support for OpenMP critical sections through the family of starpu_omp_critical functions.
Critical sections may optionally be named. There is a single, common anonymous critical section. Mutual exclusion
only occur within the scope of single critical section, either a named one or the anonymous one.

See also

starpu_omp_critical()
starpu_omp_critical_inline_begin()
starpu_omp_critical_inline_end()

Generated by Doxygen

23.6 Synchronization Support 157

23.6.4 Barriers

The SORS provides the starpu_omp_barrier() function to implement barriers over parallel region teams. In accor-
dance with the OpenMP specification, the starpu_omp_barrier() function waits for every implicit task of the parallel
region to reach the barrier and every explicit task launched by the parallel region to complete, before returning.

See also

starpu_omp_barrier()

Generated by Doxygen

158 The StarPU OpenMP Runtime Support (SORS)

Generated by Doxygen

Chapter 24

Clustering a Machine

24.1 General Ideas

Clusters are a concept introduced in this paper.
The granularity problem is tackled by using resource aggregation: instead of dynamically splitting tasks, resources
are aggregated to process coarse grain tasks in a parallel fashion. This is built on top of scheduling contexts to be
able to handle any type of parallel tasks.
This comes from a basic idea, making use of two levels of parallelism in a DAG. We keep the DAG parallelism
but consider on top of it that a task can contain internal parallelism. A good example is if each task in the DAG is
OpenMP enabled.
The particularity of such tasks is that we will combine the power of two runtime systems: StarPU will manage
the DAG parallelism and another runtime (e.g. OpenMP) will manage the internal parallelism. The challenge is in
creating an interface between the two runtime systems so that StarPU can regroup cores inside a machine (creating
what we call a cluster) on top of which the parallel tasks (e.g. OpenMP tasks) will be run in a contained fashion.
The aim of the cluster API is to facilitate this process in an automatic fashion. For this purpose, we depend on the
hwloc tool to detect the machine configuration and then partition it into usable clusters.

An example of code running on clusters is available in examples/sched_ctx/parallel_tasks_with←↩
_cluster_api.c.

Let's first look at how to create a cluster.
To enable clusters in StarPU, one needs to set the configure option --enable-cluster.

24.2 Creating Clusters

Partitioning a machine into clusters with the cluster API is fairly straightforward. The simplest way is to state under
which machine topology level we wish to regroup all resources. This level is an hwloc object, of the type hwloc←↩
_obj_type_t. More information can be found in the hwloc documentation.
Once a cluster is created, the full machine is represented with an opaque structure starpu_cluster_machine. This
can be printed to show the current machine state.

struct starpu_cluster_machine *clusters;
clusters = starpu_cluster_machine(HWLOC_OBJ_SOCKET, 0);
starpu_cluster_print(clusters);

/* submit some tasks with OpenMP computations */

starpu_uncluster_machine(clusters);
/* we are back in the default StarPU state */

The following graphic is an example of what a particular machine can look like once clusterized. The main difference
is that we have less worker queues and tasks which will be executed on several resources at once. The execution
of these tasks will be left to the internal runtime system, represented with a dashed box around the resources.
Creating clusters as shown in the example above will create workers able to execute OpenMP code by default.
The cluster creation function starpu_cluster_machine() takes optional parameters after the hwloc object (always

https://hal.inria.fr/view/index/docid/1181135
https://www.open-mpi.org/projects/hwloc/doc/v2.0.3/

160 Clustering a Machine

terminated by the value 0) which allow to parametrize the cluster creation. These parameters can help creating
clusters of a type different from OpenMP, or create a more precise partition of the machine.
This is explained in Section Creating Custom Clusters.

24.3 Example Of Constraining OpenMP

Clusters require being able to constrain the runtime managing the internal task parallelism (internal runtime) to the
resources set by StarPU. The purpose of this is to express how StarPU must communicate with the internal runtime
to achieve the required cooperation. In the case of OpenMP, StarPU will provide an awake thread from the cluster
to execute this liaison. It will then provide on demand the process ids of the other resources supposed to be in the
region. Finally, thanks to an OpenMP region we can create the required number of threads and bind each of them
on the correct region. These will then be reused each time we encounter a #pragma omp parallel in the
following computations of our program.
The following graphic is an example of what an OpenMP-type cluster looks like and how it represented in StarPU.
We can see that one StarPU (black) thread is awake, and we need to create on the other resources the OpenMP
threads (in pink).
Finally, the following code shows how to force OpenMP to cooperate with StarPU and create the aforementioned
OpenMP threads constrained in the cluster's resources set:

void starpu_openmp_prologue(void * sched_ctx_id)
{

int sched_ctx = *(int*)sched_ctx_id;
int *cpuids = NULL;
int ncpuids = 0;
int workerid = starpu_worker_get_id();

//we can target only CPU workers
if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
{
//grab all the ids inside the cluster
starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
//set the number of threads
omp_set_num_threads(ncpuids);

#pragma omp parallel
{

//bind each threads to its respective resource
starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);

}
free(cpuids);

}
return;

}

This function is the default function used when calling starpu_cluster_machine() without extra parameter.
Cluster are based on several tools and models already available within StarPU contexts, and merely extend contexts.
More on contexts can be read in Section Scheduling Contexts.

24.4 Creating Custom Clusters

Clusters can be created either with the predefined types provided within StarPU, or with user-defined functions to
bind another runtime inside StarPU.
The predefined cluster types provided by StarPU are STARPU_CLUSTER_OPENMP, STARPU_CLUSTER_IN←↩
TEL_OPENMP_MKL and STARPU_CLUSTER_GNU_OPENMP_MKL. The last one is only provided if StarPU is
compiled with the MKL library. It uses MKL functions to set the number of threads which is more reliable when using
an OpenMP implementation different from the Intel one.
The cluster type is set when calling the function starpu_cluster_machine() with the parameter STARPU_CLUST←↩
ER_TYPE as in the example below, which is creating a MKL cluster.

struct starpu_cluster_machine *clusters;
clusters = starpu_cluster_machine(HWLOC_OBJ_SOCKET,

STARPU_CLUSTER_TYPE, STARPU_CLUSTER_GNU_OPENMP_MKL
,

0);

Using the default type STARPU_CLUSTER_OPENMP is similar to calling starpu_cluster_machine() without any
extra parameter.

Generated by Doxygen

24.4 Creating Custom Clusters 161

Runtime System

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU GPU GPU

Figure 24.1 StarPU using parallel tasks

CPU CPU CPU

Figure 24.2 StarPU with an OpenMP cluster

Generated by Doxygen

162 Clustering a Machine

Users can also define their own function.

void foo_func(void* foo_arg);

int foo_arg = 0;
struct starpu_cluster_machine *clusters;
clusters = starpu_cluster_machine(HWLOC_OBJ_SOCKET,

STARPU_CLUSTER_CREATE_FUNC, &foo_func,
STARPU_CLUSTER_CREATE_FUNC_ARG, &foo_arg,
0);

Parameters that can be given to starpu_cluster_machine() are STARPU_CLUSTER_MIN_NB, STARPU_CLUS←↩
TER_MAX_NB, STARPU_CLUSTER_NB, STARPU_CLUSTER_POLICY_NAME, STARPU_CLUSTER_POLIC←↩
Y_STRUCT, STARPU_CLUSTER_KEEP_HOMOGENEOUS, STARPU_CLUSTER_PREFERE_MIN, STARPU←↩
_CLUSTER_CREATE_FUNC, STARPU_CLUSTER_CREATE_FUNC_ARG, STARPU_CLUSTER_TYPE, STA←↩
RPU_CLUSTER_AWAKE_WORKERS, STARPU_CLUSTER_PARTITION_ONE, STARPU_CLUSTER_NEW and
STARPU_CLUSTER_NCORES.

24.5 Clusters With Scheduling

As previously mentioned, the cluster API is implemented on top of Scheduling Contexts. Its main addition is to ease
the creation of a machine CPU partition with no overlapping by using hwloc, whereas scheduling contexts can use
any number of any type of resources.
It is therefore possible, but not recommended, to create clusters using the scheduling contexts API. This can be
useful mostly in the most complex machine configurations where users have to dimension precisely clusters by
hand using their own algorithm.

/* the list of resources the context will manage */
int workerids[3] = {1, 3, 10};

/* indicate the list of workers assigned to it, the number of workers,
the name of the context and the scheduling policy to be used within
the context */
int id_ctx = starpu_sched_ctx_create(workerids, 3, "my_ctx", 0);

/* let StarPU know that the following tasks will be submitted to this context */
starpu_sched_ctx_set_task_context(id);

task->prologue_callback_pop_func=&runtime_interface_function_here;

/* submit the task to StarPU */
starpu_task_submit(task);

As this example illustrates, creating a context without scheduling policy will create a cluster. The interface function
between StarPU and the other runtime must be specified through the field starpu_task::prologue_callback_pop_←↩
func. Such a function can be similar to the OpenMP thread team creation one (see above).

Note that the OpenMP mode is the default mode both for clusters and contexts. The result of a cluster creation is a
woken-up master worker and sleeping "slaves" which allow the master to run tasks on their resources.
To create a cluster with woken-up workers, the flag STARPU_SCHED_CTX_AWAKE_WORKERS must be set when
using the scheduling context API function starpu_sched_ctx_create(), or the flag STARPU_CLUSTER_AWAKE_←↩
WORKERS must be set when using the cluster API function starpu_cluster_machine().

Generated by Doxygen

Chapter 25

Interoperability Support

In situations where multiple parallel software elements have to coexist within the same application, uncoordinated
accesses to computing units may lead such parallel software elements to collide and interfere. The purpose of
the Interoperability routines of StarPU, implemented along the definition of the Resource Management APIs of
Project H2020 INTERTWinE, is to enable StarPU to coexist with other parallel software elements without resulting in
computing core oversubscription or undersubscription. These routines allow the programmer to dynamically control
the computing resources allocated to StarPU, to add or remove processor cores and/or accelerator devices from
the pool of resources used by StarPU's workers to execute tasks. They also allow multiple libraries and applicative
codes using StarPU simultaneously to select distinct sets of resources independently. Internally, the Interoperability
Support is built on top of Scheduling Contexts (see Scheduling Contexts).

25.1 StarPU Resource Management

The starpurm module is a library built on top of the starpu library. It exposes a series of routines prefixed with
starpurm_ defining the resource management API.
All functions are defined in Interoperability Support.

25.1.1 Linking a program with the starpurm module

The starpurm module must be linked explicitly with the applicative executable using it. Example Makefiles in the
starpurm/dev/ subdirectories show how to do so. If the pkg-config command is available and the PKG_←↩
CONFIG_PATH environment variable is properly positioned, the proper settings may be obtained with the following
Makefile snippet:

CFLAGS += $(shell pkg-config --cflags starpurm-1.3)
LDFLAGS+= $(shell pkg-config --libs-only-L starpurm-1.3)
LDLIBS += $(shell pkg-config --libs-only-l starpurm-1.3)

25.1.2 Initialization and Shutdown

The starpurm module is initialized with a call to starpurm_initialize() and must be finalized with a call to
starpurm_shutdown(). The starpurmmodule supports CPU cores as well as devices. An integer ID is assigned to
each supported device type. The ID assigned to a given device type can be queried with the starpurm_get_device←↩
_type_id() routine, which currently expects one of the following strings as argument and returns the corresponding
ID:

• "cpu"

• "opencl"

• "cuda"

• "mic"

The cpu pseudo device type is defined for convenience and designates CPU cores. The number of units of each
type available for computation can be obtained with a call to starpu_get_nb_devices_by_type().

164 Interoperability Support

Each CPU core unit available for computation is designated by its rank among the StarPU CPU worker threads
and by its own CPUSET bit. Each non-CPU device unit can be designated both by its rank number in the type,
and by the CPUSET bit corresponding to its StarPU device worker thread. The CPUSET of a computing unit or
its associated worker can be obtained from its type ID and rank with starpurm_get_device_worker_cpuset(), which
returns the corresponding HWLOC CPUSET.

25.1.3 Default Context

The starpurm module assumes a default, global context, manipulated through a series of routines allowing
to assign and withdraw computing units from the main StarPU context. Assigning CPU cores can be done with
starpurm_assign_cpu_to_starpu() and starpurm_assign_cpu_mask_to_starpu(), and assigning device units can
be done with starpurm_assign_device_to_starpu() and starpurm_assign_device_mask_to_starpu(). Conversely,
withdrawing CPU cores can be done with starpurm_withdraw_cpu_from_starpu() and starpurm_withdraw_cpu_←↩
mask_from_starpu(=, and withdrawing device units can be done with starpurm_withdraw_device_from_starpu() and
starpurm_withdraw_device_mask_from_starpu(). These routine should typically be used to control resource usage
for the main applicative code.

25.1.4 Temporary Contexts

Besides the default, global context, starpurm can create temporary contexts and launch the computation of
kernels confined to these temporary contexts. The routine starpurm_spawn_kernel_on_cpus() can be used to do
so: it allocates a temporary context and spawns a kernel within this context. The temporary context is subsequently
freed upon completion of the kernel. The temporary context is set as the default context for the kernel throughout its
lifespan. This routine should typically be used to control resource usage for a parallel kernel handled by an external
library built on StarPU. Internally, it relies on the use of starpu_sched_ctx_set_context() to set the temporary context
as default context for the parallel kernel, and then restore the main context upon completion. Note: the maximum
number of temporary contexts allocated concurrently at any time should not exceed STARPU_NMAX_SCHED←↩
_CTXS-2, otherwise, the call to starpurm_spawn_kernel_on_cpus() may block until a temporary context becomes
available. The routine starpurm_spawn_kernel_on_cpus() returns upon the completion of the parallel kernel. An
asynchronous variant is available with the routine starpurm_spawn_kernel_on_cpus_callback(). This variant returns
immediately, however it accepts a callback function, which is subsequently called to notify the calling code about
the completion of the parallel kernel.

Generated by Doxygen

Part V

StarPU Reference API

Chapter 26

Execution Configuration Through Environment
Variables

The behavior of the StarPU library and tools may be tuned thanks to the following environment variables.

26.1 Configuring Workers

STARPU_NCPU Specify the number of CPU workers (thus not including workers dedicated to control accelera-
tors). Note that by default, StarPU will not allocate more CPU workers than there are physical CPUs, and that
some CPUs are used to control the accelerators.

STARPU_RESERVE_NCPU Specify the number of CPU cores that should not be used by StarPU, so the appli-
cation can use starpu_get_next_bindid() and starpu_bind_thread_on() to bind its own threads.

This option is ignored if STARPU_NCPU or starpu_conf::ncpus is set.

STARPU_NCPUS This variable is deprecated. You should use STARPU_NCPU.

STARPU_NCUDA Specify the number of CUDA devices that StarPU can use. If STARPU_NCUDA is lower than
the number of physical devices, it is possible to select which CUDA devices should be used by the means
of the environment variable STARPU_WORKERS_CUDAID. By default, StarPU will create as many CUDA
workers as there are CUDA devices.

STARPU_NWORKER_PER_CUDA Specify the number of workers per CUDA device, and thus the number of
kernels which will be concurrently running on the devices, i.e. the number of CUDA streams. The default
value is 1.

STARPU_CUDA_THREAD_PER_WORKER Specify whether the cuda driver should use one thread per stream
(1) or to use a single thread to drive all the streams of the device or all devices (0), and STARPU_CUDA_T←↩
HREAD_PER_DEV determines whether is it one thread per device or one thread for all devices. The default
value is 0. Setting it to 1 is contradictory with setting STARPU_CUDA_THREAD_PER_DEV.

STARPU_CUDA_THREAD_PER_DEV Specify whether the cuda driver should use one thread per device (1) or
to use a single thread to drive all the devices (0). The default value is 1. It does not make sense to set this
variable if STARPU_CUDA_THREAD_PER_WORKER is set to to 1 (since STARPU_CUDA_THREAD_P←↩
ER_DEV is then meaningless).

STARPU_CUDA_PIPELINE Specify how many asynchronous tasks are submitted in advance on CUDA devices.
This for instance permits to overlap task management with the execution of previous tasks, but it also allows
concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. The default is 2.
Setting the value to 0 forces a synchronous execution of all tasks.

STARPU_NOPENCL OpenCL equivalent of the environment variable STARPU_NCUDA.

STARPU_OPENCL_PIPELINE Specify how many asynchronous tasks are submitted in advance on OpenCL de-
vices. This for instance permits to overlap task management with the execution of previous tasks, but it also
allows concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. The default is
2. Setting the value to 0 forces a synchronous execution of all tasks.

168 Execution Configuration Through Environment Variables

STARPU_OPENCL_ON_CPUS By default, the OpenCL driver only enables GPU and accelerator devices. By
setting the environment variable STARPU_OPENCL_ON_CPUS to 1, the OpenCL driver will also enable
CPU devices.

STARPU_OPENCL_ONLY_ON_CPUS By default, the OpenCL driver enables GPU and accelerator devices. By
setting the environment variable STARPU_OPENCL_ONLY_ON_CPUS to 1, the OpenCL driver will ONLY
enable CPU devices.

STARPU_NMIC MIC equivalent of the environment variable STARPU_NCUDA, i.e. the number of MIC devices to
use.

STARPU_NMICTHREADS Number of threads to use on the MIC devices.

STARPU_NMPI_MS MPI Master Slave equivalent of the environment variable STARPU_NCUDA, i.e. the number
of MPI Master Slave devices to use.

STARPU_NMPIMSTHREADS Number of threads to use on the MPI Slave devices.

STARPU_MPI_MASTER_NODE This variable allows to chose which MPI node (with the MPI ID) will be the mas-
ter.

STARPU_WORKERS_NOBIND Setting it to non-zero will prevent StarPU from binding its threads to CPUs. This
is for instance useful when running the testsuite in parallel.

STARPU_WORKERS_GETBIND Setting it to non-zero makes StarPU use the OS-provided CPU binding to deter-
mine how many and which CPU cores it should use. This is notably useful when running several StarPU-MPI
processes on the same host, to let the MPI launcher set the CPUs to be used.

STARPU_WORKERS_CPUID Passing an array of integers in STARPU_WORKERS_CPUID specifies on which
logical CPU the different workers should be bound. For instance, if STARPU_WORKERS_CPUID = "0 1
4 5", the first worker will be bound to logical CPU #0, the second CPU worker will be bound to logical CPU
#1 and so on. Note that the logical ordering of the CPUs is either determined by the OS, or provided by the
library hwloc in case it is available. Ranges can be provided: for instance, STARPU_WORKERS_CPU←↩
ID = "1-3 5" will bind the first three workers on logical CPUs #1, #2, and #3, and the fourth worker on
logical CPU #5. Unbound ranges can also be provided: STARPU_WORKERS_CPUID = "1-" will bind
the workers starting from logical CPU #1 up to last CPU.

Note that the first workers correspond to the CUDA workers, then come the OpenCL workers, and finally the
CPU workers. For example if we have STARPU_NCUDA=1, STARPU_NOPENCL=1, STARPU_NCPU=2
and STARPU_WORKERS_CPUID = "0 2 1 3", the CUDA device will be controlled by logical CPU #0,
the OpenCL device will be controlled by logical CPU #2, and the logical CPUs #1 and #3 will be used by the
CPU workers.

If the number of workers is larger than the array given in STARPU_WORKERS_CPUID, the workers are
bound to the logical CPUs in a round-robin fashion: if STARPU_WORKERS_CPUID = "0 1", the first and
the third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).

This variable is ignored if the field starpu_conf::use_explicit_workers_bindid passed to starpu_init() is set.

STARPU_WORKERS_COREID Same as STARPU_WORKERS_CPUID, but bind the workers to cores instead of
PUs (hyperthreads).

STARPU_MAIN_THREAD_BIND When defined, this make StarPU bind the thread that calls starpu_initialize() to
a reserved CPU, subtracted from the CPU workers.

STARPU_MAIN_THREAD_CPUID When defined, this make StarPU bind the thread that calls starpu_initialize()
to the given CPU ID.

STARPU_MAIN_THREAD_COREID Same as STARPU_MAIN_THREAD_CPUID, but bind the thread that calls
starpu_initialize() to the given core, instead of the PU (hyperthread).

STARPU_MPI_THREAD_CPUID When defined, this make StarPU bind its MPI thread to the given CPU ID. Setting
it to -1 (the default value) will use a reserved CPU, subtracted from the CPU workers.

STARPU_MPI_THREAD_COREID Same as STARPU_MPI_THREAD_CPUID, but bind the MPI thread to the
given core ID, instead of the PU (hyperthread).

Generated by Doxygen

26.1 Configuring Workers 169

STARPU_MPI_NOBIND Setting it to non-zero will prevent StarPU from binding the MPI to a separate core. This
is for instance useful when running the testsuite on a single system.

STARPU_WORKERS_CUDAID Similarly to the STARPU_WORKERS_CPUID environment variable, it is possible
to select which CUDA devices should be used by StarPU. On a machine equipped with 4 GPUs, setting S←↩
TARPU_WORKERS_CUDAID = "1 3" and STARPU_NCUDA=2 specifies that 2 CUDA workers should
be created, and that they should use CUDA devices #1 and #3 (the logical ordering of the devices is the one
reported by CUDA).

This variable is ignored if the field starpu_conf::use_explicit_workers_cuda_gpuid passed to starpu_init() is
set.

STARPU_WORKERS_OPENCLID OpenCL equivalent of the STARPU_WORKERS_CUDAID environment vari-
able.

This variable is ignored if the field starpu_conf::use_explicit_workers_opencl_gpuid passed to starpu_init() is
set.

STARPU_WORKERS_MICID MIC equivalent of the STARPU_WORKERS_CUDAID environment variable.

This variable is ignored if the field starpu_conf::use_explicit_workers_mic_deviceid passed to starpu_init() is
set.

STARPU_WORKER_TREE Define to 1 to enable the tree iterator in schedulers.

STARPU_SINGLE_COMBINED_WORKER If set, StarPU will create several workers which won't be able to work
concurrently. It will by default create combined workers which size goes from 1 to the total number of CPU
workers in the system. STARPU_MIN_WORKERSIZE and STARPU_MAX_WORKERSIZE can be used to
change this default.

STARPU_MIN_WORKERSIZE STARPU_MIN_WORKERSIZE permits to specify the minimum size of the com-
bined workers (instead of the default 2)

STARPU_MAX_WORKERSIZE STARPU_MAX_WORKERSIZE permits to specify the minimum size of the com-
bined workers (instead of the number of CPU workers in the system)

STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER Let the user decide how many elements are allowed
between combined workers created from hwloc information. For instance, in the case of sockets with 6
cores without shared L2 caches, if STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER is set to 6, no
combined worker will be synthesized beyond one for the socket and one per core. If it is set to 3, 3 intermediate
combined workers will be synthesized, to divide the socket cores into 3 chunks of 2 cores. If it set to 2, 2
intermediate combined workers will be synthesized, to divide the the socket cores into 2 chunks of 3 cores,
and then 3 additional combined workers will be synthesized, to divide the former synthesized workers into a
bunch of 2 cores, and the remaining core (for which no combined worker is synthesized since there is already
a normal worker for it).

The default, 2, thus makes StarPU tend to building a binary trees of combined workers.

STARPU_DISABLE_ASYNCHRONOUS_COPY Disable asynchronous copies between CPU and GPU devices.
The AMD implementation of OpenCL is known to fail when copying data asynchronously. When using this
implementation, it is therefore necessary to disable asynchronous data transfers.

STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY Disable asynchronous copies between CPU and CUDA
devices.

STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY Disable asynchronous copies between CPU and
OpenCL devices. The AMD implementation of OpenCL is known to fail when copying data asynchronously.
When using this implementation, it is therefore necessary to disable asynchronous data transfers.

STARPU_DISABLE_ASYNCHRONOUS_MIC_COPY Disable asynchronous copies between CPU and MIC de-
vices.

STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY Disable asynchronous copies between CPU and MPI
Slave devices.

Generated by Doxygen

170 Execution Configuration Through Environment Variables

STARPU_ENABLE_CUDA_GPU_GPU_DIRECT Enable (1) or Disable (0) direct CUDA transfers from GPU to
GPU, without copying through RAM. The default is Enabled. This permits to test the performance effect of
GPU-Direct.

STARPU_DISABLE_PINNING Disable (1) or Enable (0) pinning host memory allocated through starpu_malloc,
starpu_memory_pin and friends. The default is Enabled. This permits to test the performance effect of
memory pinning.

STARPU_BACKOFF_MIN Set minimum exponential backoff of number of cycles to pause when spinning. Default
value is 1.

STARPU_BACKOFF_MAX Set maximum exponential backoff of number of cycles to pause when spinning. De-
fault value is 32.

STARPU_MIC_SINK_PROGRAM_NAME todo

STARPU_MIC_SINK_PROGRAM_PATH todo

STARPU_MIC_PROGRAM_PATH todo

26.2 Configuring The Scheduling Engine

STARPU_SCHED Choose between the different scheduling policies proposed by StarPU: work random, stealing,
greedy, with performance models, etc.

Use STARPU_SCHED=help to get the list of available schedulers.

STARPU_MIN_PRIO Set the mininum priority used by priorities-aware schedulers.

STARPU_MAX_PRIO Set the maximum priority used by priorities-aware schedulers.

STARPU_CALIBRATE If this variable is set to 1, the performance models are calibrated during the execution. If
it is set to 2, the previous values are dropped to restart calibration from scratch. Setting this variable to 0
disable calibration, this is the default behaviour.

Note: this currently only applies to dm and dmda scheduling policies.

STARPU_CALIBRATE_MINIMUM Define the minimum number of calibration measurements that will be made
before considering that the performance model is calibrated. The default value is 10.

STARPU_BUS_CALIBRATE If this variable is set to 1, the bus is recalibrated during intialization.

STARPU_PREFETCH Indicate whether data prefetching should be enabled (0 means that it is disabled). If
prefetching is enabled, when a task is scheduled to be executed e.g. on a GPU, StarPU will request an
asynchronous transfer in advance, so that data is already present on the GPU when the task starts. As a
result, computation and data transfers are overlapped. Note that prefetching is enabled by default in StarPU.

STARPU_SCHED_ALPHA To estimate the cost of a task StarPU takes into account the estimated computation
time (obtained thanks to performance models). The alpha factor is the coefficient to be applied to it before
adding it to the communication part.

STARPU_SCHED_BETA To estimate the cost of a task StarPU takes into account the estimated data transfer time
(obtained thanks to performance models). The beta factor is the coefficient to be applied to it before adding it
to the computation part.

STARPU_SCHED_GAMMA Define the execution time penalty of a joule (Energy-based Scheduling).

STARPU_SCHED_READY For a modular scheduler with sorted queues below the decision component, workers
pick up a task which has most of its data already available. Setting this to 0 disables this.

STARPU_SCHED_SORTED_ABOVE For a modular scheduler with queues above the decision component, it is
usually sorted by priority. Setting this to 0 disables this.

STARPU_SCHED_SORTED_BELOW For a modular scheduler with queues below the decision component, they
are usually sorted by priority. Setting this to 0 disables this.

STARPU_IDLE_POWER Define the idle power of the machine (Energy-based Scheduling).

STARPU_PROFILING Enable on-line performance monitoring (Enabling On-line Performance Monitoring).

Generated by Doxygen

26.3 Extensions 171

26.3 Extensions

SOCL_OCL_LIB_OPENCL THE SOCL test suite is only run when the environment variable SOCL_OCL_LIB_O←↩
PENCL is defined. It should contain the location of the file libOpenCL.so of the OCL ICD implementation.

OCL_ICD_VENDORS When using SOCL with OpenCL ICD (https://forge.imag.fr/projects/ocl-icd/),
this variable may be used to point to the directory where ICD files are installed. The default directory is
/etc/OpenCL/vendors. StarPU installs ICD files in the directory $prefix/share/starpu/opencl/vendors.

STARPU_COMM_STATS Communication statistics for starpumpi (Debugging MPI) will be enabled when the en-
vironment variable STARPU_COMM_STATS is defined to an value other than 0.

STARPU_MPI_CACHE Communication cache for starpumpi (MPI Support) will be disabled when the environment
variable STARPU_MPI_CACHE is set to 0. It is enabled by default or for any other values of the variable S←↩
TARPU_MPI_CACHE.

STARPU_MPI_COMM Communication trace for starpumpi (MPI Support) will be enabled when the environment
variable STARPU_MPI_COMM is set to 1, and StarPU has been configured with the option --enable-verbose.

STARPU_MPI_CACHE_STATS When set to 1, statistics are enabled for the communication cache (MPI Support).
For now, it prints messages on the standard output when data are added or removed from the received
communication cache.

STARPU_MPI_PRIORITIES When set to 0, the use of priorities to order MPI communications is disabled (MPI
Support).

STARPU_MPI_NDETACHED_SEND This sets the number of send requests that StarPU-MPI will emit concur-
rently. The default is 10.

STARPU_MPI_NREADY_PROCESS This sets the number of requests that StarPU-MPI will submit to MPI before
polling for termination of existing requests. The default is 10.

STARPU_MPI_FAKE_SIZE Setting to a number makes StarPU believe that there are as many MPI nodes, even
if it was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big
cluster without actually running the rest. It of course does not provide computation results and timing.

STARPU_MPI_FAKE_RANK Setting to a number makes StarPU believe that it runs the given MPI node, even if it
was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big cluster
without actually running the rest. It of course does not provide computation results and timing.

STARPU_MPI_DRIVER_CALL_FREQUENCY When set to a positive value, activates the interleaving of the ex-
ecution of tasks with the progression of MPI communications (MPI Support). The starpu_mpi_init_conf()
function must have been called by the application for that environment variable to be used. When set to 0,
the MPI progression thread does not use at all the driver given by the user, and only focuses on making MPI
communications progress.

STARPU_MPI_DRIVER_TASK_FREQUENCY When set to a positive value, the interleaving of the execution of
tasks with the progression of MPI communications mechanism to execute several tasks before checking
communication requests again (MPI Support). The starpu_mpi_init_conf() function must have been called by
the application for that environment variable to be used, and the STARPU_MPI_DRIVER_CALL_FREQUE←↩
NCY environment variable set to a positive value.

STARPU_SIMGRID When set to 1 (the default is 0), this makes StarPU check that it was really build with simulation
support. This is convenient in scripts to avoid using a native version, that would try to update performance
models...

STARPU_SIMGRID_TRANSFER_COST When set to 1 (which is the default), data transfers (over PCI bus, typi-
cally) are taken into account in SimGrid mode.

STARPU_SIMGRID_CUDA_MALLOC_COST When set to 1 (which is the default), CUDA malloc costs are taken
into account in SimGrid mode.

STARPU_SIMGRID_CUDA_QUEUE_COST When set to 1 (which is the default), CUDA task and transfer queue-
ing costs are taken into account in SimGrid mode.

Generated by Doxygen

https://forge.imag.fr/projects/ocl-icd/

172 Execution Configuration Through Environment Variables

STARPU_PCI_FLAT When unset or set to 0, the platform file created for SimGrid will contain PCI bandwidths and
routes.

STARPU_SIMGRID_QUEUE_MALLOC_COST When unset or set to 1, simulate within SimGrid the GPU transfer
queueing.

STARPU_MALLOC_SIMULATION_FOLD Define the size of the file used for folding virtual allocation, in MiB. The
default is 1, thus allowing 64GiB virtual memory when Linux's sysctl vm.max_map_count value is the
default 65535.

STARPU_SIMGRID_TASK_SUBMIT_COST When set to 1 (which is the default), task submission costs are taken
into account in SimGrid mode. This provides more accurate SimGrid predictions, especially for the beginning
of the execution.

STARPU_SIMGRID_FETCHING_INPUT_COST When set to 1 (which is the default), fetching input costs are
taken into account in SimGrid mode. This provides more accurate SimGrid predictions, especially regarding
data transfers.

STARPU_SIMGRID_SCHED_COST When set to 1 (0 is the default), scheduling costs are taken into account in
SimGrid mode. This provides more accurate SimGrid predictions, and allows studying scheduling overhead
of the runtime system. However, it also makes simulation non-deterministic.

STARPU_SINK Variable defined by StarPU when running MPI Xeon PHI on the sink.

26.4 Miscellaneous And Debug

STARPU_HOME Specify the main directory in which StarPU stores its configuration files. The default is $HOME
on Unix environments, and $USERPROFILE on Windows environments.

STARPU_PATH Only used on Windows environments. Specify the main directory in which StarPU is installed
(Running a Basic StarPU Application on Microsoft Visual C)

STARPU_PERF_MODEL_DIR Specify the main directory in which StarPU stores its performance model files. The
default is $STARPU_HOME/.starpu/sampling.

STARPU_PERF_MODEL_HOMOGENEOUS_CPU When this is set to 0, StarPU will assume that CPU devices
do not have the same performance, and thus use different performance models for them, thus making kernel
calibration much longer, since measurements have to be made for each CPU core.

STARPU_PERF_MODEL_HOMOGENEOUS_CUDA When this is set to 1, StarPU will assume that all CUDA
devices have the same performance, and thus share performance models for them, thus allowing kernel
calibration to be much faster, since measurements only have to be once for all CUDA GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL When this is set to 1, StarPU will assume that all OPE←↩
NCL devices have the same performance, and thus share performance models for them, thus allowing kernel
calibration to be much faster, since measurements only have to be once for all OPENCL GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_MIC When this is set to 1, StarPU will assume that all MIC devices
have the same performance, and thus share performance models for them, thus allowing kernel calibration to
be much faster, since measurements only have to be once for all MIC GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS When this is set to 1, StarPU will assume that all M←↩
PI Slave devices have the same performance, and thus share performance models for them, thus allowing
kernel calibration to be much faster, since measurements only have to be once for all MPI Slaves.

STARPU_HOSTNAME When set, force the hostname to be used when dealing performance model files. Models
are indexed by machine name. When running for example on a homogenenous cluster, it is possible to share
the models between machines by setting export STARPU_HOSTNAME=some_global_name.

STARPU_OPENCL_PROGRAM_DIR Specify the directory where the OpenCL codelet source files are lo-
cated. The function starpu_opencl_load_program_source() looks for the codelet in the current directory,
in the directory specified by the environment variable STARPU_OPENCL_PROGRAM_DIR, in the direc-
tory share/starpu/opencl of the installation directory of StarPU, and finally in the source directory of
StarPU.

Generated by Doxygen

26.4 Miscellaneous And Debug 173

STARPU_SILENT Allow to disable verbose mode at runtime when StarPU has been configured with the option
--enable-verbose. Also disable the display of StarPU information and warning messages.

STARPU_MPI_DEBUG_LEVEL_MIN Set the minimum level of debug when StarPU has been configured with the
option --enable-mpi-verbose.

STARPU_MPI_DEBUG_LEVEL_MAX Set the maximum level of debug when StarPU has been configured with
the option --enable-mpi-verbose.

STARPU_LOGFILENAME Specify in which file the debugging output should be saved to.

STARPU_FXT_PREFIX Specify in which directory to save the generated trace if FxT is enabled.

STARPU_FXT_SUFFIX Specify in which file to save the generated trace if FxT is enabled.

STARPU_FXT_TRACE Specify whether to generate (1) or not (0) the FxT trace in /tmp/prof_file_XXX_YYY (the
directory and file name can be changed with STARPU_FXT_PREFIX and STARPU_FXT_SUFFIX). The
default is 1 (generate it)

STARPU_LIMIT_CUDA_devid_MEM Specify the maximum number of megabytes that should be available to the
application on the CUDA device with the identifier devid. This variable is intended to be used for experi-
mental purposes as it emulates devices that have a limited amount of memory. When defined, the variable
overwrites the value of the variable STARPU_LIMIT_CUDA_MEM.

STARPU_LIMIT_CUDA_MEM Specify the maximum number of megabytes that should be available to the appli-
cation on each CUDA devices. This variable is intended to be used for experimental purposes as it emulates
devices that have a limited amount of memory.

STARPU_LIMIT_OPENCL_devid_MEM Specify the maximum number of megabytes that should be available to
the application on the OpenCL device with the identifier devid. This variable is intended to be used for
experimental purposes as it emulates devices that have a limited amount of memory. When defined, the
variable overwrites the value of the variable STARPU_LIMIT_OPENCL_MEM.

STARPU_LIMIT_OPENCL_MEM Specify the maximum number of megabytes that should be available to the ap-
plication on each OpenCL devices. This variable is intended to be used for experimental purposes as it
emulates devices that have a limited amount of memory.

STARPU_LIMIT_CPU_MEM Specify the maximum number of megabytes that should be available to the applica-
tion in the main CPU memory. Setting it enables allocation cache in main memory. Setting it to zero lets
StarPU overflow memory.

STARPU_LIMIT_CPU_NUMA_devid_MEM Specify the maximum number of megabytes that should be available
to the application on the NUMA node with the OS identifier devid. Setting it overrides the value of STAR←↩
PU_LIMIT_CPU_MEM.

STARPU_LIMIT_CPU_NUMA_MEM Specify the maximum number of megabytes that should be available to the
application on each NUMA node. This is the same as specifying that same amount with STARPU_LIMIT_←↩
CPU_NUMA_devid_MEM for each NUMA node number. The total memory available to StarPU will thus be
this amount multiplied by the number of NUMA nodes used by StarPU. Any STARPU_LIMIT_CPU_NUMA←↩
_devid_MEM additionally specified will take over STARPU_LIMIT_CPU_NUMA_MEM.

STARPU_LIMIT_BANDWIDTH Specify the maximum available PCI bandwidth of the system in MB/s. This can
only be effective with simgrid simulation. This allows to easily override the bandwidths stored in the platform
file generated from measurements on the native system. This can be used e.g. for convenient

Specify the maximum number of megabytes that should be available to the application on each NUMA node.
This is the same as specifying that same amount with STARPU_LIMIT_CPU_NUMA_devid_MEM for each
NUMA node number. The total memory available to StarPU will thus be this amount multiplied by the number
of NUMA nodes used by StarPU. Any STARPU_LIMIT_CPU_NUMA_devid_MEM additionally specified will
take over STARPU_LIMIT_BANDWIDTH.

STARPU_MINIMUM_AVAILABLE_MEM Specify the minimum percentage of memory that should be available in
GPUs (or in main memory, when using out of core), below which a reclaiming pass is performed. The default
is 0%.

Generated by Doxygen

174 Execution Configuration Through Environment Variables

STARPU_TARGET_AVAILABLE_MEM Specify the target percentage of memory that should be reached in G←↩
PUs (or in main memory, when using out of core), when performing a periodic reclaiming pass. The default
is 0%.

STARPU_MINIMUM_CLEAN_BUFFERS Specify the minimum percentage of number of buffers that should be
clean in GPUs (or in main memory, when using out of core), below which asynchronous writebacks will be
issued. The default is 5%.

STARPU_TARGET_CLEAN_BUFFERS Specify the target percentage of number of buffers that should be
reached in GPUs (or in main memory, when using out of core), when performing an asynchronous write-
back pass. The default is 10%.

STARPU_DIDUSE_BARRIER When set to 1, StarPU will never evict a piece of data if it has not been used by at
least one task. This avoids odd behaviors under high memory pressure, but can lead to deadlocks, so is to
be considered experimental only.

STARPU_DISK_SWAP Specify a path where StarPU can push data when the main memory is getting full.

STARPU_DISK_SWAP_BACKEND Specify the backend to be used by StarPU to push data when the main mem-
ory is getting full. The default is unistd (i.e. using read/write functions), other values are stdio (i.e. using
fread/fwrite), unistd_o_direct (i.e. using read/write with O_DIRECT), leveldb (i.e. using a leveldb database),
and hdf5 (i.e. using HDF5 library).

STARPU_DISK_SWAP_SIZE Specify the maximum size in MiB to be used by StarPU to push data when the main
memory is getting full. The default is unlimited.

STARPU_LIMIT_MAX_SUBMITTED_TASKS Allow users to control the task submission flow by specifying to
StarPU a maximum number of submitted tasks allowed at a given time, i.e. when this limit is reached task
submission becomes blocking until enough tasks have completed, specified by STARPU_LIMIT_MIN_SU←↩
BMITTED_TASKS. Setting it enables allocation cache buffer reuse in main memory.

STARPU_LIMIT_MIN_SUBMITTED_TASKS Allow users to control the task submission flow by specifying to
StarPU a submitted task threshold to wait before unblocking task submission. This variable has to be used
in conjunction with STARPU_LIMIT_MAX_SUBMITTED_TASKS which puts the task submission thread to
sleep. Setting it enables allocation cache buffer reuse in main memory.

STARPU_TRACE_BUFFER_SIZE Set the buffer size for recording trace events in MiB. Setting it to a big size
allows to avoid pauses in the trace while it is recorded on the disk. This however also consumes memory, of
course. The default value is 64.

STARPU_GENERATE_TRACE When set to 1, indicate that StarPU should automatically generate a Paje trace
when starpu_shutdown() is called.

STARPU_GENERATE_TRACE_OPTIONS When the variable STARPU_GENERATE_TRACE is set to 1 to gen-
erate a Paje trace, this variable can be set to specify options (see starpu_fxt_tool -help).

STARPU_ENABLE_STATS When defined, enable gathering various data statistics (Data Statistics).

STARPU_MEMORY_STATS When set to 0, disable the display of memory statistics on data which have not been
unregistered at the end of the execution (Memory Feedback).

STARPU_MAX_MEMORY_USE When set to 1, display at the end of the execution the maximum memory used
by StarPU for internal data structures during execution.

STARPU_BUS_STATS When defined, statistics about data transfers will be displayed when calling starpu_←↩
shutdown() (Profiling). By default, statistics are printed on the standard error stream, use the environement
variable STARPU_BUS_STATS_FILE to define another filename.

STARPU_BUS_STATS_FILE Define the name of the file where to display data transfers statistics, see STARP←↩
U_BUS_STATS.

STARPU_WORKER_STATS When defined, statistics about the workers will be displayed when calling starpu←↩
_shutdown() (Profiling). When combined with the environment variable STARPU_PROFILING, it displays
the energy consumption (Energy-based Scheduling). By default, statistics are printed on the standard error
stream, use the environement variable STARPU_WORKER_STATS_FILE to define another filename.

Generated by Doxygen

26.4 Miscellaneous And Debug 175

STARPU_WORKER_STATS_FILE Define the name of the file where to display workers statistics, see STARP←↩
U_WORKER_STATS.

STARPU_STATS When set to 0, data statistics will not be displayed at the end of the execution of an application
(Data Statistics).

STARPU_WATCHDOG_TIMEOUT When set to a value other than 0, allows to make StarPU print an error mes-
sage whenever StarPU does not terminate any task for the given time (in µs), but lets the application continue
normally. Should be used in combination with STARPU_WATCHDOG_CRASH (see Detecting Stuck Condi-
tions).

STARPU_WATCHDOG_CRASH When set to a value other than 0, trigger a crash when the watch dog is reached,
thus allowing to catch the situation in gdb, etc (see Detecting Stuck Conditions)

STARPU_WATCHDOG_DELAY Delay the activation of the watchdog by the given time (in µs). This can be
convenient for letting the application initialize data etc. before starting to look for idle time.

STARPU_TASK_PROGRESS Print the progression of tasks. This is convenient to determine whether a program
is making progress in task execution, or is just stuck.

STARPU_TASK_BREAK_ON_PUSH When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being pushed to the scheduler, which will be nicely catched by debuggers (see Debug-
ging Scheduling)

STARPU_TASK_BREAK_ON_SCHED When this variable contains a job id, StarPU will raise SIGTRAP when
the task with that job id is being scheduled by the scheduler (at a scheduler-specific point), which will be
nicely catched by debuggers. This only works for schedulers which have such a scheduling point defined
(see Debugging Scheduling)

STARPU_TASK_BREAK_ON_POP When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being popped from the scheduler, which will be nicely catched by debuggers (see
Debugging Scheduling)

STARPU_TASK_BREAK_ON_EXEC When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being executed, which will be nicely catched by debuggers (see Debugging Scheduling)

STARPU_DISABLE_KERNELS When set to a value other than 1, it disables actually calling the kernel func-
tions, thus allowing to quickly check that the task scheme is working properly, without performing the actual
application-provided computation.

STARPU_HISTORY_MAX_ERROR History-based performance models will drop measurements which are really
far froom the measured average. This specifies the allowed variation. The default is 50 (%), i.e. the measure-
ment is allowed to be x1.5 faster or /1.5 slower than the average.

STARPU_RAND_SEED The random scheduler and some examples use random numbers for their own working.
Depending on the examples, the seed is by default juste always 0 or the current time() (unless SimGrid mode
is enabled, in which case it is always 0). STARPU_RAND_SEED allows to set the seed to a specific value.

STARPU_IDLE_TIME When set to a value being a valid filename, a corresponding file will be created when
shutting down StarPU. The file will contain the sum of all the workers' idle time.

STARPU_GLOBAL_ARBITER When set to a positive value, StarPU will create a arbiter, which implements an
advanced but centralized management of concurrent data accesses (see Concurrent Data Accesses).

STARPU_USE_NUMA When defined, NUMA nodes are taking into account by StarPU. Otherwise, memory is
considered as only one node. This is experimental for now.

When enabled, STARPU_MAIN_MEMORY is a pointer to the NUMA node associated to the first CPU worker
if it exists, the NUMA node associated to the first GPU discovered otherwise. If StarPU doesn't find any
NUMA node after these step, STARPU_MAIN_MEMORY is the first NUMA node discovered by StarPU.

STARPU_IDLE_FILE If the environment variable STARPU_IDLE_FILE is defined, a file named after its contents
will be created at the end of the execution. The file will contain the sum of the idle times of all the workers.

Generated by Doxygen

176 Execution Configuration Through Environment Variables

STARPU_HWLOC_INPUT If the environment variable STARPU_HWLOC_INPUT is defined to the path of an XML
file, hwloc will be made to use it as input instead of detecting the current platform topology, which can save
significant initialization time.

To produce this XML file, use lstopo file.xml

STARPU_CATCH_SIGNALS By default, StarPU catch signals SIGINT, SIGSEGV and SIGTRAP to perform final
actions such as dumping FxT trace files even though the application has crashed. Setting this variable to a
value other than 1 will disable this behaviour. This should be done on JVM systems which may use these
signals for their own needs. The flag can also be set through the field starpu_conf::catch_signals.

STARPU_DISPLAY_BINDINGS Display the binding of all processes and threads running on the machine. If MPI
is enabled, display the binding of each node.
Users can manually display the binding by calling starpu_display_bindings().

26.5 Configuring The Hypervisor

SC_HYPERVISOR_POLICY Choose between the different resizing policies proposed by StarPU for the
hypervisor: idle, app_driven, feft_lp, teft_lp; ispeed_lp, throughput_lp etc.

Use SC_HYPERVISOR_POLICY=help to get the list of available policies for the hypervisor

SC_HYPERVISOR_TRIGGER_RESIZE Choose how should the hypervisor be triggered: speed if the resizing
algorithm should be called whenever the speed of the context does not correspond to an optimal precomputed
value, idle it the resizing algorithm should be called whenever the workers are idle for a period longer than
the value indicated when configuring the hypervisor.

SC_HYPERVISOR_START_RESIZE Indicate the moment when the resizing should be available. The value cor-
respond to the percentage of the total time of execution of the application. The default value is the resizing
frame.

SC_HYPERVISOR_MAX_SPEED_GAP Indicate the ratio of speed difference between contexts that should trigger
the hypervisor. This situation may occur only when a theoretical speed could not be computed and the
hypervisor has no value to compare the speed to. Otherwise the resizing of a context is not influenced by the
the speed of the other contexts, but only by the the value that a context should have.

SC_HYPERVISOR_STOP_PRINT By default the values of the speed of the workers is printed during the execution
of the application. If the value 1 is given to this environment variable this printing is not done.

SC_HYPERVISOR_LAZY_RESIZE By default the hypervisor resizes the contexts in a lazy way, that is workers
are firstly added to a new context before removing them from the previous one. Once this workers are clearly
taken into account into the new context (a task was poped there) we remove them from the previous one.
However if the application would like that the change in the distribution of workers should change right away
this variable should be set to 0

SC_HYPERVISOR_SAMPLE_CRITERIA By default the hypervisor uses a sample of flops when computing the
speed of the contexts and of the workers. If this variable is set to time the hypervisor uses a sample of time
(10% of an aproximation of the total execution time of the application)

Generated by Doxygen

Chapter 27

Compilation Configuration

The behavior of the StarPU library and tools may be tuned thanks to the following configure options.

27.1 Common Configuration

–enable-debug Enable debugging messages.

–enable-spinlock-check Enable checking that spinlocks are taken and released properly.

–enable-fast Disable assertion checks, which saves computation time.

–enable-verbose Increase the verbosity of the debugging messages. This can be disabled at runtime by setting
the environment variable STARPU_SILENT to any value. -enable-verbose=extra increase even
more the verbosity.

$ STARPU_SILENT=1 ./vector_scal

–enable-coverage Enable flags for the coverage tool gcov.

–enable-quick-check Specify tests and examples should be run on a smaller data set, i.e allowing a faster exe-
cution time

–enable-long-check Enable some exhaustive checks which take a really long time.

–enable-new-check Enable new testcases which are known to fail.

–with-hwloc Specify hwloc should be used by StarPU. hwloc should be found by the means of the tool
pkg-config.

–with-hwloc=prefix Specify hwloc should be used by StarPU. hwloc should be found in the directory spec-
ified by prefix

–without-hwloc Specify hwloc should not be used by StarPU.

–disable-build-doc Disable the creation of the documentation. This should be done on a machine
which does not have the tools doxygen and latex (plus the packages latex-xcolor and
texlive-latex-extra).

–enable-build-doc-pdf By default, ontly the HTML documentation is generated. Use this option to also enable
the generation of the PDF documentation. This should be done on a machine which does have the tools
doxygen and latex (plus the packages latex-xcolor and texlive-latex-extra).

–disable-icc Disable the usage of the ICC compiler. When found, some specific ICC examples are compiled.

–with-check-flags Specify flags which will be given to C, CXX and Fortran compilers when valid

Additionally, the script configure recognize many variables, which can be listed by typing ./configure
-help. For example, ./configure NVCCFLAGS="-arch sm_20" adds a flag for the compilation of CUDA
kernels, and NVCC_CC=gcc-5 allows to change the C++ compiler used by nvcc.

178 Compilation Configuration

27.2 Configuring Workers

–enable-blocking-drivers By default, StarPU keeps CPU workers awake permanently, for better reactivity. This
option makes StarPU put CPU workers to real sleep when there are not enough tasks to compute.

–enable-worker-callbacks If blocking drivers are enabled, enable callbacks to notify an external resource man-
ager about workers going to sleep and waking up.

–enable-maxcpus=count Use at most count CPU cores. This information is then available as the macro
STARPU_MAXCPUS.

–enable-maxnumanodes=count Use at most count NUMA nodes. This information is then available as the
macro STARPU_MAXNUMANODES.

–disable-cpu Disable the use of CPUs of the machine. Only GPUs etc. will be used.

–enable-maxcudadev=count Use at most count CUDA devices. This information is then available as the
macro STARPU_MAXCUDADEVS.

–disable-cuda Disable the use of CUDA, even if a valid CUDA installation was detected.

–with-cuda-dir=prefix Search for CUDA under prefix, which should notably contain the file include/cuda.←↩
h.

–with-cuda-include-dir=dir Search for CUDA headers under dir, which should notably contain the file
cuda.h. This defaults to /include appended to the value given to --with-cuda-dir.

–with-cuda-lib-dir=dir Search for CUDA libraries under dir, which should notably contain the CUDA shared
libraries—e.g., libcuda.so. This defaults to /lib appended to the value given to --with-cuda-dir.

–disable-cuda-memcpy-peer Explicitly disable peer transfers when using CUDA 4.0.

–enable-maxopencldev=count Use at most count OpenCL devices. This information is then available as the
macro STARPU_MAXOPENCLDEVS.

–disable-opencl Disable the use of OpenCL, even if the SDK is detected.

–with-opencl-dir=prefix Search for an OpenCL implementation under prefix, which should notably contain
include/CL/cl.h (or include/OpenCL/cl.h on Mac OS).

–with-opencl-include-dir=dir Search for OpenCL headers under dir, which should notably contain CL/cl.h
(or OpenCL/cl.h on Mac OS). This defaults to /include appended to the value given to --with-opencl-
dir.

–with-opencl-lib-dir=dir Search for an OpenCL library under dir, which should notably contain the OpenCL
shared libraries—e.g. libOpenCL.so. This defaults to /lib appended to the value given to --with-opencl-
dir.

–enable-opencl-simulator Enable considering the provided OpenCL implementation as a simulator, i.e. use the
kernel duration returned by OpenCL profiling information as wallclock time instead of the actual measured
real time. This requires the SimGrid support.

–enable-maximplementations=count Allow for at most count codelet implementations for the same target
device. This information is then available as the macro STARPU_MAXIMPLEMENTATIONS macro.

–enable-max-sched-ctxs=count Allow for at most count scheduling contexts This information is then available
as the macro STARPU_NMAX_SCHED_CTXS.

–disable-asynchronous-copy Disable asynchronous copies between CPU and GPU devices. The AMD imple-
mentation of OpenCL is known to fail when copying data asynchronously. When using this implementation, it
is therefore necessary to disable asynchronous data transfers.

–disable-asynchronous-cuda-copy Disable asynchronous copies between CPU and CUDA devices.

–disable-asynchronous-opencl-copy Disable asynchronous copies between CPU and OpenCL devices. The
AMD implementation of OpenCL is known to fail when copying data asynchronously. When using this imple-
mentation, it is therefore necessary to disable asynchronous data transfers.

Generated by Doxygen

27.3 Extension Configuration 179

–enable-maxmicthreads Specify the maximum number of MIC threads

–disable-asynchronous-mic-copy Disable asynchronous copies between CPU and MIC devices.

–disable-asynchronous-mpi-master-slave-copy Disable asynchronous copies between CPU and MPI Slave de-
vices.

–enable-maxnodes=count Use at most count memory nodes. This information is then available as the macro
STARPU_MAXNODES. Reducing it allows to considerably reduce memory used by StarPU data structures.

27.3 Extension Configuration

–disable-mpi Disable the build of libstarpumpi. By default, it is enabled when MPI is found.

–enable-mpi Enable the build of libstarpumpi. This is necessary when using Simgrid+MPI.

–with-mpicc=path Use the compiler mpicc at path, for StarPU-MPI. (MPI Support).

–enable-mpi-pedantic-isend Before performing any MPI communication, StarPU-MPI waits for the data to be
available in the main memory of the node submitting the request. For send communications, data is acquired
with the mode STARPU_R. When enabling the pedantic mode, data are instead acquired with the STARP←↩
U_RW which thus ensures that there is not more than 1 concurrent MPI_Isend calls accessing the data and
StarPU does not read from it from tasks during the communication.

–enable-mpi-master-slave Enable the MPI Master-Slave support. By default, it is disabled.

–with-mpi-master-slave-multiple-thread Create one thread per MPI Slave on the MPI master to manage com-
munications.

–enable-mpi-verbose Increase the verbosity of the MPI debugging messages. This can be disabled at runtime
by setting the environment variable STARPU_SILENT to any value. -enable-mpi-verbose=extra
increase even more the verbosity.

$ STARPU_SILENT=1 mpirun -np 2 ./insert_task

–enable-nmad Enable the NewMadeleine implementation for StarPU-MPI. See Using the NewMadeleine commu-
nication library for more details.

–disable-fortran Disable the fortran extension. By default, it is enabled when a fortran compiler is found.

–disable-socl Disable the SOCL extension (SOCL OpenCL Extensions). By default, it is enabled when an Open←↩
CL implementation is found.

–with-coi-dir Specify the directory to the COI library for MIC support. The default value is /opt/intel/mic/coi

–mic-host Specify the precise MIC architecture host identifier. The default value is x86_64-k1om-linux

–enable-openmp Enable OpenMP Support (The StarPU OpenMP Runtime Support (SORS))

–enable-cluster Enable cluster Support (Clustering A Machine)

27.4 Advanced Configuration

–enable-perf-debug Enable performance debugging through gprof.

–enable-model-debug Enable performance model debugging.

–enable-fxt-lock Enable additional trace events which describes locks behaviour. This is however extremely heavy
and should only be enabled when debugging insides of StarPU.

–enable-maxbuffers Define the maximum number of buffers that tasks will be able to take as parameters, then
available as the macro STARPU_NMAXBUFS.

Generated by Doxygen

180 Compilation Configuration

–enable-allocation-cache Enable the use of a data allocation cache to avoid the cost of it with CUDA. Still exper-
imental.

–enable-opengl-render Enable the use of OpenGL for the rendering of some examples.

–enable-blas-lib=prefix Specify the blas library to be used by some of the examples. Librairies available :

• none [default] : no BLAS library is used

• atlas: use ATLAS library

• goto: use GotoBLAS library

• openblas: use OpenBLAS library

• mkl: use MKL library (you may need to set specific CFLAGS and LDFLAGS with –with-mkl-cflags and
–with-mkl-ldflags)

–enable-leveldb Enable linking with LevelDB if available

–enable-hdf5 Enable building HDF5 support.

–with-hdf5-include-dir=path Specify the directory where is stored the header hdf5.h.

–with-hdf5-lib-dir=path Specify the directory where is stored the hdf5 library.

–disable-starpufft Disable the build of libstarpufft, even if fftw or cuFFT is available.

–enable-starpufft-examples Enable the compilation and the execution of the libstarpufft examples. By default,
they are neither compiled nor checked.

–with-fxt=prefix Search for FxT under prefix. FxT (http://savannah.nongnu.org/projects/fkt)
is used to generate traces of scheduling events, which can then be rendered them using ViTE (Off-line Per-
formance Feedback). prefix should notably contain include/fxt/fxt.h.

–with-perf-model-dir=dir Store performance models under dir, instead of the current user's home.

–with-goto-dir=prefix Search for GotoBLAS under prefix, which should notably contain libgoto.so or
libgoto2.so.

–with-atlas-dir=prefix Search for ATLAS under prefix, which should notably contain include/cblas.←↩
h.

–with-mkl-cflags=cflags Use cflags to compile code that uses the MKL library.

–with-mkl-ldflags=ldflags Use ldflags when linking code that uses the MKL library. Note that the MKL
website (http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/)
provides a script to determine the linking flags.

–disable-glpk Disable the use of libglpk for computing area bounds.

–disable-build-tests Disable the build of tests.

–disable-build-examples Disable the build of examples.

–enable-sc-hypervisor Enable the Scheduling Context Hypervisor plugin (Scheduling Context Hypervisor). By
default, it is disabled.

–enable-memory-stats Enable memory statistics (Memory Feedback).

–enable-simgrid Enable simulation of execution in SimGrid, to allow easy experimentation with various numbers
of cores and GPUs, or amount of memory, etc. Experimental.

The path to SimGrid can be specified through the SIMGRID_CFLAGS and SIMGRID_LIBS environment
variables, for instance:

export SIMGRID_CFLAGS="-I/usr/local/simgrid/include"
export SIMGRID_LIBS="-L/usr/local/simgrid/lib -lsimgrid"

Generated by Doxygen

http://savannah.nongnu.org/projects/fkt
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

27.4 Advanced Configuration 181

–with-simgrid-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
library.

–with-simgrid-include-dir Similar to the option --enable-simgrid but also allows to specify the location to the
SimGrid include directory.

–with-simgrid-lib-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
lib directory.

–with-smpirun=path Use the smpirun at path

–enable-simgrid-mc Enable the Model Checker in simulation of execution in SimGrid, to allow exploring various
execution paths.

–enable-calibration-heuristic Allow to set the maximum authorized percentage of deviation for the history-based
calibrator of StarPU. A correct value of this parameter must be in [0..100]. The default value of this parameter
is 10. Experimental.

–enable-mlr Allow to enable multiple linear regression models (see Performance Model Example)

–enable-mlr-system-blas Allow to make multiple linear regression models use the system-provided BLAS for
dgels (see Performance Model Example)

Generated by Doxygen

182 Compilation Configuration

Generated by Doxygen

Chapter 28

Module Index

28.1 Modules

Here is a list of all modules:
FFT Support . 383
Threads . 204
Versioning . 187
Bitmap . 214
Theoretical Lower Bound on Execution Time . 339
Clustering Machine . 466
CUDA Extensions . 341
Data Partition . 274
Data Management . 227
Data Interfaces . 237
Out Of Core . 285
Running Drivers . 409
Expert Mode . 411
FxT Support . 380
Initialization and Termination . 188
Miscellaneous Helpers . 377
MIC Extensions . 376
Master Slave Extension . 480
OpenCL Extensions . 345
OpenMP Runtime Support . 352
Performance Model . 325
Profiling . 334
Random Functions . 481
Modularized Scheduler Interface . 449
Scheduling Contexts . 412
Scheduling Policy . 420
Sink . 482
Standard Memory Library . 196
Task Bundles . 402
Codelet And Tasks . 289
Explicit Dependencies . 321
Task Lists . 404
Task Insert Utility . 312
Tree . 429
Toolbox . 201
Workers’ Properties . 217
Parallel Tasks . 407
MPI Support . 385
Scheduling Context Hypervisor - Regular usage . 440
Scheduling Context Hypervisor - Linear Programming . 445

184 Module Index

Scheduling Context Hypervisor - Building a new resizing policy . 430
Interoperability Support . 469

Generated by Doxygen

Chapter 29

Deprecated List

Global starpu_codelet::cpu_func

Optional field which has been made deprecated. One should use instead the field starpu_codelet::cpu_funcs.

Global starpu_codelet::cuda_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::cuda_funcs field.

Global starpu_codelet::opencl_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::opencl_funcs
field.

Global starpu_data_free_pinned_if_possible

Equivalent to starpu_free(). This macro is provided to avoid breaking old codes.

Global starpu_data_interface_ops::handle_to_pointer)(starpu_data_handle_t handle, unsigned node)

Use starpu_data_interface_ops::to_pointer instead. Return the current pointer (if any) for the handle on the
given node.

Global starpu_data_malloc_pinned_if_possible

Equivalent to starpu_malloc(). This macro is provided to avoid breaking old codes.

Global starpu_mpi_initialize (void)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). This function
does not call MPI_Init(), it should be called beforehand.

Global starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). MPI will be
initialized by starpumpi by calling MPI_Init_Thread(argc, argv, MPI_THREAD_SERIALIZED,
...).

Global STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Setting the field starpu_codelet::cpu_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cpu_funcs.

Global STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Setting the field starpu_codelet::cuda_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cuda_funcs.

Global STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Setting the field starpu_codelet::opencl_func with this macro indicates the codelet will have several implemen-
tations. The use of this macro is deprecated. One should always only define the field starpu_codelet::opencl←↩
_funcs.

186 Deprecated List

Generated by Doxygen

Chapter 30

Module Documentation a.k.a StarPU’s API

30.1 Versioning

Macros

• #define STARPU_MAJOR_VERSION
• #define STARPU_MINOR_VERSION
• #define STARPU_RELEASE_VERSION

Functions

• void starpu_get_version (int ∗major, int ∗minor, int ∗release)

30.1.1 Detailed Description

30.1.2 Macro Definition Documentation

30.1.2.1 STARPU_MAJOR_VERSION

#define STARPU_MAJOR_VERSION

Define the major version of StarPU. This is the version used when compiling the application.

30.1.2.2 STARPU_MINOR_VERSION

#define STARPU_MINOR_VERSION

Define the minor version of StarPU. This is the version used when compiling the application.

30.1.2.3 STARPU_RELEASE_VERSION

#define STARPU_RELEASE_VERSION

Define the release version of StarPU. This is the version used when compiling the application.

30.1.3 Function Documentation

30.1.3.1 starpu_get_version()

void starpu_get_version (

int ∗ major,

int ∗ minor,

int ∗ release)

Return as 3 integers the version of StarPU used when running the application.

188 Module Documentation a.k.a StarPU’s API

30.2 Initialization and Termination

Data Structures

• struct starpu_conf

Macros

• #define STARPU_THREAD_ACTIVE

Functions

• int starpu_conf_init (struct starpu_conf ∗conf)
• int starpu_init (struct starpu_conf ∗conf) STARPU_WARN_UNUSED_RESULT
• int starpu_initialize (struct starpu_conf ∗user_conf, int ∗argc, char ∗∗∗argv)
• int starpu_is_initialized (void)
• void starpu_wait_initialized (void)
• void starpu_shutdown (void)
• void starpu_pause (void)
• void starpu_resume (void)
• unsigned starpu_get_next_bindid (unsigned flags, unsigned ∗preferred, unsigned npreferred)
• int starpu_bind_thread_on (int cpuid, unsigned flags, const char ∗name)
• void starpu_topology_print (FILE ∗f)
• int starpu_asynchronous_copy_disabled (void)
• int starpu_asynchronous_cuda_copy_disabled (void)
• int starpu_asynchronous_opencl_copy_disabled (void)
• int starpu_asynchronous_mic_copy_disabled (void)
• int starpu_asynchronous_mpi_ms_copy_disabled (void)
• void starpu_display_stats (void)

30.2.1 Detailed Description

30.2.2 Data Structure Documentation

30.2.2.1 struct starpu_conf

Structure passed to the starpu_init() function to configure StarPU. It has to be initialized with starpu_conf_init().
When the default value is used, StarPU automatically selects the number of processing units and takes the default
scheduling policy. The environment variables overwrite the equivalent parameters.

Data Fields

• const char ∗ sched_policy_name
• struct starpu_sched_policy ∗ sched_policy
• void(∗ sched_policy_init)(unsigned)
• int precedence_over_environment_variables
• int ncpus
• int reserve_ncpus
• int ncuda
• int nopencl
• int nmic
• int nmpi_ms
• unsigned use_explicit_workers_bindid
• unsigned workers_bindid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_cuda_gpuid
• unsigned workers_cuda_gpuid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_opencl_gpuid

Generated by Doxygen

30.2 Initialization and Termination 189

• unsigned workers_opencl_gpuid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_mic_deviceid
• unsigned workers_mic_deviceid [STARPU_NMAXWORKERS]
• unsigned use_explicit_workers_mpi_ms_deviceid
• unsigned workers_mpi_ms_deviceid [STARPU_NMAXWORKERS]
• int bus_calibrate
• int calibrate
• int single_combined_worker
• char ∗ mic_sink_program_path
• int disable_asynchronous_copy
• int disable_asynchronous_cuda_copy
• int disable_asynchronous_opencl_copy
• int disable_asynchronous_mic_copy
• int disable_asynchronous_mpi_ms_copy
• unsigned ∗ cuda_opengl_interoperability
• unsigned n_cuda_opengl_interoperability
• struct starpu_driver ∗ not_launched_drivers
• unsigned n_not_launched_drivers
• uint64_t trace_buffer_size
• int global_sched_ctx_min_priority
• int global_sched_ctx_max_priority
• void(∗ callback_worker_going_to_sleep)(unsigned workerid)
• void(∗ callback_worker_waking_up)(unsigned workerid)
• int catch_signals
• unsigned driver_spinning_backoff_min
• unsigned driver_spinning_backoff_max

Private Attributes

• int magic
• int will_use_mpi

30.2.2.1.1 Field Documentation

30.2.2.1.1.1 magic

int starpu_conf::magic [private]

Will be initialized by starpu_conf_init(). Should not be set by hand.

30.2.2.1.1.2 will_use_mpi

int starpu_conf::will_use_mpi [private]

Tell starpu_init() if MPI will be initialized later.

30.2.2.1.1.3 sched_policy_name

const char∗ starpu_conf::sched_policy_name

Name of the scheduling policy. This can also be specified with the environment variable STARPU_SCHED. (default
= NULL).

30.2.2.1.1.4 sched_policy

struct starpu_sched_policy∗ starpu_conf::sched_policy

Definition of the scheduling policy. This field is ignored if starpu_conf::sched_policy_name is set. (default = NULL)

30.2.2.1.1.5 precedence_over_environment_variables

int starpu_conf::precedence_over_environment_variables

For all parameters specified in this structure that can also be set with environment variables, by default, StarPU
chooses the value of the environment variable against the value set in starpu_conf. Setting the parameter starpu←↩
_conf::precedence_over_environment_variables to 1 allows to give precedence to the value set in the structure over
the environment variable.

Generated by Doxygen

190 Module Documentation a.k.a StarPU’s API

30.2.2.1.1.6 ncpus

int starpu_conf::ncpus

Number of CPU cores that StarPU can use. This can also be specified with the environment variable STARPU_←↩
NCPU. (default = -1)

30.2.2.1.1.7 reserve_ncpus

int starpu_conf::reserve_ncpus

Number of CPU cores to that StarPU should leave aside. They can then be used by application threads, by calling
starpu_get_next_bindid() to get their ID, and starpu_bind_thread_on() to bind the current thread to them.

30.2.2.1.1.8 ncuda

int starpu_conf::ncuda

Number of CUDA devices that StarPU can use. This can also be specified with the environment variable STARP←↩
U_NCUDA. (default = -1)

30.2.2.1.1.9 nopencl

int starpu_conf::nopencl

Number of OpenCL devices that StarPU can use. This can also be specified with the environment variable STA←↩
RPU_NOPENCL. (default = -1)

30.2.2.1.1.10 nmic

int starpu_conf::nmic

Number of MIC devices that StarPU can use. This can also be specified with the environment variable STARPU←↩
_NMIC. (default = -1)

30.2.2.1.1.11 nmpi_ms

int starpu_conf::nmpi_ms

Number of MPI Master Slave devices that StarPU can use. This can also be specified with the environment variable
STARPU_NMPI_MS. (default = -1)

30.2.2.1.1.12 use_explicit_workers_bindid

unsigned starpu_conf::use_explicit_workers_bindid

If this flag is set, the starpu_conf::workers_bindid array indicates where the different workers are bound, otherwise
StarPU automatically selects where to bind the different workers. This can also be specified with the environment
variable STARPU_WORKERS_CPUID. (default = 0)

30.2.2.1.1.13 workers_bindid

unsigned starpu_conf::workers_bindid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_bindid flag is set, this array indicates where to bind the different workers.
The i-th entry of the starpu_conf::workers_bindid indicates the logical identifier of the processor which should exe-
cute the i-th worker. Note that the logical ordering of the CPUs is either determined by the OS, or provided by the
hwloc library in case it is available.

30.2.2.1.1.14 use_explicit_workers_cuda_gpuid

unsigned starpu_conf::use_explicit_workers_cuda_gpuid

If this flag is set, the CUDA workers will be attached to the CUDA devices specified in the starpu_conf::workers_←↩
cuda_gpuid array. Otherwise, StarPU affects the CUDA devices in a round-robin fashion. This can also be specified
with the environment variable STARPU_WORKERS_CUDAID. (default = 0)

30.2.2.1.1.15 workers_cuda_gpuid

unsigned starpu_conf::workers_cuda_gpuid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_cuda_gpuid flag is set, this array contains the logical identifiers of the C←↩
UDA devices (as used by cudaGetDevice()).

30.2.2.1.1.16 use_explicit_workers_opencl_gpuid

unsigned starpu_conf::use_explicit_workers_opencl_gpuid

If this flag is set, the OpenCL workers will be attached to the OpenCL devices specified in the starpu_conf←↩
::workers_opencl_gpuid array. Otherwise, StarPU affects the OpenCL devices in a round-robin fashion. This can
also be specified with the environment variable STARPU_WORKERS_OPENCLID. (default = 0)

Generated by Doxygen

30.2 Initialization and Termination 191

30.2.2.1.1.17 workers_opencl_gpuid

unsigned starpu_conf::workers_opencl_gpuid[STARPU_NMAXWORKERS]

If the starpu_conf::use_explicit_workers_opencl_gpuid flag is set, this array contains the logical identifiers of the
OpenCL devices to be used.

30.2.2.1.1.18 use_explicit_workers_mic_deviceid

unsigned starpu_conf::use_explicit_workers_mic_deviceid

If this flag is set, the MIC workers will be attached to the MIC devices specified in the array starpu_conf::workers←↩
_mic_deviceid. Otherwise, StarPU affects the MIC devices in a round-robin fashion. This can also be specified with
the environment variable STARPU_WORKERS_MICID. (default = 0)

30.2.2.1.1.19 workers_mic_deviceid

unsigned starpu_conf::workers_mic_deviceid[STARPU_NMAXWORKERS]

If the flag starpu_conf::use_explicit_workers_mic_deviceid is set, the array contains the logical identifiers of the MIC
devices to be used.

30.2.2.1.1.20 use_explicit_workers_mpi_ms_deviceid

unsigned starpu_conf::use_explicit_workers_mpi_ms_deviceid

If this flag is set, the MPI Master Slave workers will be attached to the MPI Master Slave devices specified in
the array starpu_conf::workers_mpi_ms_deviceid. Otherwise, StarPU affects the MPI Master Slave devices in a
round-robin fashion. (default = 0)

30.2.2.1.1.21 workers_mpi_ms_deviceid

unsigned starpu_conf::workers_mpi_ms_deviceid[STARPU_NMAXWORKERS]

If the flag starpu_conf::use_explicit_workers_mpi_ms_deviceid is set, the array contains the logical identifiers of the
MPI Master Slave devices to be used.

30.2.2.1.1.22 bus_calibrate

int starpu_conf::bus_calibrate

If this flag is set, StarPU will recalibrate the bus. If this value is equal to -1, the default value is used. This can also
be specified with the environment variable STARPU_BUS_CALIBRATE. (default = 0)

30.2.2.1.1.23 calibrate

int starpu_conf::calibrate

If this flag is set, StarPU will calibrate the performance models when executing tasks. If this value is equal to -
1, the default value is used. If the value is equal to 1, it will force continuing calibration. If the value is equal to
2, the existing performance models will be overwritten. This can also be specified with the environment variable
STARPU_CALIBRATE. (default = 0)

30.2.2.1.1.24 single_combined_worker

int starpu_conf::single_combined_worker

By default, StarPU executes parallel tasks concurrently. Some parallel libraries (e.g. most OpenMP implementa-
tions) however do not support concurrent calls to parallel code. In such case, setting this flag makes StarPU only
start one parallel task at a time (but other CPU and GPU tasks are not affected and can be run concurrently). The
parallel task scheduler will however still try varying combined worker sizes to look for the most efficient ones. This
can also be specified with the environment variable STARPU_SINGLE_COMBINED_WORKER. (default = 0)

30.2.2.1.1.25 mic_sink_program_path

char∗ starpu_conf::mic_sink_program_path

Path to the kernel to execute on the MIC device, compiled for MIC architecture. When set to NULL, StarPU auto-
matically looks next to the host program location. (default = NULL)

30.2.2.1.1.26 disable_asynchronous_copy

int starpu_conf::disable_asynchronous_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and all accelerators. The AMD im-
plementation of OpenCL is known to fail when copying data asynchronously. When using this implementation, it
is therefore necessary to disable asynchronous data transfers. This can also be specified with the environment
variable STARPU_DISABLE_ASYNCHRONOUS_COPY. This can also be specified at compilation time by giving
to the configure script the option --disable-asynchronous-copy. (default = 0)

Generated by Doxygen

192 Module Documentation a.k.a StarPU’s API

30.2.2.1.1.27 disable_asynchronous_cuda_copy

int starpu_conf::disable_asynchronous_cuda_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and CUDA accelerators. This can
also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY. This can
also be specified at compilation time by giving to the configure script the option --disable-asynchronous-cuda-copy.
(default = 0)

30.2.2.1.1.28 disable_asynchronous_opencl_copy

int starpu_conf::disable_asynchronous_opencl_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and OpenCL accelerators. The AMD
implementation of OpenCL is known to fail when copying data asynchronously. When using this implementation,
it is therefore necessary to disable asynchronous data transfers. This can also be specified with the environment
variable STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY. This can also be specified at compilation time
by giving to the configure script the option --disable-asynchronous-opencl-copy. (default = 0)

30.2.2.1.1.29 disable_asynchronous_mic_copy

int starpu_conf::disable_asynchronous_mic_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and MIC accelerators. This can also
be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_MIC_COPY. This can also be
specified at compilation time by giving to the configure script the option --disable-asynchronous-mic-copy. (default
= 0).

30.2.2.1.1.30 disable_asynchronous_mpi_ms_copy

int starpu_conf::disable_asynchronous_mpi_ms_copy

This flag should be set to 1 to disable asynchronous copies between CPUs and MPI Master Slave devices. This
can also be specified with the environment variable STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY. This
can also be specified at compilation time by giving to the configure script the option --disable-asynchronous-mpi-
master-slave-copy. (default = 0).

30.2.2.1.1.31 cuda_opengl_interoperability

unsigned∗ starpu_conf::cuda_opengl_interoperability

Enable CUDA/OpenGL interoperation on these CUDA devices. This can be set to an array of CUDA device identi-
fiers for which cudaGLSetGLDevice() should be called instead of cudaSetDevice(). Its size is specified
by the starpu_conf::n_cuda_opengl_interoperability field below (default = NULL)

30.2.2.1.1.32 n_cuda_opengl_interoperability

unsigned starpu_conf::n_cuda_opengl_interoperability

Size of the array starpu_conf::cuda_opengl_interoperability

30.2.2.1.1.33 not_launched_drivers

struct starpu_driver∗ starpu_conf::not_launched_drivers

Array of drivers that should not be launched by StarPU. The application will run in one of its own threads. (default =
NULL)

30.2.2.1.1.34 n_not_launched_drivers

unsigned starpu_conf::n_not_launched_drivers

The number of StarPU drivers that should not be launched by StarPU, i.e number of elements of the array starpu←↩
_conf::not_launched_drivers. (default = 0)

30.2.2.1.1.35 trace_buffer_size

uint64_t starpu_conf::trace_buffer_size

Specify the buffer size used for FxT tracing. Starting from FxT version 0.2.12, the buffer will automatically be flushed
when it fills in, but it may still be interesting to specify a bigger value to avoid any flushing (which would disturb the
trace).

30.2.2.1.1.36 catch_signals

int starpu_conf::catch_signals

Specify if StarPU should catch SIGINT, SIGSEGV and SIGTRAP signals to make sure final actions (e.g dumping
FxT trace files) are done even though the application has crashed. By default (value = 1), signals are catched. It
should be disabled on systems which already catch these signals for their own needs (e.g JVM) This can also be

Generated by Doxygen

30.2 Initialization and Termination 193

specified with the environment variable STARPU_CATCH_SIGNALS

30.2.2.1.1.37 driver_spinning_backoff_min

unsigned starpu_conf::driver_spinning_backoff_min

Minimum spinning backoff of drivers. Default value: 1

30.2.2.1.1.38 driver_spinning_backoff_max

unsigned starpu_conf::driver_spinning_backoff_max

Maximum spinning backoff of drivers. Default value: 32

30.2.3 Macro Definition Documentation

30.2.3.1 STARPU_THREAD_ACTIVE

#define STARPU_THREAD_ACTIVE

Value to be passed to starpu_get_next_bindid() and starpu_bind_thread_on() when binding a thread which will
significantly eat CPU time, and should thus have its own dedicated CPU.

30.2.4 Function Documentation

30.2.4.1 starpu_conf_init()

int starpu_conf_init (

struct starpu_conf ∗ conf)

Initialize the conf structure with the default values. In case some configuration parameters are already specified
through environment variables, starpu_conf_init() initializes the fields of conf according to the environment vari-
ables. For instance if STARPU_CALIBRATE is set, its value is put in the field starpu_conf::calibrate of conf. Upon
successful completion, this function returns 0. Otherwise, -EINVAL indicates that the argument was NULL.

30.2.4.2 starpu_init()

int starpu_init (

struct starpu_conf ∗ conf)

StarPU initialization method, must be called prior to any other StarPU call. It is possible to specify StarPU’s config-
uration (e.g. scheduling policy, number of cores, ...) by passing a non-NULL conf. Default configuration is used if
conf is NULL. Upon successful completion, this function returns 0. Otherwise, -ENODEV indicates that no worker
was available (and thus StarPU was not initialized).

30.2.4.3 starpu_initialize()

int starpu_initialize (

struct starpu_conf ∗ user_conf,

int ∗ argc,

char ∗∗∗ argv)

Similar to starpu_init(), but also take the argc and argv as defined by the application. Do not call starpu_init()
and starpu_initialize() in the same program.

30.2.4.4 starpu_is_initialized()

int starpu_is_initialized (

void)

Return 1 if StarPU is already initialized.

Generated by Doxygen

194 Module Documentation a.k.a StarPU’s API

30.2.4.5 starpu_wait_initialized()

void starpu_wait_initialized (

void)

Wait for starpu_init() call to finish.

30.2.4.6 starpu_shutdown()

void starpu_shutdown (

void)

StarPU termination method, must be called at the end of the application: statistics and other post-mortem debugging
information are not guaranteed to be available until this method has been called.

30.2.4.7 starpu_pause()

void starpu_pause (

void)

Suspend the processing of new tasks by workers. It can be used in a program where StarPU is used during only a
part of the execution. Without this call, the workers continue to poll for new tasks in a tight loop, wasting CPU time.
The symmetric call to starpu_resume() should be used to unfreeze the workers.

30.2.4.8 starpu_resume()

void starpu_resume (

void)

Symmetrical call to starpu_pause(), used to resume the workers polling for new tasks. This would be typically called
only once having submitted all tasks.

30.2.4.9 starpu_get_next_bindid()

unsigned starpu_get_next_bindid (

unsigned flags,

unsigned ∗ preferred,

unsigned npreferred)

Return a PU binding ID which can be used to bind threads with starpu_bind_thread_on(). flags can be set
to STARPU_THREAD_ACTIVE or 0. When npreferred is set to non-zero, preferred is an array of size
npreferred in which a preference of PU binding IDs can be set. By default StarPU will return the first PU
available for binding.

30.2.4.10 starpu_bind_thread_on()

int starpu_bind_thread_on (

int cpuid,

unsigned flags,

const char ∗ name)

Bind the calling thread on the given cpuid (which should have been obtained with starpu_get_next_bindid()).
Return -1 if a thread was already bound to this PU (but binding will still have been done, and a warning will have
been printed), so the caller can tell the user how to avoid the issue.
name should be set to a unique string so that different calls with the same name for the same cpuid does not
produce a warning.

30.2.4.11 starpu_topology_print()

void starpu_topology_print (

FILE ∗ f)

Print a description of the topology on f.

Generated by Doxygen

30.2 Initialization and Termination 195

30.2.4.12 starpu_asynchronous_copy_disabled()

int starpu_asynchronous_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and accelerators are disabled.

30.2.4.13 starpu_asynchronous_cuda_copy_disabled()

int starpu_asynchronous_cuda_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and CUDA accelerators are disabled.

30.2.4.14 starpu_asynchronous_opencl_copy_disabled()

int starpu_asynchronous_opencl_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and OpenCL accelerators are disabled.

30.2.4.15 starpu_asynchronous_mic_copy_disabled()

int starpu_asynchronous_mic_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and MIC devices are disabled.

30.2.4.16 starpu_asynchronous_mpi_ms_copy_disabled()

int starpu_asynchronous_mpi_ms_copy_disabled (

void)

Return 1 if asynchronous data transfers between CPU and MPI Slave devices are disabled.

Generated by Doxygen

196 Module Documentation a.k.a StarPU’s API

30.3 Standard Memory Library

Macros

• #define STARPU_MALLOC_PINNED
• #define STARPU_MALLOC_COUNT
• #define STARPU_MALLOC_NORECLAIM
• #define STARPU_MEMORY_WAIT
• #define STARPU_MEMORY_OVERFLOW
• #define STARPU_MALLOC_SIMULATION_FOLDED
• #define starpu_data_malloc_pinned_if_possible
• #define starpu_data_free_pinned_if_possible

Typedefs

• typedef int(∗ starpu_malloc_hook) (unsigned dst_node, void ∗∗A, size_t dim, int flags)
• typedef int(∗ starpu_free_hook) (unsigned dst_node, void ∗A, size_t dim, int flags)

Functions

• void starpu_malloc_set_align (size_t align)
• int starpu_malloc (void ∗∗A, size_t dim)
• int starpu_free (void ∗A)
• int starpu_malloc_flags (void ∗∗A, size_t dim, int flags)
• int starpu_free_flags (void ∗A, size_t dim, int flags)
• void starpu_malloc_set_hooks (starpu_malloc_hook malloc_hook, starpu_free_hook free_hook)
• int starpu_memory_pin (void ∗addr, size_t size)
• int starpu_memory_unpin (void ∗addr, size_t size)
• starpu_ssize_t starpu_memory_get_total (unsigned node)
• starpu_ssize_t starpu_memory_get_available (unsigned node)
• starpu_ssize_t starpu_memory_get_total_all_nodes (void)
• starpu_ssize_t starpu_memory_get_available_all_nodes (void)
• int starpu_memory_allocate (unsigned node, size_t size, int flags)
• void starpu_memory_deallocate (unsigned node, size_t size)
• void starpu_memory_wait_available (unsigned node, size_t size)
• void starpu_usleep (float nb_micro_sec)

30.3.1 Detailed Description

30.3.2 Macro Definition Documentation

30.3.2.1 STARPU_MALLOC_PINNED

#define STARPU_MALLOC_PINNED

Value passed to the function starpu_malloc_flags() to indicate the memory allocation should be pinned.

30.3.2.2 STARPU_MALLOC_COUNT

#define STARPU_MALLOC_COUNT

Value passed to the function starpu_malloc_flags() to indicate the memory allocation should be in the limit defined
by the environment variables STARPU_LIMIT_CUDA_devid_MEM, STARPU_LIMIT_CUDA_MEM, STARPU_LI←↩
MIT_OPENCL_devid_MEM, STARPU_LIMIT_OPENCL_MEM and STARPU_LIMIT_CPU_MEM (see Section How
to Limit Memory Used By StarPU And Cache Buffer Allocations). If no memory is available, it tries to reclaim
memory from StarPU. Memory allocated this way needs to be freed by calling the function starpu_free_flags() with
the same flag.

Generated by Doxygen

30.3 Standard Memory Library 197

30.3.2.3 STARPU_MALLOC_NORECLAIM

#define STARPU_MALLOC_NORECLAIM

Value passed to the function starpu_malloc_flags() along STARPU_MALLOC_COUNT to indicate that while the
memory allocation should be kept in the limits defined for STARPU_MALLOC_COUNT, no reclaiming should be
performed by starpu_malloc_flags() itself, thus potentially overflowing the memory node a bit. StarPU will reclaim
memory after next task termination, according to the STARPU_MINIMUM_AVAILABLE_MEM, STARPU_TARGE←↩
T_AVAILABLE_MEM, STARPU_MINIMUM_CLEAN_BUFFERS, and STARPU_TARGET_CLEAN_BUFFERS en-
vironment variables. If STARPU_MEMORY_WAIT is set, no overflowing will happen, starpu_malloc_flags() will wait
for other eviction mechanisms to release enough memory.

30.3.2.4 STARPU_MEMORY_WAIT

#define STARPU_MEMORY_WAIT

Value passed to starpu_memory_allocate() to specify that the function should wait for the requested amount of
memory to become available, and atomically allocate it.

30.3.2.5 STARPU_MEMORY_OVERFLOW

#define STARPU_MEMORY_OVERFLOW

Value passed to starpu_memory_allocate() to specify that the function should allocate the amount of memory, even
if that means overflowing the total size of the memory node.

30.3.2.6 STARPU_MALLOC_SIMULATION_FOLDED

#define STARPU_MALLOC_SIMULATION_FOLDED

Value passed to the function starpu_malloc_flags() to indicate that when StarPU is using simgrid, the allocation can
be "folded", i.e. a memory area is allocated, but its content is actually a replicate of the same memory area, to
avoid having to actually allocate that much memory . This thus allows to have a memory area that does not actually
consumes memory, to which one can read from and write to normally, but get bogus values.

30.3.2.7 starpu_data_malloc_pinned_if_possible

#define starpu_data_malloc_pinned_if_possible

Deprecated Equivalent to starpu_malloc(). This macro is provided to avoid breaking old codes.

30.3.2.8 starpu_data_free_pinned_if_possible

#define starpu_data_free_pinned_if_possible

Deprecated Equivalent to starpu_free(). This macro is provided to avoid breaking old codes.

30.3.3 Function Documentation

30.3.3.1 starpu_malloc_set_align()

void starpu_malloc_set_align (

size_t align)

Set an alignment constraints for starpu_malloc() allocations. align must be a power of two. This is for instance
called automatically by the OpenCL driver to specify its own alignment constraints.

Generated by Doxygen

198 Module Documentation a.k.a StarPU’s API

30.3.3.2 starpu_malloc()

int starpu_malloc (

void ∗∗ A,

size_t dim)

Allocate data of the given size dim in main memory, and return the pointer to the allocated data through A. It will
also try to pin it in CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and thus permit
data transfer and computation overlapping. The allocated buffer must be freed thanks to the starpu_free() function.

30.3.3.3 starpu_free()

int starpu_free (

void ∗ A)

Free memory which has previously been allocated with starpu_malloc().

30.3.3.4 starpu_malloc_flags()

int starpu_malloc_flags (

void ∗∗ A,

size_t dim,

int flags)

Perform a memory allocation based on the constraints defined by the given flag.

30.3.3.5 starpu_free_flags()

int starpu_free_flags (

void ∗ A,

size_t dim,

int flags)

Free memory by specifying its size. The given flags should be consistent with the ones given to starpu_malloc_←↩
flags() when allocating the memory.

30.3.3.6 starpu_malloc_set_hooks()

void starpu_malloc_set_hooks (

starpu_malloc_hook malloc_hook,

starpu_free_hook free_hook)

Set allocation functions to be used by StarPU. By default, StarPU will use malloc() (or cudaHostAlloc() if
CUDA GPUs are used) for all its data handle allocations. The application can specify another allocation primitive by
calling this. The malloc_hook should pass the allocated pointer through the A parameter, and return 0 on success.
On allocation failure, it should return -ENOMEM. The flags parameter contains STARPU_MALLOC_PINNED if
the memory should be pinned by the hook for GPU transfer efficiency. The hook can use starpu_memory_pin() to
achieve this. The dst_node parameter is the starpu memory node, one can convert it to an hwloc logical id with
starpu_memory_nodes_numa_id_to_hwloclogid() or to an OS NUMA number with starpu_memory_nodes_numa←↩
_devid_to_id().

30.3.3.7 starpu_memory_pin()

int starpu_memory_pin (

void ∗ addr,

size_t size)

Pin the given memory area, so that CPU-GPU transfers can be done asynchronously with DMAs. The memory
must be unpinned with starpu_memory_unpin() before being freed. Return 0 on success, -1 on error.

30.3.3.8 starpu_memory_unpin()

int starpu_memory_unpin (

void ∗ addr,

size_t size)

Generated by Doxygen

30.3 Standard Memory Library 199

Unpin the given memory area previously pinned with starpu_memory_pin(). Return 0 on success, -1 on error.

30.3.3.9 starpu_memory_get_total()

starpu_ssize_t starpu_memory_get_total (

unsigned node)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer
Allocations), return the amount of total memory on the node. Otherwise return -1.

30.3.3.10 starpu_memory_get_available()

starpu_ssize_t starpu_memory_get_available (

unsigned node)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer
Allocations), return the amount of available memory on the node. Otherwise return -1.

30.3.3.11 starpu_memory_get_total_all_nodes()

starpu_ssize_t starpu_memory_get_total_all_nodes (

void)

Return the amount of total memory on all memory nodes for whose a memory limit is defined (see Section How to
Limit Memory Used By StarPU And Cache Buffer Allocations).

30.3.3.12 starpu_memory_get_available_all_nodes()

starpu_ssize_t starpu_memory_get_available_all_nodes (

void)

Return the amount of available memory on all memory nodes for whose a memory limit is defined (see Section How
to Limit Memory Used By StarPU And Cache Buffer Allocations).

30.3.3.13 starpu_memory_allocate()

int starpu_memory_allocate (

unsigned node,

size_t size,

int flags)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer
Allocations), try to allocate some of it. This does not actually allocate memory, but only accounts for it. This can be
useful when the application allocates data another way, but want StarPU to be aware of the allocation size e.g. for
memory reclaiming. By default, return -ENOMEM if there is not enough room on the given node. flags can be
either STARPU_MEMORY_WAIT or STARPU_MEMORY_OVERFLOW to change this.

30.3.3.14 starpu_memory_deallocate()

void starpu_memory_deallocate (

unsigned node,

size_t size)

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer
Allocations), free some of it. This does not actually free memory, but only accounts for it, like starpu_memory_←↩
allocate(). The amount does not have to be exactly the same as what was passed to starpu_memory_allocate(),
only the eventual amount needs to be the same, i.e. one call to starpu_memory_allocate() can be followed by
several calls to starpu_memory_deallocate() to declare the deallocation piece by piece.

30.3.3.15 starpu_memory_wait_available()

void starpu_memory_wait_available (

unsigned node,

size_t size)

Generated by Doxygen

200 Module Documentation a.k.a StarPU’s API

If a memory limit is defined on the given node (see Section How to Limit Memory Used By StarPU And Cache Buffer
Allocations), this will wait for size bytes to become available on node. Of course, since another thread may be
allocating memory concurrently, this does not necessarily mean that this amount will be actually available, just that
it was reached. To atomically wait for some amount of memory and reserve it, starpu_memory_allocate() should be
used with the STARPU_MEMORY_WAIT flag.

Generated by Doxygen

30.4 Toolbox 201

30.4 Toolbox

The following macros allow to make GCC extensions portable, and to have a code which can be compiled with any
C compiler.

Macros

• #define STARPU_GNUC_PREREQ(maj, min)
• #define STARPU_UNLIKELY(expr)
• #define STARPU_LIKELY(expr)
• #define STARPU_ATTRIBUTE_UNUSED
• #define STARPU_ATTRIBUTE_NORETURN
• #define STARPU_ATTRIBUTE_INTERNAL
• #define STARPU_ATTRIBUTE_MALLOC
• #define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT
• #define STARPU_ATTRIBUTE_PURE
• #define STARPU_ATTRIBUTE_ALIGNED(size)
• #define STARPU_ATTRIBUTE_FORMAT(type, string, first)
• #define STARPU_INLINE
• #define STARPU_ATTRIBUTE_CALLOC_SIZE(num, size)
• #define STARPU_ATTRIBUTE_ALLOC_SIZE(size)
• #define STARPU_WARN_UNUSED_RESULT
• #define STARPU_BACKTRACE_LENGTH
• #define STARPU_DUMP_BACKTRACE()
• #define STARPU_SIMGRID_ASSERT(x)
• #define STARPU_ASSERT(x)
• #define STARPU_ASSERT_ACCESSIBLE(ptr)
• #define STARPU_ASSERT_MSG(x, msg, ...)
• #define _starpu_abort()
• #define STARPU_ABORT()
• #define STARPU_ABORT_MSG(msg, ...)
• #define STARPU_CHECK_RETURN_VALUE(err, message, ...)
• #define STARPU_CHECK_RETURN_VALUE_IS(err, value, message, ...)
• #define STARPU_ATOMIC_SOMETHING(name, expr)
• #define STARPU_ATOMIC_SOMETHINGL(name, expr)
• #define STARPU_ATOMIC_SOMETHING64(name, expr)
• #define STARPU_BOOL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_VAL_COMPARE_AND_SWAP_PTR(ptr, old, value)
• #define STARPU_RMB()
• #define STARPU_WMB()
• #define STARPU_CACHELINE_SIZE

30.4.1 Detailed Description

The following macros allow to make GCC extensions portable, and to have a code which can be compiled with any
C compiler.

30.4.2 Macro Definition Documentation

30.4.2.1 STARPU_GNUC_PREREQ

#define STARPU_GNUC_PREREQ(

maj,

min)

Return true (non-zero) if GCC version maj.min or later is being used (macro taken from glibc.)

Generated by Doxygen

202 Module Documentation a.k.a StarPU’s API

30.4.2.2 STARPU_UNLIKELY

#define STARPU_UNLIKELY(

expr)

When building with a GNU C Compiler, allow programmers to mark an expression as unlikely.

30.4.2.3 STARPU_LIKELY

#define STARPU_LIKELY(

expr)

When building with a GNU C Compiler, allow programmers to mark an expression as likely.

30.4.2.4 STARPU_ATTRIBUTE_UNUSED

#define STARPU_ATTRIBUTE_UNUSED

When building with a GNU C Compiler, defined to __attribute__((unused))

30.4.2.5 STARPU_ATTRIBUTE_NORETURN

#define STARPU_ATTRIBUTE_NORETURN

When building with a GNU C Compiler, defined to __attribute__((noreturn))

30.4.2.6 STARPU_ATTRIBUTE_INTERNAL

#define STARPU_ATTRIBUTE_INTERNAL

When building with a GNU C Compiler, defined to __attribute__((visibility ("internal")))

30.4.2.7 STARPU_ATTRIBUTE_MALLOC

#define STARPU_ATTRIBUTE_MALLOC

When building with a GNU C Compiler, defined to __attribute__((malloc))

30.4.2.8 STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

#define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

When building with a GNU C Compiler, defined to __attribute__((warn_unused_result))

30.4.2.9 STARPU_ATTRIBUTE_PURE

#define STARPU_ATTRIBUTE_PURE

When building with a GNU C Compiler, defined to __attribute__((pure))

30.4.2.10 STARPU_ATTRIBUTE_ALIGNED

#define STARPU_ATTRIBUTE_ALIGNED(

size)

When building with a GNU C Compiler, defined to__attribute__((aligned(size)))

30.4.2.11 STARPU_ASSERT

#define STARPU_ASSERT(

x)

Unless StarPU has been configured with the option --enable-fast, this macro will abort if the expression x is false.

30.4.2.12 STARPU_ASSERT_MSG

#define STARPU_ASSERT_MSG(

x,

msg,

...)

Generated by Doxygen

30.4 Toolbox 203

Unless StarPU has been configured with the option --enable-fast, this macro will abort if the expression x is false.
The string msg will be displayed.

30.4.2.13 STARPU_ABORT

#define STARPU_ABORT()

Abort the program.

30.4.2.14 STARPU_ABORT_MSG

#define STARPU_ABORT_MSG(

msg,

...)

Print the string '[starpu][abort][name of the calling function:name of the file:line in the file]' followed by the
given string msg and abort the program

30.4.2.15 STARPU_CHECK_RETURN_VALUE

#define STARPU_CHECK_RETURN_VALUE(

err,

message,

...)

Abort the program (after displaying message) if err has a value which is not 0.

30.4.2.16 STARPU_CHECK_RETURN_VALUE_IS

#define STARPU_CHECK_RETURN_VALUE_IS(

err,

value,

message,

...)

Abort the program (after displaying message) if err is different from value.

30.4.2.17 STARPU_RMB

#define STARPU_RMB()

This macro can be used to do a synchronization.

30.4.2.18 STARPU_WMB

#define STARPU_WMB()

This macro can be used to do a synchronization.

Generated by Doxygen

204 Module Documentation a.k.a StarPU’s API

30.5 Threads

This section describes the thread facilities provided by StarPU. The thread function are either implemented on top
of the pthread library or the SimGrid library when the simulated performance mode is enabled (SimGrid Support).

Macros

• #define STARPU_PTHREAD_CREATE_ON(name, thread, attr, routine, arg, where)
• #define STARPU_PTHREAD_CREATE(thread, attr, routine, arg)
• #define STARPU_PTHREAD_MUTEX_INIT(mutex, attr)
• #define STARPU_PTHREAD_MUTEX_DESTROY(mutex)
• #define STARPU_PTHREAD_MUTEX_LOCK(mutex)
• #define STARPU_PTHREAD_MUTEX_UNLOCK(mutex)
• #define STARPU_PTHREAD_KEY_CREATE(key, destr)
• #define STARPU_PTHREAD_KEY_DELETE(key)
• #define STARPU_PTHREAD_SETSPECIFIC(key, ptr)
• #define STARPU_PTHREAD_GETSPECIFIC(key)
• #define STARPU_PTHREAD_RWLOCK_INIT(rwlock, attr)
• #define STARPU_PTHREAD_RWLOCK_RDLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_WRLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_UNLOCK(rwlock)
• #define STARPU_PTHREAD_RWLOCK_DESTROY(rwlock)
• #define STARPU_PTHREAD_COND_INIT(cond, attr)
• #define STARPU_PTHREAD_COND_DESTROY(cond)
• #define STARPU_PTHREAD_COND_SIGNAL(cond)
• #define STARPU_PTHREAD_COND_BROADCAST(cond)
• #define STARPU_PTHREAD_COND_WAIT(cond, mutex)
• #define STARPU_PTHREAD_BARRIER_INIT(barrier, attr, count)
• #define STARPU_PTHREAD_BARRIER_DESTROY(barrier)
• #define STARPU_PTHREAD_BARRIER_WAIT(barrier)
• #define STARPU_PTHREAD_MUTEX_INITIALIZER
• #define STARPU_PTHREAD_COND_INITIALIZER

Functions

• int starpu_pthread_create (starpu_pthread_t ∗thread, const starpu_pthread_attr_t ∗attr, void ∗(∗start_←↩
routine)(void ∗), void ∗arg)

• int starpu_pthread_join (starpu_pthread_t thread, void ∗∗retval)
• int starpu_pthread_exit (void ∗retval) STARPU_ATTRIBUTE_NORETURN
• int starpu_pthread_attr_init (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_destroy (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_setdetachstate (starpu_pthread_attr_t ∗attr, int detachstate)
• int starpu_pthread_mutex_init (starpu_pthread_mutex_t ∗mutex, const starpu_pthread_mutexattr_←↩

t ∗mutexattr)
• int starpu_pthread_mutex_destroy (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_lock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutexattr_gettype (const starpu_pthread_mutexattr_t ∗attr, int ∗type)
• int starpu_pthread_mutexattr_settype (starpu_pthread_mutexattr_t ∗attr, int type)
• int starpu_pthread_mutexattr_destroy (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_mutexattr_init (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_key_create (starpu_pthread_key_t ∗key, void(∗destr_function)(void ∗))
• int starpu_pthread_key_delete (starpu_pthread_key_t key)
• int starpu_pthread_setspecific (starpu_pthread_key_t key, const void ∗pointer)

Generated by Doxygen

30.5 Threads 205

• void ∗ starpu_pthread_getspecific (starpu_pthread_key_t key)

• int starpu_pthread_cond_init (starpu_pthread_cond_t ∗cond, starpu_pthread_condattr_t ∗cond_attr)

• int starpu_pthread_cond_signal (starpu_pthread_cond_t ∗cond)

• int starpu_pthread_cond_broadcast (starpu_pthread_cond_t ∗cond)

• int starpu_pthread_cond_wait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex)

• int starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex, const
struct timespec ∗abstime)

• int starpu_pthread_cond_destroy (starpu_pthread_cond_t ∗cond)

• int starpu_pthread_rwlock_init (starpu_pthread_rwlock_t ∗rwlock, const starpu_pthread_rwlockattr_t ∗attr)

• int starpu_pthread_rwlock_destroy (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_rwlock_rdlock (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_rwlock_wrlock (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_rwlock_unlock (starpu_pthread_rwlock_t ∗rwlock)

• int starpu_pthread_barrier_init (starpu_pthread_barrier_t ∗barrier, const starpu_pthread_barrierattr_t ∗attr,
unsigned count)

• int starpu_pthread_barrier_destroy (starpu_pthread_barrier_t ∗barrier)

• int starpu_pthread_barrier_wait (starpu_pthread_barrier_t ∗barrier)

• int starpu_pthread_spin_init (starpu_pthread_spinlock_t ∗lock, int pshared)

• int starpu_pthread_spin_destroy (starpu_pthread_spinlock_t ∗lock)

• int starpu_pthread_spin_lock (starpu_pthread_spinlock_t ∗lock)

• int starpu_pthread_spin_trylock (starpu_pthread_spinlock_t ∗lock)

• int starpu_pthread_spin_unlock (starpu_pthread_spinlock_t ∗lock)

• void starpu_sleep (float nb_sec)

30.5.1 Detailed Description

This section describes the thread facilities provided by StarPU. The thread function are either implemented on top
of the pthread library or the SimGrid library when the simulated performance mode is enabled (SimGrid Support).

30.5.2 Macro Definition Documentation

30.5.2.1 STARPU_PTHREAD_CREATE_ON

#define STARPU_PTHREAD_CREATE_ON(

name,

thread,

attr,

routine,

arg,

where)

Call starpu_pthread_create_on() and abort on error.

30.5.2.2 STARPU_PTHREAD_CREATE

#define STARPU_PTHREAD_CREATE(

thread,

attr,

routine,

arg)

Call starpu_pthread_create() and abort on error.

Generated by Doxygen

206 Module Documentation a.k.a StarPU’s API

30.5.2.3 STARPU_PTHREAD_MUTEX_INIT

#define STARPU_PTHREAD_MUTEX_INIT(

mutex,

attr)

Call starpu_pthread_mutex_init() and abort on error.

30.5.2.4 STARPU_PTHREAD_MUTEX_DESTROY

#define STARPU_PTHREAD_MUTEX_DESTROY(

mutex)

Call starpu_pthread_mutex_destroy() and abort on error.

30.5.2.5 STARPU_PTHREAD_MUTEX_LOCK

#define STARPU_PTHREAD_MUTEX_LOCK(

mutex)

Call starpu_pthread_mutex_lock() and abort on error.

30.5.2.6 STARPU_PTHREAD_MUTEX_UNLOCK

#define STARPU_PTHREAD_MUTEX_UNLOCK(

mutex)

Call starpu_pthread_mutex_unlock() and abort on error.

30.5.2.7 STARPU_PTHREAD_KEY_CREATE

#define STARPU_PTHREAD_KEY_CREATE(

key,

destr)

Call starpu_pthread_key_create() and abort on error.

30.5.2.8 STARPU_PTHREAD_KEY_DELETE

#define STARPU_PTHREAD_KEY_DELETE(

key)

Call starpu_pthread_key_delete() and abort on error.

30.5.2.9 STARPU_PTHREAD_SETSPECIFIC

#define STARPU_PTHREAD_SETSPECIFIC(

key,

ptr)

Call starpu_pthread_setspecific() and abort on error.

30.5.2.10 STARPU_PTHREAD_GETSPECIFIC

#define STARPU_PTHREAD_GETSPECIFIC(

key)

Call starpu_pthread_getspecific() and abort on error.

30.5.2.11 STARPU_PTHREAD_RWLOCK_INIT

#define STARPU_PTHREAD_RWLOCK_INIT(

rwlock,

attr)

Call starpu_pthread_rwlock_init() and abort on error.

Generated by Doxygen

30.5 Threads 207

30.5.2.12 STARPU_PTHREAD_RWLOCK_RDLOCK

#define STARPU_PTHREAD_RWLOCK_RDLOCK(

rwlock)

Call starpu_pthread_rwlock_rdlock() and abort on error.

30.5.2.13 STARPU_PTHREAD_RWLOCK_WRLOCK

#define STARPU_PTHREAD_RWLOCK_WRLOCK(

rwlock)

Call starpu_pthread_rwlock_wrlock() and abort on error.

30.5.2.14 STARPU_PTHREAD_RWLOCK_UNLOCK

#define STARPU_PTHREAD_RWLOCK_UNLOCK(

rwlock)

Call starpu_pthread_rwlock_unlock() and abort on error.

30.5.2.15 STARPU_PTHREAD_RWLOCK_DESTROY

#define STARPU_PTHREAD_RWLOCK_DESTROY(

rwlock)

Call starpu_pthread_rwlock_destroy() and abort on error.

30.5.2.16 STARPU_PTHREAD_COND_INIT

#define STARPU_PTHREAD_COND_INIT(

cond,

attr)

Call starpu_pthread_cond_init() and abort on error.

30.5.2.17 STARPU_PTHREAD_COND_DESTROY

#define STARPU_PTHREAD_COND_DESTROY(

cond)

Call starpu_pthread_cond_destroy() and abort on error.

30.5.2.18 STARPU_PTHREAD_COND_SIGNAL

#define STARPU_PTHREAD_COND_SIGNAL(

cond)

Call starpu_pthread_cond_signal() and abort on error.

30.5.2.19 STARPU_PTHREAD_COND_BROADCAST

#define STARPU_PTHREAD_COND_BROADCAST(

cond)

Call starpu_pthread_cond_broadcast() and abort on error.

30.5.2.20 STARPU_PTHREAD_COND_WAIT

#define STARPU_PTHREAD_COND_WAIT(

cond,

mutex)

Call starpu_pthread_cond_wait() and abort on error.

Generated by Doxygen

208 Module Documentation a.k.a StarPU’s API

30.5.2.21 STARPU_PTHREAD_BARRIER_INIT

#define STARPU_PTHREAD_BARRIER_INIT(

barrier,

attr,

count)

Call starpu_pthread_barrier_init() and abort on error.

30.5.2.22 STARPU_PTHREAD_BARRIER_DESTROY

#define STARPU_PTHREAD_BARRIER_DESTROY(

barrier)

Call starpu_pthread_barrier_destroy() and abort on error.

30.5.2.23 STARPU_PTHREAD_BARRIER_WAIT

#define STARPU_PTHREAD_BARRIER_WAIT(

barrier)

Call starpu_pthread_barrier_wait() and abort on error.

30.5.2.24 STARPU_PTHREAD_MUTEX_INITIALIZER

STARPU_PTHREAD_MUTEX_INITIALIZER

Initialize the mutex given in parameter.

30.5.2.25 STARPU_PTHREAD_COND_INITIALIZER

STARPU_PTHREAD_COND_INITIALIZER

Initialize the condition variable given in parameter.

30.5.3 Function Documentation

30.5.3.1 starpu_pthread_create()

int starpu_pthread_create (

starpu_pthread_t ∗ thread,

const starpu_pthread_attr_t ∗ attr,

void ∗(∗)(void ∗) start_routine,

void ∗ arg)

Start a new thread in the calling process. The new thread starts execution by invoking start_routine; arg is
passed as the sole argument of start_routine.

30.5.3.2 starpu_pthread_join()

int starpu_pthread_join (

starpu_pthread_t thread,

void ∗∗ retval)

Wait for the thread specified by thread to terminate. If that thread has already terminated, then the function
returns immediately. The thread specified by thread must be joinable.

30.5.3.3 starpu_pthread_exit()

int starpu_pthread_exit (

void ∗ retval)

Terminate the calling thread and return a value via retval that (if the thread is joinable) is available to another
thread in the same process that calls starpu_pthread_join().

Generated by Doxygen

30.5 Threads 209

30.5.3.4 starpu_pthread_attr_init()

int starpu_pthread_attr_init (

starpu_pthread_attr_t ∗ attr)

Initialize the thread attributes object pointed to by attr with default attribute values.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

30.5.3.5 starpu_pthread_attr_destroy()

int starpu_pthread_attr_destroy (

starpu_pthread_attr_t ∗ attr)

Destroy a thread attributes object which is no longer required. Destroying a thread attributes object has no effect on
threads that were created using that object.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

30.5.3.6 starpu_pthread_attr_setdetachstate()

int starpu_pthread_attr_setdetachstate (

starpu_pthread_attr_t ∗ attr,

int detachstate)

Set the detach state attribute of the thread attributes object referred to by attr to the value specified in
detachstate. The detach state attribute determines whether a thread created using the thread attributes object
attr will be created in a joinable or a detached state.
Do not do anything when the simulated performance mode is enabled (SimGrid Support).

30.5.3.7 starpu_pthread_mutex_init()

int starpu_pthread_mutex_init (

starpu_pthread_mutex_t ∗ mutex,

const starpu_pthread_mutexattr_t ∗ mutexattr)

Initialize the mutex object pointed to by mutex according to the mutex attributes specified in mutexattr. If
mutexattr is NULL, default attributes are used instead.

30.5.3.8 starpu_pthread_mutex_destroy()

int starpu_pthread_mutex_destroy (

starpu_pthread_mutex_t ∗ mutex)

Destroy a mutex object, and free the resources it might hold. The mutex must be unlocked on entrance.

30.5.3.9 starpu_pthread_mutex_lock()

int starpu_pthread_mutex_lock (

starpu_pthread_mutex_t ∗ mutex)

Lock the given mutex. If mutex is currently unlocked, it becomes locked and owned by the calling thread, and
the function returns immediately. If mutex is already locked by another thread, the function suspends the calling
thread until mutex is unlocked.
This function also produces trace when the configure option --enable-fxt-lock is enabled.

30.5.3.10 starpu_pthread_mutex_unlock()

int starpu_pthread_mutex_unlock (

starpu_pthread_mutex_t ∗ mutex)

Unlock the given mutex. The mutex is assumed to be locked and owned by the calling thread on entrance to
starpu_pthread_mutex_unlock().
This function also produces trace when the configure option --enable-fxt-lock is enabled.

30.5.3.11 starpu_pthread_mutex_trylock()

int starpu_pthread_mutex_trylock (

starpu_pthread_mutex_t ∗ mutex)

Generated by Doxygen

210 Module Documentation a.k.a StarPU’s API

Behave identically to starpu_pthread_mutex_lock(), except that it does not block the calling thread if the mutex is
already locked by another thread (or by the calling thread in the case of a “fast'' mutex). Instead, the function returns
immediately with the error code EBUSY.
This function also produces trace when the configure option --enable-fxt-lock is enabled.

30.5.3.12 starpu_pthread_mutexattr_gettype()

int starpu_pthread_mutexattr_gettype (

const starpu_pthread_mutexattr_t ∗ attr,

int ∗ type)

todo

30.5.3.13 starpu_pthread_mutexattr_settype()

int starpu_pthread_mutexattr_settype (

starpu_pthread_mutexattr_t ∗ attr,

int type)

todo

30.5.3.14 starpu_pthread_mutexattr_destroy()

int starpu_pthread_mutexattr_destroy (

starpu_pthread_mutexattr_t ∗ attr)

todo

30.5.3.15 starpu_pthread_mutexattr_init()

int starpu_pthread_mutexattr_init (

starpu_pthread_mutexattr_t ∗ attr)

todo

30.5.3.16 starpu_pthread_key_create()

int starpu_pthread_key_create (

starpu_pthread_key_t ∗ key,

void(∗)(void ∗) destr_function)

Allocate a new TSD key. The key is stored in the location pointed to by key.

30.5.3.17 starpu_pthread_key_delete()

int starpu_pthread_key_delete (

starpu_pthread_key_t key)

Deallocate a TSD key. Do not check whether non-NULL values are associated with that key in the currently execut-
ing threads, nor call the destructor function associated with the key.

30.5.3.18 starpu_pthread_setspecific()

int starpu_pthread_setspecific (

starpu_pthread_key_t key,

const void ∗ pointer)

Change the value associated with key in the calling thread, storing the given pointer instead.

30.5.3.19 starpu_pthread_getspecific()

void ∗ starpu_pthread_getspecific (

starpu_pthread_key_t key)

Return the value associated with key on success, and NULL on error.

Generated by Doxygen

30.5 Threads 211

30.5.3.20 starpu_pthread_cond_init()

int starpu_pthread_cond_init (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_condattr_t ∗ cond_attr)

Initialize the condition variable cond, using the condition attributes specified in cond_attr, or default attributes
if cond_attr is NULL.

30.5.3.21 starpu_pthread_cond_signal()

int starpu_pthread_cond_signal (

starpu_pthread_cond_t ∗ cond)

Restart one of the threads that are waiting on the condition variable cond. If no threads are waiting on cond,
nothing happens. If several threads are waiting on cond, exactly one is restarted, but it is not specified which.

30.5.3.22 starpu_pthread_cond_broadcast()

int starpu_pthread_cond_broadcast (

starpu_pthread_cond_t ∗ cond)

Restart all the threads that are waiting on the condition variable cond. Nothing happens if no threads are waiting
on cond.

30.5.3.23 starpu_pthread_cond_wait()

int starpu_pthread_cond_wait (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_mutex_t ∗ mutex)

Atomically unlock mutex (as per starpu_pthread_mutex_unlock()) and wait for the condition variable cond to be
signaled. The thread execution is suspended and does not consume any CPU time until the condition variable
is signaled. The mutex must be locked by the calling thread on entrance to starpu_pthread_cond_wait(). Before
returning to the calling thread, the function re-acquires mutex (as per starpu_pthread_mutex_lock()).
This function also produces trace when the configure option --enable-fxt-lock is enabled.

30.5.3.24 starpu_pthread_cond_timedwait()

int starpu_pthread_cond_timedwait (

starpu_pthread_cond_t ∗ cond,

starpu_pthread_mutex_t ∗ mutex,

const struct timespec ∗ abstime)

Atomicall unlocks mutex and wait on cond, as starpu_pthread_cond_wait() does, but also bound the duration of
the wait with abstime.

30.5.3.25 starpu_pthread_cond_destroy()

int starpu_pthread_cond_destroy (

starpu_pthread_cond_t ∗ cond)

Destroy a condition variable, freeing the resources it might hold. No threads must be waiting on the condition
variable on entrance to the function.

30.5.3.26 starpu_pthread_rwlock_init()

int starpu_pthread_rwlock_init (

starpu_pthread_rwlock_t ∗ rwlock,

const starpu_pthread_rwlockattr_t ∗ attr)

Similar to starpu_pthread_mutex_init().

30.5.3.27 starpu_pthread_rwlock_destroy()

int starpu_pthread_rwlock_destroy (

starpu_pthread_rwlock_t ∗ rwlock)

Generated by Doxygen

212 Module Documentation a.k.a StarPU’s API

Similar to starpu_pthread_mutex_destroy().

30.5.3.28 starpu_pthread_rwlock_rdlock()

int starpu_pthread_rwlock_rdlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_lock().

30.5.3.29 starpu_pthread_rwlock_tryrdlock()

int starpu_pthread_rwlock_tryrdlock (

starpu_pthread_rwlock_t ∗ rwlock)

todo

30.5.3.30 starpu_pthread_rwlock_wrlock()

int starpu_pthread_rwlock_wrlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_lock().

30.5.3.31 starpu_pthread_rwlock_trywrlock()

int starpu_pthread_rwlock_trywrlock (

starpu_pthread_rwlock_t ∗ rwlock)

todo

30.5.3.32 starpu_pthread_rwlock_unlock()

int starpu_pthread_rwlock_unlock (

starpu_pthread_rwlock_t ∗ rwlock)

Similar to starpu_pthread_mutex_unlock().

30.5.3.33 starpu_pthread_barrier_init()

int starpu_pthread_barrier_init (

starpu_pthread_barrier_t ∗ barrier,

const starpu_pthread_barrierattr_t ∗ attr,

unsigned count)

todo

30.5.3.34 starpu_pthread_barrier_destroy()

int starpu_pthread_barrier_destroy (

starpu_pthread_barrier_t ∗ barrier)

todo

30.5.3.35 starpu_pthread_barrier_wait()

int starpu_pthread_barrier_wait (

starpu_pthread_barrier_t ∗ barrier)

todo

30.5.3.36 starpu_pthread_spin_init()

int starpu_pthread_spin_init (

starpu_pthread_spinlock_t ∗ lock,

int pshared)

todo

Generated by Doxygen

30.5 Threads 213

30.5.3.37 starpu_pthread_spin_destroy()

int starpu_pthread_spin_destroy (

starpu_pthread_spinlock_t ∗ lock)

todo

30.5.3.38 starpu_pthread_spin_lock()

int starpu_pthread_spin_lock (

starpu_pthread_spinlock_t ∗ lock)

todo

30.5.3.39 starpu_pthread_spin_trylock()

int starpu_pthread_spin_trylock (

starpu_pthread_spinlock_t ∗ lock)

todo

30.5.3.40 starpu_pthread_spin_unlock()

int starpu_pthread_spin_unlock (

starpu_pthread_spinlock_t ∗ lock)

todo

30.5.3.41 starpu_sleep()

void starpu_sleep (

float nb_sec)

Similar to calling Unix' sleep function, except that it takes a float to allow sub-second sleeping, and when StarPU
is compiled in SimGrid mode it does not really sleep but just makes SimGrid record that the thread has taken some
time to sleep.

Generated by Doxygen

214 Module Documentation a.k.a StarPU’s API

30.6 Bitmap

This is the interface for the bitmap utilities provided by StarPU.

Functions

• struct starpu_bitmap ∗ starpu_bitmap_create (void) STARPU_ATTRIBUTE_MALLOC

• void starpu_bitmap_destroy (struct starpu_bitmap ∗b)

• void starpu_bitmap_set (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset_all (struct starpu_bitmap ∗b)

• int starpu_bitmap_get (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset_and (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b, struct starpu_bitmap ∗c)

• void starpu_bitmap_or (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b)

• int starpu_bitmap_and_get (struct starpu_bitmap ∗b1, struct starpu_bitmap ∗b2, int e)

• int starpu_bitmap_cardinal (struct starpu_bitmap ∗b)

• int starpu_bitmap_first (struct starpu_bitmap ∗b)

• int starpu_bitmap_last (struct starpu_bitmap ∗b)

• int starpu_bitmap_next (struct starpu_bitmap ∗b, int e)

• int starpu_bitmap_has_next (struct starpu_bitmap ∗b, int e)

30.6.1 Detailed Description

This is the interface for the bitmap utilities provided by StarPU.

30.6.2 Function Documentation

30.6.2.1 starpu_bitmap_create()

struct starpu_bitmap∗ starpu_bitmap_create (

void)

create a empty starpu_bitmap

30.6.2.2 starpu_bitmap_destroy()

void starpu_bitmap_destroy (

struct starpu_bitmap ∗ b)

free b

30.6.2.3 starpu_bitmap_set()

void starpu_bitmap_set (

struct starpu_bitmap ∗ b,

int e)

set bit e in b

30.6.2.4 starpu_bitmap_unset()

void starpu_bitmap_unset (

struct starpu_bitmap ∗ b,

int e)

unset bit e in b

Generated by Doxygen

30.6 Bitmap 215

30.6.2.5 starpu_bitmap_unset_all()

void starpu_bitmap_unset_all (

struct starpu_bitmap ∗ b)

unset all bits in b

30.6.2.6 starpu_bitmap_get()

int starpu_bitmap_get (

struct starpu_bitmap ∗ b,

int e)

return true iff bit e is set in b

30.6.2.7 starpu_bitmap_unset_and()

void starpu_bitmap_unset_and (

struct starpu_bitmap ∗ a,

struct starpu_bitmap ∗ b,

struct starpu_bitmap ∗ c)

Basically compute starpu_bitmap_unset_all(a) ; a = b & c;

30.6.2.8 starpu_bitmap_or()

void starpu_bitmap_or (

struct starpu_bitmap ∗ a,

struct starpu_bitmap ∗ b)

Basically compute a |= b

30.6.2.9 starpu_bitmap_and_get()

int starpu_bitmap_and_get (

struct starpu_bitmap ∗ b1,

struct starpu_bitmap ∗ b2,

int e)

return 1 iff e is set in b1 AND e is set in b2

30.6.2.10 starpu_bitmap_cardinal()

int starpu_bitmap_cardinal (

struct starpu_bitmap ∗ b)

return the number of set bits in b

30.6.2.11 starpu_bitmap_first()

int starpu_bitmap_first (

struct starpu_bitmap ∗ b)

return the index of the first set bit of b, -1 if none

30.6.2.12 starpu_bitmap_last()

int starpu_bitmap_last (

struct starpu_bitmap ∗ b)

return the position of the last set bit of b, -1 if none

30.6.2.13 starpu_bitmap_next()

int starpu_bitmap_next (

struct starpu_bitmap ∗ b,

int e)

return the position of set bit right after e in b, -1 if none

Generated by Doxygen

216 Module Documentation a.k.a StarPU’s API

30.6.2.14 starpu_bitmap_has_next()

int starpu_bitmap_has_next (

struct starpu_bitmap ∗ b,

int e)

todo

Generated by Doxygen

30.7 Workers’ Properties 217

30.7 Workers’ Properties

Data Structures

• struct starpu_sched_ctx_iterator
• struct starpu_worker_collection

Macros

• #define starpu_worker_get_id_check()
• #define STARPU_MAXNODES
• #define STARPU_MAXCPUS
• #define STARPU_MAXNUMANODES
• #define STARPU_NMAXWORKERS

Enumerations

• enum starpu_node_kind {
STARPU_UNUSED, STARPU_CPU_RAM, STARPU_CUDA_RAM, STARPU_OPENCL_RAM,
STARPU_DISK_RAM, STARPU_MIC_RAM, STARPU_MPI_MS_RAM }

• enum starpu_worker_archtype {
STARPU_CPU_WORKER, STARPU_CUDA_WORKER, STARPU_OPENCL_WORKER, STARPU_MIC_←↩
WORKER,
STARPU_MPI_MS_WORKER, STARPU_ANY_WORKER }

• enum starpu_worker_collection_type { STARPU_WORKER_TREE, STARPU_WORKER_LIST }

Functions

• unsigned starpu_worker_get_count (void)
• unsigned starpu_cpu_worker_get_count (void)
• unsigned starpu_cuda_worker_get_count (void)
• unsigned starpu_opencl_worker_get_count (void)
• unsigned starpu_mic_worker_get_count (void)
• unsigned starpu_mpi_ms_worker_get_count (void)
• unsigned starpu_mic_device_get_count (void)
• int starpu_worker_get_id (void)
• unsigned _starpu_worker_get_id_check (const char ∗f, int l)
• int starpu_worker_get_bindid (int workerid)
• void starpu_sched_find_all_worker_combinations (void)
• enum starpu_worker_archtype starpu_worker_get_type (int id)
• int starpu_worker_get_count_by_type (enum starpu_worker_archtype type)
• unsigned starpu_worker_get_ids_by_type (enum starpu_worker_archtype type, int ∗workerids, unsigned

maxsize)
• int starpu_worker_get_by_type (enum starpu_worker_archtype type, int num)
• int starpu_worker_get_by_devid (enum starpu_worker_archtype type, int devid)
• void starpu_worker_get_name (int id, char ∗dst, size_t maxlen)
• void starpu_worker_display_names (FILE ∗output, enum starpu_worker_archtype type)
• int starpu_worker_get_devid (int id)
• int starpu_worker_get_mp_nodeid (int id)
• struct starpu_tree ∗ starpu_workers_get_tree (void)
• unsigned starpu_worker_get_sched_ctx_list (int worker, unsigned ∗∗sched_ctx)
• unsigned starpu_worker_is_blocked_in_parallel (int workerid)
• unsigned starpu_worker_is_slave_somewhere (int workerid)
• char ∗ starpu_worker_get_type_as_string (enum starpu_worker_archtype type)
• int starpu_bindid_get_workerids (int bindid, int ∗∗workerids)
• int starpu_worker_get_devids (enum starpu_worker_archtype type, int ∗devids, int num)

Generated by Doxygen

218 Module Documentation a.k.a StarPU’s API

• int starpu_worker_get_stream_workerids (unsigned devid, int ∗workerids, enum starpu_worker_archtype
type)

• unsigned starpu_worker_get_sched_ctx_id_stream (unsigned stream_workerid)
• hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (int workerid)
• hwloc_obj_t starpu_worker_get_hwloc_obj (int workerid)
• int starpu_memory_node_get_devid (unsigned node)
• unsigned starpu_worker_get_local_memory_node (void)
• unsigned starpu_worker_get_memory_node (unsigned workerid)
• unsigned starpu_memory_nodes_get_count (void)
• int starpu_memory_node_get_name (unsigned node, char ∗name, size_t size)
• int starpu_memory_nodes_get_numa_count (void)
• int starpu_memory_nodes_numa_id_to_devid (int osid)
• int starpu_memory_nodes_numa_devid_to_id (unsigned id)
• enum starpu_node_kind starpu_node_get_kind (unsigned node)

Variables

• struct starpu_worker_collection starpu_worker_list
• struct starpu_worker_collection starpu_worker_tree

Scheduling operations

• int starpu_worker_sched_op_pending (void)
• void starpu_worker_relax_on (void)
• void starpu_worker_relax_off (void)
• int starpu_worker_get_relax_state (void)
• void starpu_worker_lock (int workerid)
• int starpu_worker_trylock (int workerid)
• void starpu_worker_unlock (int workerid)
• void starpu_worker_lock_self (void)
• void starpu_worker_unlock_self (void)
• void starpu_worker_set_going_to_sleep_callback (void(∗callback)(unsigned workerid))
• void starpu_worker_set_waking_up_callback (void(∗callback)(unsigned workerid))

30.7.1 Detailed Description

30.7.2 Data Structure Documentation

30.7.2.1 struct starpu_sched_ctx_iterator

Structure needed to iterate on the collection

Data Fields

int cursor The index of the current worker in the collection, needed when
iterating on the collection.

void ∗ value
void ∗ possible_value

char visited[STARPU_NMAXWORKERS]

int possibly_parallel

30.7.2.2 struct starpu_worker_collection

A scheduling context manages a collection of workers that can be memorized using different data structures. Thus,
a generic structure is available in order to simplify the choice of its type. Only the list data structure is available but

Generated by Doxygen

30.7 Workers’ Properties 219

further data structures(like tree) implementations are foreseen.

Data Fields

• int ∗ workerids
• void ∗ collection_private
• unsigned nworkers
• void ∗ unblocked_workers
• unsigned nunblocked_workers
• void ∗ masters
• unsigned nmasters
• char present [STARPU_NMAXWORKERS]
• char is_unblocked [STARPU_NMAXWORKERS]
• char is_master [STARPU_NMAXWORKERS]
• enum starpu_worker_collection_type type
• unsigned(∗ has_next)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• int(∗ get_next)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• int(∗ add)(struct starpu_worker_collection ∗workers, int worker)
• int(∗ remove)(struct starpu_worker_collection ∗workers, int worker)
• void(∗ init)(struct starpu_worker_collection ∗workers)
• void(∗ deinit)(struct starpu_worker_collection ∗workers)
• void(∗ init_iterator)(struct starpu_worker_collection ∗workers, struct starpu_sched_ctx_iterator ∗it)
• void(∗ init_iterator_for_parallel_tasks)(struct starpu_worker_collection ∗workers, struct starpu_sched_←↩

ctx_iterator ∗it, struct starpu_task ∗task)

30.7.2.2.1 Field Documentation

30.7.2.2.1.1 workerids

int∗ starpu_worker_collection::workerids

The workerids managed by the collection

30.7.2.2.1.2 nworkers

unsigned starpu_worker_collection::nworkers

The number of workers in the collection

30.7.2.2.1.3 type

enum starpu_worker_collection_type starpu_worker_collection::type

The type of structure

30.7.2.2.1.4 has_next

unsigned(∗ starpu_worker_collection::has_next) (struct starpu_worker_collection ∗workers,
struct starpu_sched_ctx_iterator ∗it)
Check if there is another element in collection

30.7.2.2.1.5 get_next

int(∗ starpu_worker_collection::get_next) (struct starpu_worker_collection ∗workers, struct

starpu_sched_ctx_iterator ∗it)
Return the next element in the collection

30.7.2.2.1.6 add

int(∗ starpu_worker_collection::add) (struct starpu_worker_collection ∗workers, int worker)

Add a new element in the collection

30.7.2.2.1.7 remove

int(∗ starpu_worker_collection::remove) (struct starpu_worker_collection ∗workers, int worker)

Remove an element from the collection

Generated by Doxygen

220 Module Documentation a.k.a StarPU’s API

30.7.2.2.1.8 init

void(∗ starpu_worker_collection::init) (struct starpu_worker_collection ∗workers)
Initialize the collection

30.7.2.2.1.9 deinit

void(∗ starpu_worker_collection::deinit) (struct starpu_worker_collection ∗workers)
Deinitialize the colection

30.7.2.2.1.10 init_iterator

void(∗ starpu_worker_collection::init_iterator) (struct starpu_worker_collection ∗workers,
struct starpu_sched_ctx_iterator ∗it)
Initialize the cursor if there is one

30.7.3 Macro Definition Documentation

30.7.3.1 starpu_worker_get_id_check

unsigned starpu_worker_get_id_check(

void)

Similar to starpu_worker_get_id(), but abort when called from outside a worker (i.e. when starpu_worker_get_id()
would return -1).

30.7.3.2 STARPU_MAXNODES

#define STARPU_MAXNODES

Define the maximum number of memory nodes managed by StarPU. The default value can be modified at configure
by using the option --enable-maxnodes. Reducing it allows to considerably reduce memory used by StarPU data
structures.

30.7.3.3 STARPU_MAXCPUS

#define STARPU_MAXCPUS

Define the maximum number of CPU workers managed by StarPU. The default value can be modified at configure
by using the option --enable-maxcpus.

30.7.3.4 STARPU_MAXNUMANODES

#define STARPU_MAXNUMANODES

Define the maximum number of NUMA nodes managed by StarPU. The default value can be modified at configure
by using the option --enable-maxnumanodes.

30.7.3.5 STARPU_NMAXWORKERS

#define STARPU_NMAXWORKERS

Define the maximum number of workers managed by StarPU.

30.7.4 Enumeration Type Documentation

30.7.4.1 starpu_node_kind

enum starpu_node_kind

Memory node Type

Generated by Doxygen

30.7 Workers’ Properties 221

30.7.4.2 starpu_worker_archtype

enum starpu_worker_archtype

Worker Architecture Type
The value 4 which was used by the driver SCC is no longer used as renumbering workers would make unusable old
performance model files.

Enumerator

STARPU_CPU_WORKER CPU core
STARPU_CUDA_WORKER NVIDIA CUDA device

STARPU_OPENCL_WORKER OpenCL device

STARPU_MIC_WORKER Intel MIC device
STARPU_MPI_MS_WORKER MPI Slave device

STARPU_ANY_WORKER any worker, used in the hypervisor

30.7.4.3 starpu_worker_collection_type

enum starpu_worker_collection_type

Types of structures the worker collection can implement

Enumerator

STARPU_WORKER_TREE The collection is a tree
STARPU_WORKER_LIST The collection is an array

30.7.5 Function Documentation

30.7.5.1 starpu_worker_get_count()

unsigned starpu_worker_get_count (

void)

Return the number of workers (i.e. processing units executing StarPU tasks). The return value should be at most
STARPU_NMAXWORKERS.

30.7.5.2 starpu_cpu_worker_get_count()

unsigned starpu_cpu_worker_get_count (

void)

Return the number of CPUs controlled by StarPU. The return value should be at most STARPU_MAXCPUS.

30.7.5.3 starpu_cuda_worker_get_count()

unsigned starpu_cuda_worker_get_count (

void)

Return the number of CUDA devices controlled by StarPU. The return value should be at most STARPU_MAXC←↩
UDADEVS.

30.7.5.4 starpu_opencl_worker_get_count()

unsigned starpu_opencl_worker_get_count (

void)

Generated by Doxygen

222 Module Documentation a.k.a StarPU’s API

Return the number of OpenCL devices controlled by StarPU. The return value should be at most STARPU_MAX←↩
OPENCLDEVS.

30.7.5.5 starpu_mic_worker_get_count()

unsigned starpu_mic_worker_get_count (

void)

Return the number of MIC workers controlled by StarPU.

30.7.5.6 starpu_mpi_ms_worker_get_count()

unsigned starpu_mpi_ms_worker_get_count (

void)

Return the number of MPI Master Slave workers controlled by StarPU.

30.7.5.7 starpu_mic_device_get_count()

unsigned starpu_mic_device_get_count (

void)

Return the number of MIC devices controlled by StarPU. The return value should be at most STARPU_MAXMIC←↩
DEVS.

30.7.5.8 starpu_worker_get_id()

int starpu_worker_get_id (

void)

Return the identifier of the current worker, i.e the one associated to the calling thread. The return value is either -1
if the current context is not a StarPU worker (i.e. when called from the application outside a task or a callback), or
an integer between 0 and starpu_worker_get_count() - 1.

30.7.5.9 starpu_worker_get_type()

enum starpu_worker_archtype starpu_worker_get_type (

int id)

Return the type of processing unit associated to the worker id. The worker identifier is a value returned by the
function starpu_worker_get_id()). The return value indicates the architecture of the worker: STARPU_CPU_WO←↩
RKER for a CPU core, STARPU_CUDA_WORKER for a CUDA device, and STARPU_OPENCL_WORKER for a
OpenCL device. The return value for an invalid identifier is unspecified.

30.7.5.10 starpu_worker_get_count_by_type()

int starpu_worker_get_count_by_type (

enum starpu_worker_archtype type)

Return the number of workers of type. A positive (or NULL) value is returned in case of success, -EINVAL
indicates that type is not valid otherwise.

30.7.5.11 starpu_worker_get_ids_by_type()

unsigned starpu_worker_get_ids_by_type (

enum starpu_worker_archtype type,

int ∗ workerids,

unsigned maxsize)

Get the list of identifiers of workers of type. Fill the array workerids with the identifiers of the workers.
The argument maxsize indicates the size of the array workerids. The return value gives the number of
identifiers that were put in the array. -ERANGE is returned is maxsize is lower than the number of workers with
the appropriate type: in that case, the array is filled with the maxsize first elements. To avoid such overflows, the
value of maxsize can be chosen by the means of the function starpu_worker_get_count_by_type(), or by passing a
value greater or equal to STARPU_NMAXWORKERS.

Generated by Doxygen

30.7 Workers’ Properties 223

30.7.5.12 starpu_worker_get_by_type()

int starpu_worker_get_by_type (

enum starpu_worker_archtype type,

int num)

Return the identifier of the num -th worker that has the specified type. If there is no such worker, -1 is returned.

30.7.5.13 starpu_worker_get_by_devid()

int starpu_worker_get_by_devid (

enum starpu_worker_archtype type,

int devid)

Return the identifier of the worker that has the specified type and device id devid (which may not be the n-th, if
some devices are skipped for instance). If there is no such worker, -1 is returned.

30.7.5.14 starpu_worker_get_name()

void starpu_worker_get_name (

int id,

char ∗ dst,

size_t maxlen)

Get the name of the worker id. StarPU associates a unique human readable string to each processing unit. This
function copies at most the maxlen first bytes of the unique string associated to the worker id into the dst buffer.
The caller is responsible for ensuring that dst is a valid pointer to a buffer of maxlen bytes at least. Calling this
function on an invalid identifier results in an unspecified behaviour.

30.7.5.15 starpu_worker_display_names()

void starpu_worker_display_names (

FILE ∗ output,

enum starpu_worker_archtype type)

Display on output the list (if any) of all the workers of the given type.

30.7.5.16 starpu_worker_get_devid()

int starpu_worker_get_devid (

int id)

Return the device id of the worker id. The worker should be identified with the value returned by the starpu_←↩
worker_get_id() function. In the case of a CUDA worker, this device identifier is the logical device identifier exposed
by CUDA (used by the function cudaGetDevice() for instance). The device identifier of a CPU worker is the
logical identifier of the core on which the worker was bound; this identifier is either provided by the OS or by the
library hwloc in case it is available.

30.7.5.17 starpu_worker_get_type_as_string()

char∗ starpu_worker_get_type_as_string (

enum starpu_worker_archtype type)

Return worker type as a string.

30.7.5.18 starpu_worker_get_hwloc_cpuset()

hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (

int workerid)

If StarPU was compiled with hwloc support, return a duplicate of the hwloc cpuset associated with the worker
workerid. The returned cpuset is obtained from a hwloc_bitmap_dup() function call. It must be freed by
the caller using hwloc_bitmap_free().

Generated by Doxygen

224 Module Documentation a.k.a StarPU’s API

30.7.5.19 starpu_worker_get_hwloc_obj()

hwloc_obj_t starpu_worker_get_hwloc_obj (

int workerid)

If StarPU was compiled with hwloc support, return the hwloc object corresponding to the worker workerid.

30.7.5.20 starpu_worker_get_local_memory_node()

unsigned starpu_worker_get_local_memory_node (

void)

Return the memory node associated to the current worker

30.7.5.21 starpu_worker_get_memory_node()

unsigned starpu_worker_get_memory_node (

unsigned workerid)

Return the identifier of the memory node associated to the worker identified by workerid.

30.7.5.22 starpu_memory_nodes_get_count()

unsigned starpu_memory_nodes_get_count (

void)

Return the number of memory nodes

30.7.5.23 starpu_memory_node_get_name()

int starpu_memory_node_get_name (

unsigned node,

char ∗ name,

size_t size)

Return in name the name of a memory node (NUMA 0, CUDA 0, etc.) size is the size of the name array.

30.7.5.24 starpu_memory_nodes_get_numa_count()

int starpu_memory_nodes_get_numa_count (

void)

Return the number of NUMA nodes used by StarPU

30.7.5.25 starpu_memory_nodes_numa_id_to_devid()

int starpu_memory_nodes_numa_id_to_devid (

int osid)

Return the identifier of the memory node associated to the NUMA node identified by osid by the Operating System.

30.7.5.26 starpu_memory_nodes_numa_devid_to_id()

int starpu_memory_nodes_numa_devid_to_id (

unsigned id)

Return the Operating System identifier of the memory node whose StarPU identifier is id.

30.7.5.27 starpu_node_get_kind()

enum starpu_node_kind starpu_node_get_kind (

unsigned node)

Return the type of node as defined by starpu_node_kind. For example, when defining a new data interface, this
function should be used in the allocation function to determine on which device the memory needs to be allocated.

Generated by Doxygen

30.7 Workers’ Properties 225

30.7.5.28 starpu_worker_sched_op_pending()

int starpu_worker_sched_op_pending (

void)

Return !0 if current worker has a scheduling operation in progress, and 0 otherwise.

30.7.5.29 starpu_worker_relax_on()

void starpu_worker_relax_on (

void)

Allow other threads and workers to temporarily observe the current worker state, even though it is performing a
scheduling operation. Must be called by a worker before performing a potentially blocking call such as acquiring a
mutex other than its own sched_mutex. This function increases state_relax_refcnt from the current worker.
No more than UINT_MAX-1 nested starpu_worker_relax_on() calls should performed on the same worker. This
function is automatically called by starpu_worker_lock() to relax the caller worker state while attempting to lock the
target worker.

30.7.5.30 starpu_worker_relax_off()

void starpu_worker_relax_off (

void)

Must be called after a potentially blocking call is complete, to restore the relax state in place before the corresponding
starpu_worker_relax_on(). Decreases state_relax_refcnt. Calls to starpu_worker_relax_on() and starpu←↩
_worker_relax_off() must be properly paired. This function is automatically called by starpu_worker_unlock() after
the target worker has been unlocked.

30.7.5.31 starpu_worker_get_relax_state()

int starpu_worker_get_relax_state (

void)

Return !0 if the current worker state_relax_refcnt!=0 and 0 otherwise.

30.7.5.32 starpu_worker_lock()

void starpu_worker_lock (

int workerid)

Acquire the sched mutex of workerid. If the caller is a worker, distinct from workerid, the caller worker
automatically enters a relax state while acquiring the target worker lock.

30.7.5.33 starpu_worker_trylock()

int starpu_worker_trylock (

int workerid)

Attempt to acquire the sched mutex of workerid. Returns 0 if successful, !0 if workerid sched mutex is held
or the corresponding worker is not in a relax state. If the caller is a worker, distinct from workerid, the caller
worker automatically enters relax state if successfully acquiring the target worker lock.

30.7.5.34 starpu_worker_unlock()

void starpu_worker_unlock (

int workerid)

Release the previously acquired sched mutex of workerid. Restore the relax state of the caller worker if needed.

30.7.5.35 starpu_worker_lock_self()

void starpu_worker_lock_self (

void)

Acquire the current worker sched mutex.

Generated by Doxygen

226 Module Documentation a.k.a StarPU’s API

30.7.5.36 starpu_worker_unlock_self()

void starpu_worker_unlock_self (

void)

Release the current worker sched mutex.

30.7.5.37 starpu_worker_set_going_to_sleep_callback()

void starpu_worker_set_going_to_sleep_callback (

void(∗)(unsigned workerid) callback)

If StarPU was compiled with blocking drivers support and worker callbacks support enabled, allow to specify an
external resource manager callback to be notified about workers going to sleep.

30.7.5.38 starpu_worker_set_waking_up_callback()

void starpu_worker_set_waking_up_callback (

void(∗)(unsigned workerid) callback)

If StarPU was compiled with blocking drivers support and worker callbacks support enabled, allow to specify an
external resource manager callback to be notified about workers waking-up.

Generated by Doxygen

30.8 Data Management 227

30.8 Data Management

Data management facilities provided by StarPU. We show how to use existing data interfaces in Data Interfaces,
but developers can design their own data interfaces if required.

Typedefs

• typedef struct _starpu_data_state ∗ starpu_data_handle_t
• typedef struct starpu_arbiter ∗ starpu_arbiter_t

Enumerations

• enum starpu_data_access_mode {
STARPU_NONE, STARPU_R, STARPU_W, STARPU_RW,
STARPU_SCRATCH, STARPU_REDUX, STARPU_COMMUTE, STARPU_SSEND,
STARPU_LOCALITY, STARPU_NOPLAN, STARPU_ACCESS_MODE_MAX }

Functions

• void starpu_data_set_name (starpu_data_handle_t handle, const char ∗name)
• void starpu_data_set_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int dims[])
• void starpu_data_set_coordinates (starpu_data_handle_t handle, unsigned dimensions,...)
• unsigned starpu_data_get_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int

dims[])
• void starpu_data_unregister (starpu_data_handle_t handle)
• void starpu_data_unregister_no_coherency (starpu_data_handle_t handle)
• void starpu_data_unregister_submit (starpu_data_handle_t handle)
• void starpu_data_invalidate (starpu_data_handle_t handle)
• void starpu_data_invalidate_submit (starpu_data_handle_t handle)
• void starpu_data_advise_as_important (starpu_data_handle_t handle, unsigned is_important)
• starpu_arbiter_t starpu_arbiter_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_data_assign_arbiter (starpu_data_handle_t handle, starpu_arbiter_t arbiter)
• void starpu_arbiter_destroy (starpu_arbiter_t arbiter)
• int starpu_data_request_allocation (starpu_data_handle_t handle, unsigned node)
• int starpu_data_fetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async,

int prio)
• int starpu_data_idle_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_idle_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned

async, int prio)
• unsigned starpu_data_is_on_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_wont_use (starpu_data_handle_t handle)
• void starpu_data_set_wt_mask (starpu_data_handle_t handle, uint32_t wt_mask)
• void starpu_data_set_ooc_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_ooc_flag (starpu_data_handle_t handle)
• void starpu_data_query_status (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_requested)
• void starpu_data_set_reduction_methods (starpu_data_handle_t handle, struct starpu_codelet ∗redux_cl,

struct starpu_codelet ∗init_cl)
• struct starpu_data_interface_ops ∗ starpu_data_get_interface_ops (starpu_data_handle_t handle)
• unsigned starpu_data_test_if_allocated_on_node (starpu_data_handle_t handle, unsigned memory_←↩

node)
• void starpu_memchunk_tidy (unsigned memory_node)
• void starpu_data_set_user_data (starpu_data_handle_t handle, void ∗user_data)
• void ∗ starpu_data_get_user_data (starpu_data_handle_t handle)

Generated by Doxygen

228 Module Documentation a.k.a StarPU’s API

Access registered data from the application

• int starpu_data_acquire (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• int starpu_data_acquire_cb (starpu_data_handle_t handle, enum starpu_data_access_mode mode,

void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_on_node_cb (starpu_data_handle_t handle, int node, enum starpu_data_access←↩

_mode mode, void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_cb_sequential_consistency (starpu_data_handle_t handle, enum starpu_data_←↩

access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency (starpu_data_handle_t handle, int node, enum

starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)
• int starpu_data_acquire_on_node_cb_sequential_consistency_quick (starpu_data_handle_t handle, int

node, enum starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency,
int quick)

• int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (starpu_data_handle_t handle,
int node, enum starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_←↩
consistency, int quick, long ∗pre_sync_jobid, long ∗post_sync_jobid)

• int starpu_data_acquire_try (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node_try (starpu_data_handle_t handle, int node, enum starpu_data_access←↩

_mode mode)
• void starpu_data_release (starpu_data_handle_t handle)
• void starpu_data_release_on_node (starpu_data_handle_t handle, int node)
• #define STARPU_ACQUIRE_NO_NODE
• #define STARPU_ACQUIRE_NO_NODE_LOCK_ALL
• #define STARPU_DATA_ACQUIRE_CB(handle, mode, code)

Implicit Data Dependencies

In this section, we describe how StarPU makes it possible to insert implicit task dependencies in order to enforce
sequential data consistency. When this data consistency is enabled on a specific data handle, any data access
will appear as sequentially consistent from the application. For instance, if the application submits two tasks that
access the same piece of data in read-only mode, and then a third task that access it in write mode, dependencies
will be added between the two first tasks and the third one. Implicit data dependencies are also inserted in the case
of data accesses from the application.

• void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t handle)
• unsigned starpu_data_get_default_sequential_consistency_flag (void)
• void starpu_data_set_default_sequential_consistency_flag (unsigned flag)

30.8.1 Detailed Description

Data management facilities provided by StarPU. We show how to use existing data interfaces in Data Interfaces,
but developers can design their own data interfaces if required.

30.8.2 Macro Definition Documentation

30.8.2.1 STARPU_ACQUIRE_NO_NODE

#define STARPU_ACQUIRE_NO_NODE

This macro can be used to acquire data, but not require it to be available on a given node, only enforce R/W
dependencies. This can for instance be used to wait for tasks which produce the data, but without requesting a
fetch to the main memory.

Generated by Doxygen

30.8 Data Management 229

30.8.2.2 STARPU_ACQUIRE_NO_NODE_LOCK_ALL

#define STARPU_ACQUIRE_NO_NODE_LOCK_ALL

Similar to STARPU_ACQUIRE_NO_NODE, but will lock the data on all nodes, preventing them from being evicted
for instance. This is mostly useful inside StarPU only.

30.8.2.3 STARPU_DATA_ACQUIRE_CB

#define STARPU_DATA_ACQUIRE_CB(

handle,

mode,

code)

STARPU_DATA_ACQUIRE_CB() is the same as starpu_data_acquire_cb(), except that the code to be executed in
a callback is directly provided as a macro parameter, and the data handle is automatically released after it. This
permits to easily execute code which depends on the value of some registered data. This is non-blocking too and
may be called from task callbacks.

30.8.3 Typedef Documentation

30.8.3.1 starpu_data_handle_t

typedef struct _starpu_data_state∗ starpu_data_handle_t

StarPU uses starpu_data_handle_t as an opaque handle to manage a piece of data. Once a piece of data has
been registered to StarPU, it is associated to a starpu_data_handle_t which keeps track of the state of the piece of
data over the entire machine, so that we can maintain data consistency and locate data replicates for instance.

30.8.3.2 starpu_arbiter_t

typedef struct starpu_arbiter∗ starpu_arbiter_t

This is an arbiter, which implements an advanced but centralized management of concurrent data accesses, see
Concurrent Data Accesses for the details.

30.8.4 Enumeration Type Documentation

30.8.4.1 starpu_data_access_mode

enum starpu_data_access_mode

Describe a StarPU data access mode
Note: when adding a flag here, update _starpu_detect_implicit_data_deps_with_handle
Note: other STARPU_∗ values in include/starpu_task_util.h

Enumerator

STARPU_NONE todo
STARPU_R read-only mode

STARPU_W write-only mode

STARPU_RW read-write mode. Equivalent to STARPU_R|STARPU_W

Generated by Doxygen

230 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_SCRATCH A temporary buffer is allocated for the task, but StarPU does not enforce
data consistency—i.e. each device has its own buffer, independently from
each other (even for CPUs), and no data transfer is ever performed. This
is useful for temporary variables to avoid allocating/freeing buffers inside
each task. Currently, no behavior is defined concerning the relation with
the STARPU_R and STARPU_W modes and the value provided at
registration — i.e., the value of the scratch buffer is undefined at entry of
the codelet function. It is being considered for future extensions at least to
define the initial value. For now, data to be used in STARPU_SCRATCH
mode should be registered with node -1 and a NULL pointer, since the
value of the provided buffer is simply ignored for now.

STARPU_REDUX todo
STARPU_COMMUTE STARPU_COMMUTE can be passed along STARPU_W or

STARPU_RW to express that StarPU can let tasks commute, which is
useful e.g. when bringing a contribution into some data, which can be
done in any order (but still require sequential consistency against reads
or non-commutative writes).

STARPU_SSEND used in starpu_mpi_insert_task() to specify the data has to be sent using
a synchronous and non-blocking mode (see starpu_mpi_issend())

STARPU_LOCALITY used to tell the scheduler which data is the most important for the task,
and should thus be used to try to group tasks on the same core or cache,
etc. For now only the ws and lws schedulers take this flag into account,
and only when rebuild with USE_LOCALITY flag defined in the
src/sched_policies/work_stealing_policy.c source code.

STARPU_NOPLAN Disable automatic submission of asynchronous partitioning/unpartitioning

STARPU_ACCESS_MODE_MAX The purpose of STARPU_ACCESS_MODE_MAX is to be the maximum
of this enum.

30.8.5 Function Documentation

30.8.5.1 starpu_data_set_name()

void starpu_data_set_name (

starpu_data_handle_t handle,

const char ∗ name)

Set the name of the data, to be shown in various profiling tools.

30.8.5.2 starpu_data_set_coordinates_array()

void starpu_data_set_coordinates_array (

starpu_data_handle_t handle,

unsigned dimensions,

int dims[])

Set the coordinates of the data, to be shown in various profiling tools. dimensions is the size of the dims array.
This can be for instance the tile coordinates within a big matrix.

30.8.5.3 starpu_data_set_coordinates()

void starpu_data_set_coordinates (

starpu_data_handle_t handle,

unsigned dimensions,

...)

Generated by Doxygen

30.8 Data Management 231

Set the coordinates of the data, to be shown in various profiling tools. dimensions is the number of subsequent
int parameters. This can be for instance the tile coordinates within a big matrix.

30.8.5.4 starpu_data_get_coordinates_array()

unsigned starpu_data_get_coordinates_array (

starpu_data_handle_t handle,

unsigned dimensions,

int dims[])

Get the coordinates of the data, as set by a previous call to starpu_data_set_coordinates_array() or starpu_←↩
data_set_coordinates() dimensions is the size of the dims array. This returns the actual number of returned
coordinates.

30.8.5.5 starpu_data_unregister()

void starpu_data_unregister (

starpu_data_handle_t handle)

Unregister a data handle from StarPU. If the data was automatically allocated by StarPU because the home node
was -1, all automatically allocated buffers are freed. Otherwise, a valid copy of the data is put back into the home
node in the buffer that was initially registered. Using a data handle that has been unregistered from StarPU results
in an undefined behaviour. In case we do not need to update the value of the data in the home node, we can use
the function starpu_data_unregister_no_coherency() instead.

30.8.5.6 starpu_data_unregister_no_coherency()

void starpu_data_unregister_no_coherency (

starpu_data_handle_t handle)

Similar to starpu_data_unregister(), except that StarPU does not put back a valid copy into the home node, in the
buffer that was initially registered.

30.8.5.7 starpu_data_unregister_submit()

void starpu_data_unregister_submit (

starpu_data_handle_t handle)

Destroy the data handle once it is no longer needed by any submitted task. No coherency is provided.
This is not safe to call starpu_data_unregister_submit() on a handle that comes from the registration of a non-NULL
application home buffer, since the moment when the unregistration will happen is unknown to the application. Only
calling starpu_shutdown() allows to be sure that the data was really unregistered.

30.8.5.8 starpu_data_invalidate()

void starpu_data_invalidate (

starpu_data_handle_t handle)

Destroy all replicates of the data handle immediately. After data invalidation, the first access to handle must be
performed in STARPU_W mode. Accessing an invalidated data in STARPU_R mode results in undefined behaviour.

30.8.5.9 starpu_data_invalidate_submit()

void starpu_data_invalidate_submit (

starpu_data_handle_t handle)

Submit invalidation of the data handle after completion of previously submitted tasks.

30.8.5.10 starpu_data_advise_as_important()

void starpu_data_advise_as_important (

starpu_data_handle_t handle,

unsigned is_important)

Specify that the data handle can be discarded without impacting the application.

Generated by Doxygen

232 Module Documentation a.k.a StarPU’s API

30.8.5.11 starpu_data_acquire()

int starpu_data_acquire (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode)

The application must call this function prior to accessing registered data from main memory outside tasks. StarPU
ensures that the application will get an up-to-date copy of handle in main memory located where the data was
originally registered, and that all concurrent accesses (e.g. from tasks) will be consistent with the access mode
specified with mode. starpu_data_release() must be called once the application no longer needs to access the
piece of data. Note that implicit data dependencies are also enforced by starpu_data_acquire(), i.e. starpu_←↩
data_acquire() will wait for all tasks scheduled to work on the data, unless they have been disabled explictly by
calling starpu_data_set_default_sequential_consistency_flag() or starpu_data_set_sequential_consistency_flag().
starpu_data_acquire() is a blocking call, so that it cannot be called from tasks or from their callbacks (in that case,
starpu_data_acquire() returns -EDEADLK). Upon successful completion, this function returns 0.

30.8.5.12 starpu_data_acquire_on_node()

int starpu_data_acquire_on_node (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode)

Similar to starpu_data_acquire(), except that the data will be available on the given memory node instead of main
memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used instead
of an explicit node number.

30.8.5.13 starpu_data_acquire_cb()

int starpu_data_acquire_cb (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg)

Asynchronous equivalent of starpu_data_acquire(). When the data specified in handle is available in the access
mode, the callback function is executed. The application may access the requested data during the execution
of callback. The callback function must call starpu_data_release() once the application no longer needs to
access the piece of data. Note that implicit data dependencies are also enforced by starpu_data_acquire_cb() in
case they are not disabled. Contrary to starpu_data_acquire(), this function is non-blocking and may be called from
task callbacks. Upon successful completion, this function returns 0.

30.8.5.14 starpu_data_acquire_on_node_cb()

int starpu_data_acquire_on_node_cb (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_data_acquire_cb(), except that the data will be available on the given memory node instead of
main memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used
instead of an explicit node number.

30.8.5.15 starpu_data_acquire_cb_sequential_consistency()

int starpu_data_acquire_cb_sequential_consistency (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Generated by Doxygen

30.8 Data Management 233

Similar to starpu_data_acquire_cb() with the possibility of enabling or disabling data dependencies. When the
data specified in handle is available in the access mode, the callback function is executed. The applica-
tion may access the requested data during the execution of this callback. The callback function must call
starpu_data_release() once the application no longer needs to access the piece of data. Note that implicit data de-
pendencies are also enforced by starpu_data_acquire_cb_sequential_consistency() in case they are not disabled
specifically for the given handle or by the parameter sequential_consistency. Similarly to starpu_data←↩
_acquire_cb(), this function is non-blocking and may be called from task callbacks. Upon successful completion,
this function returns 0.

30.8.5.16 starpu_data_acquire_on_node_cb_sequential_consistency()

int starpu_data_acquire_on_node_cb_sequential_consistency (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Similar to starpu_data_acquire_cb_sequential_consistency(), except that the data will be available on the given
memory node instead of main memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE←↩
_LOCK_ALL can be used instead of an explicit node number.

30.8.5.17 starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids()

int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency,

int quick,

long ∗ pre_sync_jobid,

long ∗ post_sync_jobid)

Similar to starpu_data_acquire_on_node_cb_sequential_consistency(), except that the pre_sync_jobid and post←↩
_sync_jobid parameters can be used to retrieve the jobid of the synchronization tasks. pre_sync_jobid happens just
before the acquisition, and post_sync_jobid happens just after the release.

30.8.5.18 starpu_data_acquire_try()

int starpu_data_acquire_try (

starpu_data_handle_t handle,

enum starpu_data_access_mode mode)

The application can call this function instead of starpu_data_acquire() so as to acquire the data like starpu_data_←↩
acquire(), but only if all previously-submitted tasks have completed, in which case starpu_data_acquire_try() returns
0. StarPU will have ensured that the application will get an up-to-date copy of handle in main memory located
where the data was originally registered. starpu_data_release() must be called once the application no longer
needs to access the piece of data.

30.8.5.19 starpu_data_acquire_on_node_try()

int starpu_data_acquire_on_node_try (

starpu_data_handle_t handle,

int node,

enum starpu_data_access_mode mode)

Similar to starpu_data_acquire_try(), except that the data will be available on the given memory node instead of
main memory. STARPU_ACQUIRE_NO_NODE and STARPU_ACQUIRE_NO_NODE_LOCK_ALL can be used
instead of an explicit node number.

Generated by Doxygen

234 Module Documentation a.k.a StarPU’s API

30.8.5.20 starpu_data_release()

void starpu_data_release (

starpu_data_handle_t handle)

Release the piece of data acquired by the application either by starpu_data_acquire() or by starpu_data_acquire←↩
_cb().

30.8.5.21 starpu_data_release_on_node()

void starpu_data_release_on_node (

starpu_data_handle_t handle,

int node)

Similar to starpu_data_release(), except that the data will be available on the given memory node instead of main
memory. The node parameter must be exactly the same as the corresponding starpu_data_acquire_on←↩
_node∗ call.

30.8.5.22 starpu_arbiter_create()

starpu_arbiter_t starpu_arbiter_create (

void)

Create a data access arbiter, see Concurrent Data Accesses for the details

30.8.5.23 starpu_data_assign_arbiter()

void starpu_data_assign_arbiter (

starpu_data_handle_t handle,

starpu_arbiter_t arbiter)

Make access to handle managed by arbiter

30.8.5.24 starpu_arbiter_destroy()

void starpu_arbiter_destroy (

starpu_arbiter_t arbiter)

Destroy the arbiter . This must only be called after all data assigned to it have been unregistered.

30.8.5.25 starpu_data_request_allocation()

int starpu_data_request_allocation (

starpu_data_handle_t handle,

unsigned node)

Explicitly ask StarPU to allocate room for a piece of data on the specified memory node.

30.8.5.26 starpu_data_fetch_on_node()

int starpu_data_fetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Issue a fetch request for the data handle to node, i.e. requests that the data be replicated to the given node
as soon as possible, so that it is available there for tasks. If async is 0, the call will block until the transfer is
achieved, else the call will return immediately, after having just queued the request. In the latter case, the request
will asynchronously wait for the completion of any task writing on the data.

30.8.5.27 starpu_data_prefetch_on_node()

int starpu_data_prefetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Generated by Doxygen

30.8 Data Management 235

Issue a prefetch request for the data handle to node, i.e. requests that the data be replicated to node when
there is room for it, so that it is available there for tasks. If async is 0, the call will block until the transfer is
achieved, else the call will return immediately, after having just queued the request. In the latter case, the request
will asynchronously wait for the completion of any task writing on the data.

30.8.5.28 starpu_data_idle_prefetch_on_node()

int starpu_data_idle_prefetch_on_node (

starpu_data_handle_t handle,

unsigned node,

unsigned async)

Issue an idle prefetch request for the data handle to node, i.e. requests that the data be replicated to node,
so that it is available there for tasks, but only when the bus is really idle. If async is 0, the call will block until the
transfer is achieved, else the call will return immediately, after having just queued the request. In the latter case, the
request will asynchronously wait for the completion of any task writing on the data.

30.8.5.29 starpu_data_is_on_node()

unsigned starpu_data_is_on_node (

starpu_data_handle_t handle,

unsigned node)

Check whether a valid copy of handle is currently available on memory node node.

30.8.5.30 starpu_data_wont_use()

void starpu_data_wont_use (

starpu_data_handle_t handle)

Advise StarPU that handle will not be used in the close future, and is thus a good candidate for eviction from
GPUs. StarPU will thus write its value back to its home node when the bus is idle, and select this data in priority for
eviction when memory gets low.

30.8.5.31 starpu_data_set_wt_mask()

void starpu_data_set_wt_mask (

starpu_data_handle_t handle,

uint32_t wt_mask)

Set the write-through mask of the data handle (and its children), i.e. a bitmask of nodes where the data should be
always replicated after modification. It also prevents the data from being evicted from these nodes when memory
gets scarse. When the data is modified, it is automatically transfered into those memory nodes. For instance a
1<<0 write-through mask means that the CUDA workers will commit their changes in main memory (node 0).

30.8.5.32 starpu_data_set_sequential_consistency_flag()

void starpu_data_set_sequential_consistency_flag (

starpu_data_handle_t handle,

unsigned flag)

Set the data consistency mode associated to a data handle. The consistency mode set using this function has the
priority over the default mode which can be set with starpu_data_set_default_sequential_consistency_flag().

30.8.5.33 starpu_data_get_sequential_consistency_flag()

unsigned starpu_data_get_sequential_consistency_flag (

starpu_data_handle_t handle)

Get the data consistency mode associated to the data handle handle

30.8.5.34 starpu_data_get_default_sequential_consistency_flag()

unsigned starpu_data_get_default_sequential_consistency_flag (

void)

Return the default sequential consistency flag

Generated by Doxygen

236 Module Documentation a.k.a StarPU’s API

30.8.5.35 starpu_data_set_default_sequential_consistency_flag()

void starpu_data_set_default_sequential_consistency_flag (

unsigned flag)

Set the default sequential consistency flag. If a non-zero value is passed, a sequential data consistency will be
enforced for all handles registered after this function call, otherwise it is disabled. By default, StarPU enables
sequential data consistency. It is also possible to select the data consistency mode of a specific data handle with
the function starpu_data_set_sequential_consistency_flag().

30.8.5.36 starpu_data_set_ooc_flag()

void starpu_data_set_ooc_flag (

starpu_data_handle_t handle,

unsigned flag)

Set whether this data should be elligible to be evicted to disk storage (1) or not (0). The default is 1.

30.8.5.37 starpu_data_get_ooc_flag()

unsigned starpu_data_get_ooc_flag (

starpu_data_handle_t handle)

Get whether this data was set to be elligible to be evicted to disk storage (1) or not (0).

30.8.5.38 starpu_data_query_status()

void starpu_data_query_status (

starpu_data_handle_t handle,

int memory_node,

int ∗ is_allocated,

int ∗ is_valid,

int ∗ is_requested)

Query the status of handle on the specified memory_node.

30.8.5.39 starpu_data_set_reduction_methods()

void starpu_data_set_reduction_methods (

starpu_data_handle_t handle,

struct starpu_codelet ∗ redux_cl,

struct starpu_codelet ∗ init_cl)

Set the codelets to be used for handle when it is accessed in the mode STARPU_REDUX. Per-worker buffers will
be initialized with the codelet init_cl, and reduction between per-worker buffers will be done with the codelet
redux_cl.

30.8.5.40 starpu_data_set_user_data()

void starpu_data_set_user_data (

starpu_data_handle_t handle,

void ∗ user_data)

Set the field user_data for the handle to user_data . It can then be retrieved with starpu_data_get_user←↩
_data(). user_data can be any application-defined value, for instance a pointer to an object-oriented container
for the data.

30.8.5.41 starpu_data_get_user_data()

void∗ starpu_data_get_user_data (

starpu_data_handle_t handle)

Retrieve the field user_data previously set for the handle.

Generated by Doxygen

30.9 Data Interfaces 237

30.9 Data Interfaces

Data management is done at a high-level in StarPU: rather than accessing a mere list of contiguous buffers, the
tasks may manipulate data that are described by a high-level construct which we call data interface.

Data Structures

• struct starpu_data_copy_methods
• struct starpu_data_interface_ops
• struct starpu_matrix_interface
• struct starpu_coo_interface
• struct starpu_block_interface
• struct starpu_vector_interface
• struct starpu_variable_interface
• struct starpu_csr_interface
• struct starpu_bcsr_interface
• struct starpu_multiformat_data_interface_ops
• struct starpu_multiformat_interface

Enumerations

• enum starpu_data_interface_id {
STARPU_UNKNOWN_INTERFACE_ID, STARPU_MATRIX_INTERFACE_ID, STARPU_BLOCK_INTER←↩
FACE_ID, STARPU_VECTOR_INTERFACE_ID,
STARPU_CSR_INTERFACE_ID, STARPU_BCSR_INTERFACE_ID, STARPU_VARIABLE_INTERFACE←↩
_ID, STARPU_VOID_INTERFACE_ID,
STARPU_MULTIFORMAT_INTERFACE_ID, STARPU_COO_INTERFACE_ID, STARPU_MAX_INTERF←↩
ACE_ID }

Basic API

• void starpu_data_register (starpu_data_handle_t ∗handleptr, int home_node, void ∗data_interface, struct
starpu_data_interface_ops ∗ops)

• void starpu_data_ptr_register (starpu_data_handle_t handle, unsigned node)
• void starpu_data_register_same (starpu_data_handle_t ∗handledst, starpu_data_handle_t handlesrc)
• void ∗ starpu_data_handle_to_pointer (starpu_data_handle_t handle, unsigned node)
• int starpu_data_pointer_is_inside (starpu_data_handle_t handle, unsigned node, void ∗ptr)
• void ∗ starpu_data_get_local_ptr (starpu_data_handle_t handle)
• void ∗ starpu_data_get_interface_on_node (starpu_data_handle_t handle, unsigned memory_node)
• enum starpu_data_interface_id starpu_data_get_interface_id (starpu_data_handle_t handle)
• int starpu_data_pack (starpu_data_handle_t handle, void ∗∗ptr, starpu_ssize_t ∗count)
• int starpu_data_unpack (starpu_data_handle_t handle, void ∗ptr, size_t count)
• size_t starpu_data_get_size (starpu_data_handle_t handle)
• size_t starpu_data_get_alloc_size (starpu_data_handle_t handle)
• starpu_data_handle_t starpu_data_lookup (const void ∗ptr)
• int starpu_data_get_home_node (starpu_data_handle_t handle)
• int starpu_data_interface_get_next_id (void)
• int starpu_interface_copy (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_offset,

unsigned dst_node, size_t size, void ∗async_data)
• int starpu_interface_copy2d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, void ∗async_data)
• int starpu_interface_copy3d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, void ∗async_data)

• int starpu_interface_copy4d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩
offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, size_t numblocks3, size_t ld3_src, size_t ld3_dst, void ∗async_data)

Generated by Doxygen

238 Module Documentation a.k.a StarPU’s API

• void starpu_interface_start_driver_copy_async (unsigned src_node, unsigned dst_node, double ∗start)
• void starpu_interface_end_driver_copy_async (unsigned src_node, unsigned dst_node, double start)
• void starpu_interface_data_copy (unsigned src_node, unsigned dst_node, size_t size)
• uintptr_t starpu_malloc_on_node_flags (unsigned dst_node, size_t size, int flags)
• uintptr_t starpu_malloc_on_node (unsigned dst_node, size_t size)
• void starpu_free_on_node_flags (unsigned dst_node, uintptr_t addr, size_t size, int flags)
• void starpu_free_on_node (unsigned dst_node, uintptr_t addr, size_t size)
• void starpu_malloc_on_node_set_default_flags (unsigned node, int flags)

Accessing Matrix Data Interfaces

• struct starpu_data_interface_ops starpu_interface_matrix_ops
• void starpu_matrix_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ld,

uint32_t nx, uint32_t ny, size_t elemsize)
• void starpu_matrix_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t ld, uint32_t nx, uint32_t ny, size_t elemsize, size_t allocsize)
• void starpu_matrix_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ld)
• uint32_t starpu_matrix_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t handle)
• uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_matrix_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_matrix_get_allocsize (starpu_data_handle_t handle)
• #define STARPU_MATRIX_GET_PTR(interface)
• #define STARPU_MATRIX_GET_DEV_HANDLE(interface)
• #define STARPU_MATRIX_GET_OFFSET(interface)
• #define STARPU_MATRIX_GET_NX(interface)
• #define STARPU_MATRIX_GET_NY(interface)
• #define STARPU_MATRIX_GET_LD(interface)
• #define STARPU_MATRIX_GET_ELEMSIZE(interface)
• #define STARPU_MATRIX_GET_ALLOCSIZE(interface)
• #define STARPU_MATRIX_SET_NX(interface, newnx)
• #define STARPU_MATRIX_SET_NY(interface, newny)
• #define STARPU_MATRIX_SET_LD(interface, newld)

Accessing COO Data Interfaces

• struct starpu_data_interface_ops starpu_interface_coo_ops
• void starpu_coo_data_register (starpu_data_handle_t ∗handleptr, int home_node, uint32_t nx, uint32_t ny,

uint32_t n_values, uint32_t ∗columns, uint32_t ∗rows, uintptr_t values, size_t elemsize)
• #define STARPU_COO_GET_COLUMNS(interface)
• #define STARPU_COO_GET_COLUMNS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_ROWS(interface)
• #define STARPU_COO_GET_ROWS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_VALUES(interface)
• #define STARPU_COO_GET_VALUES_DEV_HANDLE(interface)
• #define STARPU_COO_GET_OFFSET
• #define STARPU_COO_GET_NX(interface)
• #define STARPU_COO_GET_NY(interface)
• #define STARPU_COO_GET_NVALUES(interface)
• #define STARPU_COO_GET_ELEMSIZE(interface)

Generated by Doxygen

30.9 Data Interfaces 239

Block Data Interface

• struct starpu_data_interface_ops starpu_interface_block_ops
• void starpu_block_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,

uint32_t ldz, uint32_t nx, uint32_t ny, uint32_t nz, size_t elemsize)
• void starpu_block_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz)
• uint32_t starpu_block_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_block_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_block_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldz (starpu_data_handle_t handle)
• uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_block_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_BLOCK_GET_PTR(interface)
• #define STARPU_BLOCK_GET_DEV_HANDLE(interface)
• #define STARPU_BLOCK_GET_OFFSET(interface)
• #define STARPU_BLOCK_GET_NX(interface)
• #define STARPU_BLOCK_GET_NY(interface)
• #define STARPU_BLOCK_GET_NZ(interface)
• #define STARPU_BLOCK_GET_LDY(interface)
• #define STARPU_BLOCK_GET_LDZ(interface)
• #define STARPU_BLOCK_GET_ELEMSIZE(interface)

Vector Data Interface

• struct starpu_data_interface_ops starpu_interface_vector_ops
• void starpu_vector_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t nx,

size_t elemsize)
• void starpu_vector_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t nx, size_t elemsize, size_t allocsize)
• void starpu_vector_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset)
• uint32_t starpu_vector_get_nx (starpu_data_handle_t handle)
• size_t starpu_vector_get_elemsize (starpu_data_handle_t handle)
• size_t starpu_vector_get_allocsize (starpu_data_handle_t handle)
• uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t handle)
• #define STARPU_VECTOR_GET_PTR(interface)
• #define STARPU_VECTOR_GET_DEV_HANDLE(interface)
• #define STARPU_VECTOR_GET_OFFSET(interface)
• #define STARPU_VECTOR_GET_NX(interface)
• #define STARPU_VECTOR_GET_ELEMSIZE(interface)
• #define STARPU_VECTOR_GET_ALLOCSIZE(interface)
• #define STARPU_VECTOR_GET_SLICE_BASE(interface)
• #define STARPU_VECTOR_SET_NX(interface, newnx)

Variable Data Interface

• struct starpu_data_interface_ops starpu_interface_variable_ops
• void starpu_variable_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, size_t size)
• void starpu_variable_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev←↩

_handle, size_t offset)
• size_t starpu_variable_get_elemsize (starpu_data_handle_t handle)
• uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t handle)
• #define STARPU_VARIABLE_GET_PTR(interface)
• #define STARPU_VARIABLE_GET_OFFSET(interface)
• #define STARPU_VARIABLE_GET_ELEMSIZE(interface)
• #define STARPU_VARIABLE_GET_DEV_HANDLE(interface)

Generated by Doxygen

240 Module Documentation a.k.a StarPU’s API

Void Data Interface

• struct starpu_data_interface_ops starpu_interface_void_ops
• void starpu_void_data_register (starpu_data_handle_t ∗handle)

CSR Data Interface

• struct starpu_data_interface_ops starpu_interface_csr_ops
• void starpu_csr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, size_t elemsize)
• uint32_t starpu_csr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_csr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_csr_get_local_rowptr (starpu_data_handle_t handle)
• size_t starpu_csr_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_CSR_GET_NNZ(interface)
• #define STARPU_CSR_GET_NROW(interface)
• #define STARPU_CSR_GET_NZVAL(interface)
• #define STARPU_CSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_COLIND(interface)
• #define STARPU_CSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_ROWPTR(interface)
• #define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_CSR_GET_OFFSET
• #define STARPU_CSR_GET_FIRSTENTRY(interface)
• #define STARPU_CSR_GET_ELEMSIZE(interface)

BCSR Data Interface

• struct starpu_data_interface_ops starpu_interface_bcsr_ops
• void starpu_bcsr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize)
• uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_rowptr (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_r (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_c (starpu_data_handle_t handle)
• size_t starpu_bcsr_get_elemsize (starpu_data_handle_t handle)
• #define STARPU_BCSR_GET_NNZ(interface)
• #define STARPU_BCSR_GET_NROW(interface)
• #define STARPU_BCSR_GET_NZVAL(interface)
• #define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_COLIND(interface)
• #define STARPU_BCSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_ROWPTR(interface)
• #define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_FIRSTENTRY(interface)
• #define STARPU_BCSR_GET_R(interface)
• #define STARPU_BCSR_GET_C(interface)
• #define STARPU_BCSR_GET_ELEMSIZE(interface)
• #define STARPU_BCSR_GET_OFFSET

Generated by Doxygen

30.9 Data Interfaces 241

Multiformat Data Interface

• void starpu_multiformat_data_register (starpu_data_handle_t ∗handle, int home_node, void ∗ptr, uint32_t
nobjects, struct starpu_multiformat_data_interface_ops ∗format_ops)

• #define STARPU_MULTIFORMAT_GET_CPU_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_CUDA_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_OPENCL_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_MIC_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_NX(interface)

• uint32_t starpu_hash_crc32c_be_n (const void ∗input, size_t n, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_be (uint32_t input, uint32_t inputcrc)
• uint32_t starpu_hash_crc32c_string (const char ∗str, uint32_t inputcrc)

30.9.1 Detailed Description

Data management is done at a high-level in StarPU: rather than accessing a mere list of contiguous buffers, the
tasks may manipulate data that are described by a high-level construct which we call data interface.
An example of data interface is the "vector" interface which describes a contiguous data array on a spefic memory
node. This interface is a simple structure containing the number of elements in the array, the size of the elements,
and the address of the array in the appropriate address space (this address may be invalid if there is no valid copy
of the array in the memory node). More informations on the data interfaces provided by StarPU are given in Data
Interfaces.
When a piece of data managed by StarPU is used by a task, the task implementation is given a pointer to an
interface describing a valid copy of the data that is accessible from the current processing unit.
Every worker is associated to a memory node which is a logical abstraction of the address space from which the
processing unit gets its data. For instance, the memory node associated to the different CPU workers represents
main memory (RAM), the memory node associated to a GPU is DRAM embedded on the device. Every memory
node is identified by a logical index which is accessible from the function starpu_worker_get_memory_node(). When
registering a piece of data to StarPU, the specified memory node indicates where the piece of data initially resides
(we also call this memory node the home node of a piece of data).
In the case of NUMA systems, functions starpu_memory_nodes_numa_devid_to_id() and starpu_memory_nodes←↩
_numa_id_to_devid() can be used to convert from NUMA node numbers as seen by the Operating System and
NUMA node numbers as seen by StarPU.
There are several ways to register a memory region so that it can be managed by StarPU. StarPU provides data
interfaces for vectors, 2D matrices, 3D matrices as well as BCSR and CSR sparse matrices.
Each data interface is provided with a set of field access functions. The ones using a void ∗ parameter aimed to
be used in codelet implementations (see for example the code in Vector Scaling).
Applications can provide their own interface as shown in Defining A New Data Interface.

30.9.2 Data Structure Documentation

30.9.2.1 struct starpu_data_copy_methods

Define the per-interface methods. If the starpu_data_copy_methods::any_to_any method is provided, it will be used
by default if no specific method is provided. It can still be useful to provide more specific method in case of e.g.
available particular CUDA or OpenCL support.

Data Fields

• int(∗ can_copy)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, unsigned
handling_node)

• int(∗ ram_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_cuda)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_opencl)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_mic)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ cuda_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ cuda_to_cuda)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ cuda_to_opencl)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)

Generated by Doxygen

242 Module Documentation a.k.a StarPU’s API

• int(∗ opencl_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ opencl_to_cuda)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ opencl_to_opencl)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ mic_to_ram)(void ∗src_interface, unsigned srd_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_mpi_ms)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ mpi_ms_to_ram)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ mpi_ms_to_mpi_ms)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ ram_to_cuda_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ cuda_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ cuda_to_cuda_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node,

starpu_cudaStream_t stream)
• int(∗ ram_to_opencl_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, cl_event ∗event)
• int(∗ opencl_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, cl_event ∗event)
• int(∗ opencl_to_opencl_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst←↩

_node, cl_event ∗event)
• int(∗ ram_to_mpi_ms_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, void ∗event)
• int(∗ mpi_ms_to_ram_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_←↩

node, void ∗event)
• int(∗ mpi_ms_to_mpi_ms_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned

dst_node, void ∗event)
• int(∗ ram_to_mic_async)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node)
• int(∗ mic_to_ram_async)(void ∗src_interface, unsigned srd_node, void ∗dst_interface, unsigned dst_node)
• int(∗ any_to_any)(void ∗src_interface, unsigned src_node, void ∗dst_interface, unsigned dst_node, void
∗async_data)

30.9.2.1.1 Field Documentation

30.9.2.1.1.1 can_copy

int(∗ starpu_data_copy_methods::can_copy) (void ∗src_interface, unsigned src_node, void ∗dst_←↩
interface, unsigned dst_node, unsigned handling_node)

If defined, allow the interface to declare whether it supports transferring from src_interface on node src_←↩
node to dst_interface on node dst_node, run from node handling_node. If not defined, it is assumed
that the interface supports all transfers.

30.9.2.1.1.2 ram_to_ram

int(∗ starpu_data_copy_methods::ram_to_ram) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node CPU node. Return 0 on success.

30.9.2.1.1.3 ram_to_cuda

int(∗ starpu_data_copy_methods::ram_to_cuda) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node CUDA node. Return 0 on success.

30.9.2.1.1.4 ram_to_opencl

int(∗ starpu_data_copy_methods::ram_to_opencl) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node OpenCL node. Return 0 on success.

Generated by Doxygen

30.9 Data Interfaces 243

30.9.2.1.1.5 ram_to_mic

int(∗ starpu_data_copy_methods::ram_to_mic) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node MIC node. Return 0 on success.

30.9.2.1.1.6 cuda_to_ram

int(∗ starpu_data_copy_methods::cuda_to_ram) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩
interface interface on the dst_node CPU node. Return 0 on success.

30.9.2.1.1.7 cuda_to_cuda

int(∗ starpu_data_copy_methods::cuda_to_cuda) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩
interface interface on the dst_node CUDA node. Return 0 on success.

30.9.2.1.1.8 cuda_to_opencl

int(∗ starpu_data_copy_methods::cuda_to_opencl) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩
interface interface on the dst_node OpenCL node. Return 0 on success.

30.9.2.1.1.9 opencl_to_ram

int(∗ starpu_data_copy_methods::opencl_to_ram) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩
interface interface on the dst_node CPU node. Return 0 on success.

30.9.2.1.1.10 opencl_to_cuda

int(∗ starpu_data_copy_methods::opencl_to_cuda) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩
interface interface on the dst_node CUDA node. Return 0 on success.

30.9.2.1.1.11 opencl_to_opencl

int(∗ starpu_data_copy_methods::opencl_to_opencl) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩
interface interface on the dst_node OpenCL node. Return 0 on success.

30.9.2.1.1.12 mic_to_ram

int(∗ starpu_data_copy_methods::mic_to_ram) (void ∗src_interface, unsigned srd_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node MIC node to the dst_←↩
interface interface on the dst_node CPU node. Return 0 on success.

30.9.2.1.1.13 ram_to_mpi_ms

int(∗ starpu_data_copy_methods::ram_to_mpi_ms) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node MPI Slave node. Return 0 on success.

30.9.2.1.1.14 mpi_ms_to_ram

int(∗ starpu_data_copy_methods::mpi_ms_to_ram) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node MPI Slave node to the dst_←↩
interface interface on the dst_node CPU node. Return 0 on success.

Generated by Doxygen

244 Module Documentation a.k.a StarPU’s API

30.9.2.1.1.15 mpi_ms_to_mpi_ms

int(∗ starpu_data_copy_methods::mpi_ms_to_mpi_ms) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node MPI Slave node to the dst_←↩
interface interface on the dst_node MPI Slave node. Return 0 on success.

30.9.2.1.1.16 ram_to_cuda_async

int(∗ starpu_data_copy_methods::ram_to_cuda_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, starpu_cudaStream_t stream)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node CUDA node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.17 cuda_to_ram_async

int(∗ starpu_data_copy_methods::cuda_to_ram_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, starpu_cudaStream_t stream)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩
interface interface on the dst_node CPU node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.18 cuda_to_cuda_async

int(∗ starpu_data_copy_methods::cuda_to_cuda_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, starpu_cudaStream_t stream)

Define how to copy data from the src_interface interface on the src_node CUDA node to the dst_←↩
interface interface on the dst_node CUDA node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.19 ram_to_opencl_async

int(∗ starpu_data_copy_methods::ram_to_opencl_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, cl_event ∗event)
Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node OpenCL node, by recording in event, a pointer to a cl_event, the
event of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously,
or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

30.9.2.1.1.20 opencl_to_ram_async

int(∗ starpu_data_copy_methods::opencl_to_ram_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, cl_event ∗event)
Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩
interface interface on the dst_node CPU node, by recording in event, a pointer to a cl_event, the event
of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously, or
-EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

30.9.2.1.1.21 opencl_to_opencl_async

int(∗ starpu_data_copy_methods::opencl_to_opencl_async) (void ∗src_interface, unsigned src_←↩

node, void ∗dst_interface, unsigned dst_node, cl_event ∗event)
Define how to copy data from the src_interface interface on the src_node OpenCL node to the dst_←↩
interface interface on the dst_node OpenCL node, by recording in event, a pointer to a cl_event, the
event of the last submitted transfer. Must return 0 if the transfer was actually completed completely synchronously,
or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the core.

30.9.2.1.1.22 ram_to_mpi_ms_async

int(∗ starpu_data_copy_methods::ram_to_mpi_ms_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, void ∗event)
Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node MPI Slave node, with the given even. Must return 0 if the transfer was

Generated by Doxygen

30.9 Data Interfaces 245

actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.23 mpi_ms_to_ram_async

int(∗ starpu_data_copy_methods::mpi_ms_to_ram_async) (void ∗src_interface, unsigned src_node,

void ∗dst_interface, unsigned dst_node, void ∗event)
Define how to copy data from the src_interface interface on the src_node MPI Slave node to the dst←↩
_interface interface on the dst_node CPU node, with the given event. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.24 mpi_ms_to_mpi_ms_async

int(∗ starpu_data_copy_methods::mpi_ms_to_mpi_ms_async) (void ∗src_interface, unsigned src_←↩

node, void ∗dst_interface, unsigned dst_node, void ∗event)
Define how to copy data from the src_interface interface on the src_node MPI Slave node to the dst_←↩
interface interface on the dst_node MPI Slave node, using the given stream. Must return 0 if the transfer was
actually completed completely synchronously, or -EAGAIN if at least some transfers are still ongoing and should
be awaited for by the core.

30.9.2.1.1.25 ram_to_mic_async

int(∗ starpu_data_copy_methods::ram_to_mic_async) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node CPU node to the dst_←↩
interface interface on the dst_node MIC node. Must return 0 if the transfer was actually completed com-
pletely synchronously, or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the
core.

30.9.2.1.1.26 mic_to_ram_async

int(∗ starpu_data_copy_methods::mic_to_ram_async) (void ∗src_interface, unsigned srd_node, void

∗dst_interface, unsigned dst_node)

Define how to copy data from the src_interface interface on the src_node MIC node to the dst_←↩
interface interface on the dst_node CPU node. Must return 0 if the transfer was actually completed com-
pletely synchronously, or -EAGAIN if at least some transfers are still ongoing and should be awaited for by the
core.

30.9.2.1.1.27 any_to_any

int(∗ starpu_data_copy_methods::any_to_any) (void ∗src_interface, unsigned src_node, void

∗dst_interface, unsigned dst_node, void ∗async_data)
Define how to copy data from the src_interface interface on the src_node node to the dst_interface
interface on the dst_node node. This is meant to be implemented through the starpu_interface_copy() helper, to
which async_data should be passed as such, and will be used to manage asynchronicity. This must return -EAG←↩
AIN if any of the starpu_interface_copy() calls has returned -EAGAIN (i.e. at least some transfer is still ongoing),
and return 0 otherwise.
This can only be implemented if the interface has ready-to-send data blocks. If the interface is more involved than
this, i.e. it needs to collect pieces of data before transferring, starpu_data_interface_ops::pack_data and starpu_←↩
data_interface_ops::unpack_data should be implemented instead, and the core will just transfer the resulting data
buffer.

30.9.2.2 struct starpu_data_interface_ops

Per-interface data management methods.

Data Fields

• void(∗ register_data_handle)(starpu_data_handle_t handle, unsigned home_node, void ∗data_interface)

• void(∗ unregister_data_handle)(starpu_data_handle_t handle)

• starpu_ssize_t(∗ allocate_data_on_node)(void ∗data_interface, unsigned node)

• void(∗ free_data_on_node)(void ∗data_interface, unsigned node)

• void(∗ init)(void ∗data_interface)

Generated by Doxygen

246 Module Documentation a.k.a StarPU’s API

• const struct starpu_data_copy_methods ∗ copy_methods
• void ∗(∗ handle_to_pointer)(starpu_data_handle_t handle, unsigned node)
• void ∗(∗ to_pointer)(void ∗data_interface, unsigned node)
• int(∗ pointer_is_inside)(void ∗data_interface, unsigned node, void ∗ptr)
• size_t(∗ get_size)(starpu_data_handle_t handle)
• size_t(∗ get_alloc_size)(starpu_data_handle_t handle)
• uint32_t(∗ footprint)(starpu_data_handle_t handle)
• uint32_t(∗ alloc_footprint)(starpu_data_handle_t handle)
• int(∗ compare)(void ∗data_interface_a, void ∗data_interface_b)
• int(∗ alloc_compare)(void ∗data_interface_a, void ∗data_interface_b)
• void(∗ display)(starpu_data_handle_t handle, FILE ∗f)
• starpu_ssize_t(∗ describe)(void ∗data_interface, char ∗buf, size_t size)
• enum starpu_data_interface_id interfaceid
• size_t interface_size
• char is_multiformat
• char dontcache
• struct starpu_multiformat_data_interface_ops ∗(∗ get_mf_ops)(void ∗data_interface)
• int(∗ pack_data)(starpu_data_handle_t handle, unsigned node, void ∗∗ptr, starpu_ssize_t ∗count)
• int(∗ unpack_data)(starpu_data_handle_t handle, unsigned node, void ∗ptr, size_t count)
• char ∗ name

30.9.2.2.1 Field Documentation

30.9.2.2.1.1 register_data_handle

void(∗ starpu_data_interface_ops::register_data_handle) (starpu_data_handle_t handle, unsigned

home_node, void ∗data_interface)
Register an existing interface into a data handle.
This iterates over all memory nodes to initialize all fields of the data interface on each of them. Since data is not
allocated yet except on the home node, pointers should be left as NULL except on the home_node, for which the
pointers should be copied from the given data_interface, which was filled with the application's pointers.
This method is mandatory.

30.9.2.2.1.2 unregister_data_handle

void(∗ starpu_data_interface_ops::unregister_data_handle) (starpu_data_handle_t handle)

Unregister a data handle.
This iterates over all memory nodes to free any pointer in the data interface on each of them.
At this point, free_data_on_node has been already called on each of them. This just clears anything that would still
be left.

30.9.2.2.1.3 allocate_data_on_node

starpu_ssize_t(∗ starpu_data_interface_ops::allocate_data_on_node) (void ∗data_interface,
unsigned node)

Allocate data for the interface on a given node. This should use starpu_malloc_on_node() to perform the alloca-
tion(s), and fill the pointers in the data interface. It should return the size of the allocated memory, or -ENOMEM if
memory could not be allocated.
Note that the memory node can be CPU memory, GPU memory, or even disk area. The result returned by starpu←↩
_malloc_on_node() should be just stored as uintptr_t without trying to interpret it since it may be a GPU pointer, a
disk descriptor, etc.
This method is mandatory to be able to support memory nodes.

30.9.2.2.1.4 free_data_on_node

void(∗ starpu_data_interface_ops::free_data_on_node) (void ∗data_interface, unsigned node)

Free data of the interface on a given node.
This method is mandatory to be able to support memory nodes.

30.9.2.2.1.5 init

void(∗ starpu_data_interface_ops::init) (void ∗data_interface)
Initialize the interface. This method is optional. It is called when initializing the handler on all the memory nodes.

Generated by Doxygen

30.9 Data Interfaces 247

30.9.2.2.1.6 copy_methods

const struct starpu_data_copy_methods∗ starpu_data_interface_ops::copy_methods

Struct with pointer to functions for performing ram/cuda/opencl synchronous and asynchronous transfers.
This field is mandatory to be able to support memory nodes, except disk nodes which can be supported by just
implementing starpu_data_interface_ops::pack_data and starpu_data_interface_ops::unpack_data.

30.9.2.2.1.7 handle_to_pointer

void∗(∗ starpu_data_interface_ops::handle_to_pointer) (starpu_data_handle_t handle, unsigned

node)

Deprecated Use starpu_data_interface_ops::to_pointer instead. Return the current pointer (if any) for the handle
on the given node.

This method is only required if starpu_data_interface_ops::to_pointer is not implemented.

30.9.2.2.1.8 to_pointer

void∗(∗ starpu_data_interface_ops::to_pointer) (void ∗data_interface, unsigned node)

Return the current pointer (if any) for the given interface on the given node.
This method is only required for starpu_data_handle_to_pointer() and starpu_data_get_local_ptr(), and for disk
support.

30.9.2.2.1.9 pointer_is_inside

int(∗ starpu_data_interface_ops::pointer_is_inside) (void ∗data_interface, unsigned node, void

∗ptr)
Return whether the given ptr is within the data for the given interface on the given node. This method is optional,
as it is only used for coherency checks.

30.9.2.2.1.10 get_size

size_t(∗ starpu_data_interface_ops::get_size) (starpu_data_handle_t handle)

Return an estimation of the size of data, for performance models and tracing feedback.

30.9.2.2.1.11 get_alloc_size

size_t(∗ starpu_data_interface_ops::get_alloc_size) (starpu_data_handle_t handle)

Return an estimation of the size of allocated data, for allocation management. If not specified, the starpu_data_←↩
interface_ops::get_size method is used instead.

30.9.2.2.1.12 footprint

uint32_t(∗ starpu_data_interface_ops::footprint) (starpu_data_handle_t handle)

Return a 32bit footprint which characterizes the data size and layout (nx, ny, ld, elemsize, etc.), required for indexing
performance models.
starpu_hash_crc32c_be() and alike can be used to produce this 32bit value from various types of values.

30.9.2.2.1.13 alloc_footprint

uint32_t(∗ starpu_data_interface_ops::alloc_footprint) (starpu_data_handle_t handle)

Return a 32bit footprint which characterizes the data allocation, to be used for indexing allocation cache. If not
specified, the starpu_data_interface_ops::footprint method is used instead.

30.9.2.2.1.14 compare

int(∗ starpu_data_interface_ops::compare) (void ∗data_interface_a, void ∗data_interface_b)
Compare the data size and layout of two interfaces (nx, ny, ld, elemsize, etc.), to be used for indexing performance
models. It should return 1 if the two interfaces size and layout match computation-wise, and 0 otherwise. It does
∗not∗ compare the actual content of the interfaces.

30.9.2.2.1.15 alloc_compare

int(∗ starpu_data_interface_ops::alloc_compare) (void ∗data_interface_a, void ∗data_interface←↩
_b)

Compare the data allocation of two interfaces etc.), to be used for indexing allocation cache. It should return 1 if the
two interfaces are allocation-compatible, i.e. basically have the same alloc_size, and 0 otherwise. If not specified,
the starpu_data_interface_ops::compare method is used instead.

Generated by Doxygen

248 Module Documentation a.k.a StarPU’s API

30.9.2.2.1.16 display

void(∗ starpu_data_interface_ops::display) (starpu_data_handle_t handle, FILE ∗f)
Dump the sizes of a handle to a file. This is required for performance models

30.9.2.2.1.17 describe

starpu_ssize_t(∗ starpu_data_interface_ops::describe) (void ∗data_interface, char ∗buf, size_t

size)

Describe the data into a string in a brief way, such as one letter to describe the type of data, and the data dimensions.
This is required for tracing feedback.

30.9.2.2.1.18 interfaceid

enum starpu_data_interface_id starpu_data_interface_ops::interfaceid

An identifier that is unique to each interface.

30.9.2.2.1.19 interface_size

size_t starpu_data_interface_ops::interface_size

Size of the interface data descriptor.

30.9.2.2.1.20 dontcache

char starpu_data_interface_ops::dontcache

If set to non-zero, StarPU will never try to reuse an allocated buffer for a different handle. This can be notably useful
for application-defined interfaces which have a dynamic size, and for which it thus does not make sense to reuse
the buffer since will probably not have the proper size.

30.9.2.2.1.21 pack_data

int(∗ starpu_data_interface_ops::pack_data) (starpu_data_handle_t handle, unsigned node, void

∗∗ptr, starpu_ssize_t ∗count)
Pack the data handle into a contiguous buffer at the address allocated with starpu_malloc_flags(ptr,
size, 0) (and thus returned in ptr) and set the size of the newly created buffer in count. If ptr is NULL,
the function should not copy the data in the buffer but just set count to the size of the buffer which would have been
allocated. The special value -1 indicates the size is yet unknown.
This method (and starpu_data_interface_ops::unpack_data) is required for disk support if the starpu_data_copy←↩
_methods::any_to_any method is not implemented (because the in-memory data layout is too complex).
This is also required for MPI support if there is no registered MPI data type.

30.9.2.2.1.22 unpack_data

int(∗ starpu_data_interface_ops::unpack_data) (starpu_data_handle_t handle, unsigned node,

void ∗ptr, size_t count)

Unpack the data handle from the contiguous buffer at the address ptr of size count. The memory at the address
ptr should be freed after the data unpacking operation.

30.9.2.2.1.23 name

char∗ starpu_data_interface_ops::name

Name of the interface

30.9.2.3 struct starpu_matrix_interface

Matrix interface for dense matrices

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the matrix

uintptr_t dev_handle device handle of the matrix

size_t offset offset in the matrix
uint32_t nx number of elements on the x-axis of the matrix
uint32_t ny number of elements on the y-axis of the matrix

Generated by Doxygen

30.9 Data Interfaces 249

Data Fields

uint32_t ld number of elements between each row of the matrix. Maybe
be equal to starpu_matrix_interface::nx when there is no
padding.

size_t elemsize size of the elements of the matrix
size_t allocsize size actually currently allocated

30.9.2.4 struct starpu_coo_interface

COO Matrices

Data Fields

enum starpu_data_interface_id id identifier of the interface

uint32_t ∗ columns column array of the matrix

uint32_t ∗ rows row array of the matrix

uintptr_t values values of the matrix

uint32_t nx number of elements on the x-axis of the matrix
uint32_t ny number of elements on the y-axis of the matrix

uint32_t n_values number of values registered in the matrix

size_t elemsize size of the elements of the matrix

30.9.2.5 struct starpu_block_interface

Block interface for 3D dense blocks

Data Fields

enum starpu_data_interface_id id identifier of the interface

uintptr_t ptr local pointer of the block

uintptr_t dev_handle device handle of the block.

size_t offset offset in the block.
uint32_t nx number of elements on the x-axis of the block.
uint32_t ny number of elements on the y-axis of the block.

uint32_t nz number of elements on the z-axis of the block.
uint32_t ldy number of elements between two lines

uint32_t ldz number of elements between two planes

size_t elemsize size of the elements of the block.

30.9.2.6 struct starpu_vector_interface

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the vector

uintptr_t dev_handle device handle of the vector.

size_t offset offset in the vector
uint32_t nx number of elements on the x-axis of the vector

size_t elemsize size of the elements of the vector

Generated by Doxygen

250 Module Documentation a.k.a StarPU’s API

Data Fields

uint32_t slice_base vector slice base, used by the StarPU OpenMP runtime support

size_t allocsize size actually currently allocated

30.9.2.7 struct starpu_variable_interface

Variable interface for a single data (not a vector, a matrix, a list, ...)

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uintptr_t ptr local pointer of the variable

uintptr_t dev_handle device handle of the variable.

size_t offset offset in the variable
size_t elemsize size of the variable

30.9.2.8 struct starpu_csr_interface

CSR interface for sparse matrices (compressed sparse row representation)

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uint32_t nnz number of non-zero entries
uint32_t nrow number of rows
uintptr_t nzval non-zero values

uint32_t ∗ colind position of non-zero entries on the row

uint32_t ∗ rowptr index (in nzval) of the first entry of the row

uint32_t firstentry k for k-based indexing (0 or 1 usually). also useful when
partitionning the matrix.

size_t elemsize size of the elements of the matrix

30.9.2.9 struct starpu_bcsr_interface

BCSR interface for sparse matrices (blocked compressed sparse row representation)
Note: when a BCSR matrix is partitioned, nzval, colind, and rowptr point into the corresponding father arrays. The
rowptr content is thus the same as the father's. Firstentry is used to offset this so it becomes valid for the child
arrays.

Data Fields

enum starpu_data_interface_id id Identifier of the interface

uint32_t nnz number of non-zero BLOCKS
uint32_t nrow number of rows (in terms of BLOCKS)

uintptr_t nzval non-zero values: nnz blocks of r∗c elements

uint32_t ∗ colind array of nnz elements, colind[i] is the block-column index for
block i in nzval

uint32_t ∗ rowptr array of nrow+1 elements, rowptr[i] is the block-index (in nzval)
of the first block of row i. By convention, rowptr[nrow] is the
number of blocks, this allows an easier access of the matrix's
elements for the kernels.

Generated by Doxygen

30.9 Data Interfaces 251

Data Fields

uint32_t firstentry k for k-based indexing (0 or 1 usually). Also useful when
partitionning the matrix.

uint32_t r height of the blocks

uint32_t c width of the blocks
size_t elemsize size of the elements of the matrix

30.9.2.10 struct starpu_multiformat_data_interface_ops

Multiformat operations

Data Fields

size_t cpu_elemsize size of each element on CPUs

size_t opencl_elemsize size of each element on OpenCL devices

struct starpu_codelet ∗ cpu_to_opencl_cl pointer to a codelet which converts from CPU to OpenCL

struct starpu_codelet ∗ opencl_to_cpu_cl pointer to a codelet which converts from OpenCL to CPU

size_t cuda_elemsize size of each element on CUDA devices
struct starpu_codelet ∗ cpu_to_cuda_cl pointer to a codelet which converts from CPU to CUDA

struct starpu_codelet ∗ cuda_to_cpu_cl pointer to a codelet which converts from CUDA to CPU

size_t mic_elemsize size of each element on MIC devices
struct starpu_codelet ∗ cpu_to_mic_cl pointer to a codelet which converts from CPU to MIC

struct starpu_codelet ∗ mic_to_cpu_cl pointer to a codelet which converts from MIC to CPU

30.9.2.11 struct starpu_multiformat_interface

Data Fields

enum starpu_data_interface_id id

void ∗ cpu_ptr

void ∗ cuda_ptr

void ∗ opencl_ptr

void ∗ mic_ptr

uint32_t nx
struct

starpu_multiformat_data_interface_ops ∗ ops

30.9.3 Macro Definition Documentation

30.9.3.1 STARPU_MATRIX_GET_PTR

#define STARPU_MATRIX_GET_PTR(

interface)

Return a pointer to the matrix designated by interface, valid on CPUs and CUDA devices only. For OpenCL
devices, the device handle and offset need to be used instead.

30.9.3.2 STARPU_MATRIX_GET_DEV_HANDLE

#define STARPU_MATRIX_GET_DEV_HANDLE(

Generated by Doxygen

252 Module Documentation a.k.a StarPU’s API

interface)

Return a device handle for the matrix designated by interface, to be used with OpenCL. The offset returned by
STARPU_MATRIX_GET_OFFSET has to be used in addition to this.

30.9.3.3 STARPU_MATRIX_GET_OFFSET

#define STARPU_MATRIX_GET_OFFSET(

interface)

Return the offset in the matrix designated by interface, to be used with the device handle.

30.9.3.4 STARPU_MATRIX_GET_NX

#define STARPU_MATRIX_GET_NX(

interface)

Return the number of elements on the x-axis of the matrix designated by interface.

30.9.3.5 STARPU_MATRIX_GET_NY

#define STARPU_MATRIX_GET_NY(

interface)

Return the number of elements on the y-axis of the matrix designated by interface.

30.9.3.6 STARPU_MATRIX_GET_LD

#define STARPU_MATRIX_GET_LD(

interface)

Return the number of elements between each row of the matrix designated by interface. May be equal to nx
when there is no padding.

30.9.3.7 STARPU_MATRIX_GET_ELEMSIZE

#define STARPU_MATRIX_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

30.9.3.8 STARPU_MATRIX_GET_ALLOCSIZE

#define STARPU_MATRIX_GET_ALLOCSIZE(

interface)

Return the allocated size of the matrix designated by interface.

30.9.3.9 STARPU_MATRIX_SET_NX

#define STARPU_MATRIX_SET_NX(

interface,

newnx)

Set the number of elements on the x-axis of the matrix designated by interface.

30.9.3.10 STARPU_MATRIX_SET_NY

#define STARPU_MATRIX_SET_NY(

interface,

newny)

Set the number of elements on the y-axis of the matrix designated by interface.

30.9.3.11 STARPU_MATRIX_SET_LD

#define STARPU_MATRIX_SET_LD(

interface,

newld)

Generated by Doxygen

30.9 Data Interfaces 253

Set the number of elements between each row of the matrix designated by interface. May be set to the same
value as nx when there is no padding.

30.9.3.12 STARPU_COO_GET_COLUMNS

#define STARPU_COO_GET_COLUMNS(

interface)

Return a pointer to the column array of the matrix designated by interface.

30.9.3.13 STARPU_COO_GET_COLUMNS_DEV_HANDLE

#define STARPU_COO_GET_COLUMNS_DEV_HANDLE(

interface)

Return a device handle for the column array of the matrix designated by interface, to be used with OpenCL.
The offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

30.9.3.14 STARPU_COO_GET_ROWS

#define STARPU_COO_GET_ROWS(

interface)

Return a pointer to the rows array of the matrix designated by interface.

30.9.3.15 STARPU_COO_GET_ROWS_DEV_HANDLE

#define STARPU_COO_GET_ROWS_DEV_HANDLE(

interface)

Return a device handle for the row array of the matrix designated by interface, to be used on OpenCL. The
offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

30.9.3.16 STARPU_COO_GET_VALUES

#define STARPU_COO_GET_VALUES(

interface)

Return a pointer to the values array of the matrix designated by interface.

30.9.3.17 STARPU_COO_GET_VALUES_DEV_HANDLE

#define STARPU_COO_GET_VALUES_DEV_HANDLE(

interface)

Return a device handle for the value array of the matrix designated by interface, to be used on OpenCL. The
offset returned by STARPU_COO_GET_OFFSET has to be used in addition to this.

30.9.3.18 STARPU_COO_GET_OFFSET

#define STARPU_COO_GET_OFFSET

Return the offset in the arrays of the COO matrix designated by interface.

30.9.3.19 STARPU_COO_GET_NX

#define STARPU_COO_GET_NX(

interface)

Return the number of elements on the x-axis of the matrix designated by interface.

30.9.3.20 STARPU_COO_GET_NY

#define STARPU_COO_GET_NY(

interface)

Return the number of elements on the y-axis of the matrix designated by interface.

Generated by Doxygen

254 Module Documentation a.k.a StarPU’s API

30.9.3.21 STARPU_COO_GET_NVALUES

#define STARPU_COO_GET_NVALUES(

interface)

Return the number of values registered in the matrix designated by interface.

30.9.3.22 STARPU_COO_GET_ELEMSIZE

#define STARPU_COO_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

30.9.3.23 STARPU_BLOCK_GET_PTR

#define STARPU_BLOCK_GET_PTR(

interface)

Return a pointer to the block designated by interface.

30.9.3.24 STARPU_BLOCK_GET_DEV_HANDLE

#define STARPU_BLOCK_GET_DEV_HANDLE(

interface)

Return a device handle for the block designated by interface, to be used on OpenCL. The offset returned by
STARPU_BLOCK_GET_OFFSET has to be used in addition to this.

30.9.3.25 STARPU_BLOCK_GET_OFFSET

#define STARPU_BLOCK_GET_OFFSET(

interface)

Return the offset in the block designated by interface, to be used with the device handle.

30.9.3.26 STARPU_BLOCK_GET_NX

#define STARPU_BLOCK_GET_NX(

interface)

Return the number of elements on the x-axis of the block designated by interface.

30.9.3.27 STARPU_BLOCK_GET_NY

#define STARPU_BLOCK_GET_NY(

interface)

Return the number of elements on the y-axis of the block designated by interface.

30.9.3.28 STARPU_BLOCK_GET_NZ

#define STARPU_BLOCK_GET_NZ(

interface)

Return the number of elements on the z-axis of the block designated by interface.

30.9.3.29 STARPU_BLOCK_GET_LDY

#define STARPU_BLOCK_GET_LDY(

interface)

Return the number of elements between each row of the block designated by interface. May be equal to nx
when there is no padding.

Generated by Doxygen

30.9 Data Interfaces 255

30.9.3.30 STARPU_BLOCK_GET_LDZ

#define STARPU_BLOCK_GET_LDZ(

interface)

Return the number of elements between each z plane of the block designated by interface. May be equal to
nx∗ny when there is no padding.

30.9.3.31 STARPU_BLOCK_GET_ELEMSIZE

#define STARPU_BLOCK_GET_ELEMSIZE(

interface)

Return the size of the elements of the block designated by interface.

30.9.3.32 STARPU_VECTOR_GET_PTR

#define STARPU_VECTOR_GET_PTR(

interface)

Return a pointer to the array designated by interface, valid on CPUs and CUDA only. For OpenCL, the device
handle and offset need to be used instead.

30.9.3.33 STARPU_VECTOR_GET_DEV_HANDLE

#define STARPU_VECTOR_GET_DEV_HANDLE(

interface)

Return a device handle for the array designated by interface, to be used with OpenCL. the offset returned by
STARPU_VECTOR_GET_OFFSET has to be used in addition to this.

30.9.3.34 STARPU_VECTOR_GET_OFFSET

#define STARPU_VECTOR_GET_OFFSET(

interface)

Return the offset in the array designated by interface, to be used with the device handle.

30.9.3.35 STARPU_VECTOR_GET_NX

#define STARPU_VECTOR_GET_NX(

interface)

Return the number of elements registered into the array designated by interface.

30.9.3.36 STARPU_VECTOR_GET_ELEMSIZE

#define STARPU_VECTOR_GET_ELEMSIZE(

interface)

Return the size of each element of the array designated by interface.

30.9.3.37 STARPU_VECTOR_GET_ALLOCSIZE

#define STARPU_VECTOR_GET_ALLOCSIZE(

interface)

Return the size of each element of the array designated by interface.

30.9.3.38 STARPU_VECTOR_GET_SLICE_BASE

#define STARPU_VECTOR_GET_SLICE_BASE(

interface)

Return the OpenMP slice base annotation of each element of the array designated by interface.

Generated by Doxygen

256 Module Documentation a.k.a StarPU’s API

30.9.3.39 STARPU_VECTOR_SET_NX

#define STARPU_VECTOR_SET_NX(

interface,

newnx)

Set the number of elements registered into the array designated by interface.

30.9.3.40 STARPU_VARIABLE_GET_PTR

#define STARPU_VARIABLE_GET_PTR(

interface)

Return a pointer to the variable designated by interface.

30.9.3.41 STARPU_VARIABLE_GET_OFFSET

#define STARPU_VARIABLE_GET_OFFSET(

interface)

Return the offset in the variable designated by interface, to be used with the device handle.

30.9.3.42 STARPU_VARIABLE_GET_ELEMSIZE

#define STARPU_VARIABLE_GET_ELEMSIZE(

interface)

Return the size of the variable designated by interface.

30.9.3.43 STARPU_VARIABLE_GET_DEV_HANDLE

#define STARPU_VARIABLE_GET_DEV_HANDLE(

interface)

Return a device handle for the variable designated by interface, to be used with OpenCL. The offset returned
by STARPU_VARIABLE_GET_OFFSET has to be used in addition to this.

30.9.3.44 STARPU_CSR_GET_NNZ

#define STARPU_CSR_GET_NNZ(

interface)

Return the number of non-zero values in the matrix designated by interface.

30.9.3.45 STARPU_CSR_GET_NROW

#define STARPU_CSR_GET_NROW(

interface)

Return the size of the row pointer array of the matrix designated by interface.

30.9.3.46 STARPU_CSR_GET_NZVAL

#define STARPU_CSR_GET_NZVAL(

interface)

Return a pointer to the non-zero values of the matrix designated by interface.

30.9.3.47 STARPU_CSR_GET_NZVAL_DEV_HANDLE

#define STARPU_CSR_GET_NZVAL_DEV_HANDLE(

interface)

Return a device handle for the array of non-zero values in the matrix designated by interface. The offset
returned by STARPU_CSR_GET_OFFSET has to used in addition to this.

Generated by Doxygen

30.9 Data Interfaces 257

30.9.3.48 STARPU_CSR_GET_COLIND

#define STARPU_CSR_GET_COLIND(

interface)

Return a pointer to the column index of the matrix designated by interface.

30.9.3.49 STARPU_CSR_GET_COLIND_DEV_HANDLE

#define STARPU_CSR_GET_COLIND_DEV_HANDLE(

interface)

Return a device handle for the column index of the matrix designated by interface. The offset returned by
STARPU_CSR_GET_OFFSET has to be used in addition to this.

30.9.3.50 STARPU_CSR_GET_ROWPTR

#define STARPU_CSR_GET_ROWPTR(

interface)

Return a pointer to the row pointer array of the matrix designated by interface.

30.9.3.51 STARPU_CSR_GET_ROWPTR_DEV_HANDLE

#define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(

interface)

Return a device handle for the row pointer array of the matrix designated by interface. The offset returned by
STARPU_CSR_GET_OFFSET has to be used in addition to this.

30.9.3.52 STARPU_CSR_GET_OFFSET

#define STARPU_CSR_GET_OFFSET

Return the offset in the arrays (colind, rowptr, nzval) of the matrix designated by interface, to be used with the
device handles.

30.9.3.53 STARPU_CSR_GET_FIRSTENTRY

#define STARPU_CSR_GET_FIRSTENTRY(

interface)

Return the index at which all arrays (the column indexes, the row pointers...) of the interface start.

30.9.3.54 STARPU_CSR_GET_ELEMSIZE

#define STARPU_CSR_GET_ELEMSIZE(

interface)

Return the size of the elements registered into the matrix designated by interface.

30.9.3.55 STARPU_BCSR_GET_NNZ

#define STARPU_BCSR_GET_NNZ(

interface)

Return the number of non-zero values in the matrix designated by interface.

30.9.3.56 STARPU_BCSR_GET_NROW

#define STARPU_BCSR_GET_NROW(

interface)

Return the number of block rows in the matrix designated by interface.

30.9.3.57 STARPU_BCSR_GET_NZVAL

#define STARPU_BCSR_GET_NZVAL(

interface)

Return a pointer to the non-zero values of the matrix designated by interface.

Generated by Doxygen

258 Module Documentation a.k.a StarPU’s API

30.9.3.58 STARPU_BCSR_GET_NZVAL_DEV_HANDLE

#define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(

interface)

Return a device handle for the array of non-zero values in the matrix designated by interface. The offset
returned by STARPU_BCSR_GET_OFFSET has to be used in addition to this.

30.9.3.59 STARPU_BCSR_GET_COLIND

#define STARPU_BCSR_GET_COLIND(

interface)

Return a pointer to the column index of the matrix designated by interface.

30.9.3.60 STARPU_BCSR_GET_COLIND_DEV_HANDLE

#define STARPU_BCSR_GET_COLIND_DEV_HANDLE(

interface)

Return a device handle for the column index of the matrix designated by interface. The offset returned by
STARPU_BCSR_GET_OFFSET has to be used in addition to this.

30.9.3.61 STARPU_BCSR_GET_ROWPTR

#define STARPU_BCSR_GET_ROWPTR(

interface)

Return a pointer to the row pointer array of the matrix designated by interface.

30.9.3.62 STARPU_BCSR_GET_ROWPTR_DEV_HANDLE

#define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(

interface)

Return a device handle for the row pointer array of the matrix designated by interface. The offset returned by
STARPU_BCSR_GET_OFFSET has to be used in addition to this.

30.9.3.63 STARPU_BCSR_GET_FIRSTENTRY

#define STARPU_BCSR_GET_FIRSTENTRY(

interface)

Return the base of the indexing (0 or 1 usually) in the matrix designated by interface.

30.9.3.64 STARPU_BCSR_GET_R

#define STARPU_BCSR_GET_R(

interface)

Return the height of blocks in the matrix designated by interface.

30.9.3.65 STARPU_BCSR_GET_C

#define STARPU_BCSR_GET_C(

interface)

Return the width of blocks in the matrix designated by interface.

30.9.3.66 STARPU_BCSR_GET_ELEMSIZE

#define STARPU_BCSR_GET_ELEMSIZE(

interface)

Return the size of elements in the matrix designated by interface.

Generated by Doxygen

30.9 Data Interfaces 259

30.9.3.67 STARPU_BCSR_GET_OFFSET

#define STARPU_BCSR_GET_OFFSET

Return the offset in the arrays (coling, rowptr, nzval) of the matrix designated by interface, to be used with the
device handles.

30.9.3.68 STARPU_MULTIFORMAT_GET_CPU_PTR

#define STARPU_MULTIFORMAT_GET_CPU_PTR(

interface)

Return the local pointer to the data with CPU format.

30.9.3.69 STARPU_MULTIFORMAT_GET_CUDA_PTR

#define STARPU_MULTIFORMAT_GET_CUDA_PTR(

interface)

Return the local pointer to the data with CUDA format.

30.9.3.70 STARPU_MULTIFORMAT_GET_OPENCL_PTR

#define STARPU_MULTIFORMAT_GET_OPENCL_PTR(

interface)

Return the local pointer to the data with OpenCL format.

30.9.3.71 STARPU_MULTIFORMAT_GET_MIC_PTR

#define STARPU_MULTIFORMAT_GET_MIC_PTR(

interface)

Return the local pointer to the data with MIC format.

30.9.3.72 STARPU_MULTIFORMAT_GET_NX

#define STARPU_MULTIFORMAT_GET_NX(

interface)

Return the number of elements in the data.

30.9.4 Enumeration Type Documentation

30.9.4.1 starpu_data_interface_id

enum starpu_data_interface_id

Identifier for all predefined StarPU data interfaces

Enumerator

STARPU_UNKNOWN_INTERFACE_ID Unknown interface
STARPU_MATRIX_INTERFACE_ID Identifier for the matrix data interface
STARPU_BLOCK_INTERFACE_ID Identifier for the block data interface

STARPU_VECTOR_INTERFACE_ID Identifier for the vector data interface
STARPU_CSR_INTERFACE_ID Identifier for the CSR data interface

STARPU_BCSR_INTERFACE_ID Identifier for the BCSR data interface
STARPU_VARIABLE_INTERFACE_ID Identifier for the variable data interface

STARPU_VOID_INTERFACE_ID Identifier for the void data interface
STARPU_MULTIFORMAT_INTERFACE_ID Identifier for the multiformat data interface

STARPU_COO_INTERFACE_ID Identifier for the COO data interface
STARPU_MAX_INTERFACE_ID Maximum number of data interfaces

Generated by Doxygen

260 Module Documentation a.k.a StarPU’s API

30.9.5 Function Documentation

30.9.5.1 starpu_data_register()

void starpu_data_register (

starpu_data_handle_t ∗ handleptr,

int home_node,

void ∗ data_interface,

struct starpu_data_interface_ops ∗ ops)

Register a piece of data into the handle located at the handleptr address. The data_interface buffer
contains the initial description of the data in the home_node. The ops argument is a pointer to a structure
describing the different methods used to manipulate this type of interface. See starpu_data_interface_ops for more
details on this structure. If home_node is -1, StarPU will automatically allocate the memory when it is used for
the first time in write-only mode. Once such data handle has been automatically allocated, it is possible to access
it using any access mode. Note that StarPU supplies a set of predefined types of interface (e.g. vector or matrix)
which can be registered by the means of helper functions (e.g. starpu_vector_data_register() or starpu_matrix_←↩
data_register()).

30.9.5.2 starpu_data_ptr_register()

void starpu_data_ptr_register (

starpu_data_handle_t handle,

unsigned node)

Register that a buffer for handle on node will be set. This is typically used by starpu_∗_ptr_register helpers
before setting the interface pointers for this node, to tell the core that that is now allocated.

30.9.5.3 starpu_data_register_same()

void starpu_data_register_same (

starpu_data_handle_t ∗ handledst,

starpu_data_handle_t handlesrc)

Register a new piece of data into the handle handledst with the same interface as the handle handlesrc.

30.9.5.4 starpu_data_handle_to_pointer()

void∗ starpu_data_handle_to_pointer (

starpu_data_handle_t handle,

unsigned node)

Return the pointer associated with handle on node node or NULL if handle’s interface does not support this
operation or data for this handle is not allocated on that node.

30.9.5.5 starpu_data_pointer_is_inside()

int starpu_data_pointer_is_inside (

starpu_data_handle_t handle,

unsigned node,

void ∗ ptr)

Return whether the given ptr is within the data for handle on node node (1) or not (0). If the handle interface
does not support this operation, and thus the result is unknown, -1 is returned.

30.9.5.6 starpu_data_get_local_ptr()

void∗ starpu_data_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle or NULL if handle’s interface does not have any data allocated
locally.

Generated by Doxygen

30.9 Data Interfaces 261

30.9.5.7 starpu_data_get_interface_on_node()

void∗ starpu_data_get_interface_on_node (

starpu_data_handle_t handle,

unsigned memory_node)

Return the interface associated with handle on memory_node.

30.9.5.8 starpu_data_get_interface_id()

enum starpu_data_interface_id starpu_data_get_interface_id (

starpu_data_handle_t handle)

Return the unique identifier of the interface associated with the given handle.

30.9.5.9 starpu_data_pack()

int starpu_data_pack (

starpu_data_handle_t handle,

void ∗∗ ptr,

starpu_ssize_t ∗ count)

Execute the packing operation of the interface of the data registered at handle (see starpu_data_interface_ops).
This packing operation must allocate a buffer large enough at ptr and copy into the newly allocated buffer the data
associated to handle. count will be set to the size of the allocated buffer. If ptr is NULL, the function should
not copy the data in the buffer but just set count to the size of the buffer which would have been allocated. The
special value -1 indicates the size is yet unknown.

30.9.5.10 starpu_data_unpack()

int starpu_data_unpack (

starpu_data_handle_t handle,

void ∗ ptr,

size_t count)

Unpack in handle the data located at ptr of size count as described by the interface of the data. The interface
registered at handle must define a unpacking operation (see starpu_data_interface_ops).

30.9.5.11 starpu_data_get_size()

size_t starpu_data_get_size (

starpu_data_handle_t handle)

Return the size of the data associated with handle.

30.9.5.12 starpu_data_get_alloc_size()

size_t starpu_data_get_alloc_size (

starpu_data_handle_t handle)

Return the size of the allocated data associated with handle.

30.9.5.13 starpu_data_lookup()

starpu_data_handle_t starpu_data_lookup (

const void ∗ ptr)

Return the handle corresponding to the data pointed to by the ptr host pointer.

30.9.5.14 starpu_data_interface_get_next_id()

int starpu_data_interface_get_next_id (

void)

Return the next available id for a newly created data interface (Defining A New Data Interface).

Generated by Doxygen

262 Module Documentation a.k.a StarPU’s API

30.9.5.15 starpu_interface_copy()

int starpu_interface_copy (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t size,

void ∗ async_data)

Copy size bytes from byte offset src_offset of src on src_node to byte offset dst_offset of dst on
dst_node. This is to be used in the starpu_data_copy_methods::any_to_any copy method, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.

30.9.5.16 starpu_interface_copy2d()

int starpu_interface_copy2d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks,

size_t ld_src,

size_t ld_dst,

void ∗ async_data)

Copy numblocks blocks of blocksize bytes from byte offset src_offset of src on src_node to byte
offset dst_offset of dst on dst_node.
The blocks start at addresses which are ld_src (resp. ld_dst) bytes apart in the source (resp. destination) interface.
If blocksize == ld_src == ld_dst, the transfer is optimized into a single starpu_interface_copy call.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 2D data, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.

30.9.5.17 starpu_interface_copy3d()

int starpu_interface_copy3d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks2,

size_t ld2_src,

size_t ld2_dst,

void ∗ async_data)

Copy numblocks_1 ∗ numblocks_2 blocks of blocksize bytes from byte offset src_offset of src on
src_node to byte offset dst_offset of dst on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.

Generated by Doxygen

30.9 Data Interfaces 263

Such groups are grouped by numblocks_2 groups whose start addresses are ld2_src (resp. ld2_dst) bytes apart in
the source (resp. destination) interface.
If the blocks are contiguous, the transfers will be optimized.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 3D data, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.

30.9.5.18 starpu_interface_copy4d()

int starpu_interface_copy4d (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t blocksize,

size_t numblocks1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks2,

size_t ld2_src,

size_t ld2_dst,

size_t numblocks3,

size_t ld3_src,

size_t ld3_dst,

void ∗ async_data)

Copy numblocks_1 ∗ numblocks_2 ∗ numblocks_3 blocks of blocksize bytes from byte offset src←↩
_offset of src on src_node to byte offset dst_offset of dst on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
Such groups are grouped by numblocks_2 groups whose start addresses are ld2_src (resp. ld2_dst) bytes apart in
the source (resp. destination) interface.
Such groups are grouped by numblocks_3 groups whose start addresses are ld3_src (resp. ld3_dst) bytes apart in
the source (resp. destination) interface.
If the blocks are contiguous, the transfers will be optimized.
This is to be used in the starpu_data_copy_methods::any_to_any copy method for 3D data, which is provided with
async_data to be passed to starpu_interface_copy(). this returns -EAGAIN if the transfer is still ongoing, or 0 if
the transfer is already completed.

30.9.5.19 starpu_interface_start_driver_copy_async()

void starpu_interface_start_driver_copy_async (

unsigned src_node,

unsigned dst_node,

double ∗ start)

When an asynchonous implementation of the data transfer is implemented, the call to the underlying CUDA, Open←↩
CL, etc. call should be surrounded by calls to starpu_interface_start_driver_copy_async() and starpu_interface←↩
_end_driver_copy_async(), so that it is recorded in offline execution traces, and the timing of the submission is
checked. start must point to a variable whose value will be passed unchanged to starpu_interface_end_driver←↩
_copy_async().

30.9.5.20 starpu_interface_end_driver_copy_async()

void starpu_interface_end_driver_copy_async (

unsigned src_node,

unsigned dst_node,

double start)

See starpu_interface_start_driver_copy_async().

Generated by Doxygen

264 Module Documentation a.k.a StarPU’s API

30.9.5.21 starpu_interface_data_copy()

void starpu_interface_data_copy (

unsigned src_node,

unsigned dst_node,

size_t size)

Record in offline execution traces the copy of size bytes from node src_node to node dst_node

30.9.5.22 starpu_malloc_on_node_flags()

uintptr_t starpu_malloc_on_node_flags (

unsigned dst_node,

size_t size,

int flags)

Allocate size bytes on node dst_node with the given allocation flags. This returns 0 if allocation failed, the
allocation method should then return -ENOMEM as allocated size. Deallocation must be done with starpu_free_←↩
on_node_flags().

30.9.5.23 starpu_malloc_on_node()

uintptr_t starpu_malloc_on_node (

unsigned dst_node,

size_t size)

Allocate size bytes on node dst_node with the default allocation flags. This returns 0 if allocation failed, the
allocation method should then return -ENOMEM as allocated size. Deallocation must be done with starpu_free_←↩
on_node().

30.9.5.24 starpu_free_on_node_flags()

void starpu_free_on_node_flags (

unsigned dst_node,

uintptr_t addr,

size_t size,

int flags)

Free addr of size bytes on node dst_node which was previously allocated with starpu_malloc_on_node_←↩
flags() with the given allocation flags.

30.9.5.25 starpu_free_on_node()

void starpu_free_on_node (

unsigned dst_node,

uintptr_t addr,

size_t size)

Free addr of size bytes on node dst_node which was previously allocated with starpu_malloc_on_node().

30.9.5.26 starpu_malloc_on_node_set_default_flags()

void starpu_malloc_on_node_set_default_flags (

unsigned node,

int flags)

Define the default flags for allocations performed by starpu_malloc_on_node() and starpu_free_on_node(). The
default is STARPU_MALLOC_PINNED | STARPU_MALLOC_COUNT.

30.9.5.27 starpu_matrix_data_register()

void starpu_matrix_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ld,

Generated by Doxygen

30.9 Data Interfaces 265

uint32_t nx,

uint32_t ny,

size_t elemsize)

Register the nx x ny 2D matrix of elemsize-byte elements pointed by ptr and initialize handle to represent
it. ld specifies the number of elements between rows. a value greater than nx adds padding, which can be useful
for alignment purposes.
Here an example of how to use the function.

float *matrix;
starpu_data_handle_t matrix_handle;
matrix = (float*)malloc(width * height * sizeof(float));
starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (

uintptr_t)matrix, width, width, height, sizeof(float));

30.9.5.28 starpu_matrix_data_register_allocsize()

void starpu_matrix_data_register_allocsize (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ld,

uint32_t nx,

uint32_t ny,

size_t elemsize,

size_t allocsize)

Similar to starpu_matrix_data_register, but additionally specifies which allocation size should be used instead of the
initial nx∗ny∗elemsize.

30.9.5.29 starpu_matrix_ptr_register()

void starpu_matrix_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ld)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably), with ld elements between rows.

30.9.5.30 starpu_matrix_get_nx()

uint32_t starpu_matrix_get_nx (

starpu_data_handle_t handle)

Return the number of elements on the x-axis of the matrix designated by handle.

30.9.5.31 starpu_matrix_get_ny()

uint32_t starpu_matrix_get_ny (

starpu_data_handle_t handle)

Return the number of elements on the y-axis of the matrix designated by handle.

30.9.5.32 starpu_matrix_get_local_ld()

uint32_t starpu_matrix_get_local_ld (

starpu_data_handle_t handle)

Return the number of elements between each row of the matrix designated by handle. Maybe be equal to nx
when there is no padding.

Generated by Doxygen

266 Module Documentation a.k.a StarPU’s API

30.9.5.33 starpu_matrix_get_local_ptr()

uintptr_t starpu_matrix_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

30.9.5.34 starpu_matrix_get_elemsize()

size_t starpu_matrix_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements registered into the matrix designated by handle.

30.9.5.35 starpu_matrix_get_allocsize()

size_t starpu_matrix_get_allocsize (

starpu_data_handle_t handle)

Return the allocated size of the matrix designated by handle.

30.9.5.36 starpu_coo_data_register()

void starpu_coo_data_register (

starpu_data_handle_t ∗ handleptr,

int home_node,

uint32_t nx,

uint32_t ny,

uint32_t n_values,

uint32_t ∗ columns,

uint32_t ∗ rows,

uintptr_t values,

size_t elemsize)

Register the nx x ny 2D matrix given in the COO format, using the columns, rows, values arrays, which must
have n_values elements of size elemsize. Initialize handleptr.

30.9.5.37 starpu_block_data_register()

void starpu_block_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t ldy,

uint32_t ldz,

uint32_t nx,

uint32_t ny,

uint32_t nz,

size_t elemsize)

Register the nx x ny x nz 3D matrix of elemsize byte elements pointed by ptr and initialize handle to
represent it. Again, ldy and ldz specify the number of elements between rows and between z planes.
Here an example of how to use the function.

float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*sizeof(float));
starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (

uintptr_t)block, nx, nx*ny, nx, ny, nz, sizeof(float));

30.9.5.38 starpu_block_ptr_register()

void starpu_block_ptr_register (

starpu_data_handle_t handle,

unsigned node,

Generated by Doxygen

30.9 Data Interfaces 267

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset,

uint32_t ldy,

uint32_t ldz)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably), with ldy elements between rows and ldz elements
between z planes.

30.9.5.39 starpu_block_get_nx()

uint32_t starpu_block_get_nx (

starpu_data_handle_t handle)

Return the number of elements on the x-axis of the block designated by handle.

30.9.5.40 starpu_block_get_ny()

uint32_t starpu_block_get_ny (

starpu_data_handle_t handle)

Return the number of elements on the y-axis of the block designated by handle.

30.9.5.41 starpu_block_get_nz()

uint32_t starpu_block_get_nz (

starpu_data_handle_t handle)

Return the number of elements on the z-axis of the block designated by handle.

30.9.5.42 starpu_block_get_local_ldy()

uint32_t starpu_block_get_local_ldy (

starpu_data_handle_t handle)

Return the number of elements between each row of the block designated by handle, in the format of the current
memory node.

30.9.5.43 starpu_block_get_local_ldz()

uint32_t starpu_block_get_local_ldz (

starpu_data_handle_t handle)

Return the number of elements between each z plane of the block designated by handle, in the format of the
current memory node.

30.9.5.44 starpu_block_get_local_ptr()

uintptr_t starpu_block_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

30.9.5.45 starpu_block_get_elemsize()

size_t starpu_block_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements of the block designated by handle.

30.9.5.46 starpu_vector_data_register()

void starpu_vector_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

Generated by Doxygen

268 Module Documentation a.k.a StarPU’s API

uint32_t nx,

size_t elemsize)

Register the nx elemsize-byte elements pointed to by ptr and initialize handle to represent it.
Here an example of how to use the function.

float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (

uintptr_t)vector, NX, sizeof(vector[0]));

30.9.5.47 starpu_vector_data_register_allocsize()

void starpu_vector_data_register_allocsize (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

uint32_t nx,

size_t elemsize,

size_t allocsize)

Similar to starpu_matrix_data_register, but additionally specifies which allocation size should be used instead of the
initial nx∗elemsize.

30.9.5.48 starpu_vector_ptr_register()

void starpu_vector_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably)

30.9.5.49 starpu_vector_get_nx()

uint32_t starpu_vector_get_nx (

starpu_data_handle_t handle)

Return the number of elements registered into the array designated by handle.

30.9.5.50 starpu_vector_get_elemsize()

size_t starpu_vector_get_elemsize (

starpu_data_handle_t handle)

Return the size of each element of the array designated by handle.

30.9.5.51 starpu_vector_get_allocsize()

size_t starpu_vector_get_allocsize (

starpu_data_handle_t handle)

Return the allocated size of the array designated by handle.

30.9.5.52 starpu_vector_get_local_ptr()

uintptr_t starpu_vector_get_local_ptr (

starpu_data_handle_t handle)

Return the local pointer associated with handle.

Generated by Doxygen

30.9 Data Interfaces 269

30.9.5.53 starpu_variable_data_register()

void starpu_variable_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uintptr_t ptr,

size_t size)

Register the size byte element pointed to by ptr, which is typically a scalar, and initialize handle to represent
this data item.
Here an example of how to use the function.

float var = 42.0;
starpu_data_handle_t var_handle;
starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (

uintptr_t)&var, sizeof(var));

30.9.5.54 starpu_variable_ptr_register()

void starpu_variable_ptr_register (

starpu_data_handle_t handle,

unsigned node,

uintptr_t ptr,

uintptr_t dev_handle,

size_t offset)

Register into the handle that to store data on node node it should use the buffer located at ptr, or device handle
dev_handle and offset offset (for OpenCL, notably)

30.9.5.55 starpu_variable_get_elemsize()

size_t starpu_variable_get_elemsize (

starpu_data_handle_t handle)

Return the size of the variable designated by handle.

30.9.5.56 starpu_variable_get_local_ptr()

uintptr_t starpu_variable_get_local_ptr (

starpu_data_handle_t handle)

Return a pointer to the variable designated by handle.

30.9.5.57 starpu_void_data_register()

void starpu_void_data_register (

starpu_data_handle_t ∗ handle)

Register a void interface. There is no data really associated to that interface, but it may be used as a synchronization
mechanism. It also permits to express an abstract piece of data that is managed by the application internally: this
makes it possible to forbid the concurrent execution of different tasks accessing the same void data in read-write
concurrently.

30.9.5.58 starpu_csr_data_register()

void starpu_csr_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uint32_t nnz,

uint32_t nrow,

uintptr_t nzval,

uint32_t ∗ colind,

uint32_t ∗ rowptr,

uint32_t firstentry,

size_t elemsize)

Generated by Doxygen

270 Module Documentation a.k.a StarPU’s API

Register a CSR (Compressed Sparse Row Representation) sparse matrix.

30.9.5.59 starpu_csr_get_nnz()

uint32_t starpu_csr_get_nnz (

starpu_data_handle_t handle)

Return the number of non-zero values in the matrix designated by handle.

30.9.5.60 starpu_csr_get_nrow()

uint32_t starpu_csr_get_nrow (

starpu_data_handle_t handle)

Return the size of the row pointer array of the matrix designated by handle.

30.9.5.61 starpu_csr_get_firstentry()

uint32_t starpu_csr_get_firstentry (

starpu_data_handle_t handle)

Return the index at which all arrays (the column indexes, the row pointers...) of the matrix designated by handle.

30.9.5.62 starpu_csr_get_local_nzval()

uintptr_t starpu_csr_get_local_nzval (

starpu_data_handle_t handle)

Return a local pointer to the non-zero values of the matrix designated by handle.

30.9.5.63 starpu_csr_get_local_colind()

uint32_t∗ starpu_csr_get_local_colind (

starpu_data_handle_t handle)

Return a local pointer to the column index of the matrix designated by handle.

30.9.5.64 starpu_csr_get_local_rowptr()

uint32_t∗ starpu_csr_get_local_rowptr (

starpu_data_handle_t handle)

Return a local pointer to the row pointer array of the matrix designated by handle.

30.9.5.65 starpu_csr_get_elemsize()

size_t starpu_csr_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements registered into the matrix designated by handle.

30.9.5.66 starpu_bcsr_data_register()

void starpu_bcsr_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

uint32_t nnz,

uint32_t nrow,

uintptr_t nzval,

uint32_t ∗ colind,

uint32_t ∗ rowptr,

uint32_t firstentry,

uint32_t r,

uint32_t c,

size_t elemsize)

Generated by Doxygen

30.9 Data Interfaces 271

This variant of starpu_data_register() uses the BCSR (Blocked Compressed Sparse Row Representation) sparse
matrix interface. Register the sparse matrix made of nnz non-zero blocks of elements of size elemsize stored
in nzval and initializes handle to represent it. Blocks have size r ∗ c. nrow is the number of rows (in terms
of blocks), colind is an array of nnz elements, colind[i] is the block-column index for block i in nzval, rowptr
is an array of nrow+1 elements, rowptr[i] is the block-index (in nzval) of the first block of row i. By conven-
tion, rowptr[nrow] is the number of blocks, this allows an easier access of the matrix's elements for the kernels.
firstentry is the index of the first entry of the given arrays (usually 0 or 1).
Here an example with the following matrix:

| 0 1 0 0 |

| 2 3 0 0 |

| 4 5 8 9 |

| 6 7 10 11 |

nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]

colind = [0, 0, 1]

rowptr = [0, 1, 3]

r = c = 2

which translates into the following code

int R = 2; // Size of the blocks
int C = 2;

int NROWS = 2;
int NNZ_BLOCKS = 3; // out of 4
int NZVAL_SIZE = (R*C*NNZ_BLOCKS);

int nzval[NZVAL_SIZE] =
{

0, 1, 2, 3, // First block
4, 5, 6, 7, // Second block
8, 9, 10, 11 // Third block

};
uint32_t colind[NNZ_BLOCKS] =
{

0, // block-column index for first block in nzval
0, // block-column index for second block in nzval
1 // block-column index for third block in nzval

};
uint32_t rowptr[NROWS+1] =
{

0, // block-index in nzval of the first block of the first row.
1, // block-index in nzval of the first block of the second row.
NNZ_BLOCKS // number of blocks, to allow an easier element’s access for the kernels

};

starpu_data_handle_t bcsr_handle;
starpu_bcsr_data_register(&bcsr_handle,

STARPU_MAIN_RAM,
NNZ_BLOCKS,
NROWS,
(uintptr_t) nzval,
colind,
rowptr,
0, // firstentry
R,
C,
sizeof(nzval[0]));

30.9.5.67 starpu_bcsr_get_nnz()

uint32_t starpu_bcsr_get_nnz (

starpu_data_handle_t handle)

Return the number of non-zero elements in the matrix designated by handle.

30.9.5.68 starpu_bcsr_get_nrow()

uint32_t starpu_bcsr_get_nrow (

starpu_data_handle_t handle)

Return the number of rows (in terms of blocks of size r∗c) in the matrix designated by handle.

Generated by Doxygen

272 Module Documentation a.k.a StarPU’s API

30.9.5.69 starpu_bcsr_get_firstentry()

uint32_t starpu_bcsr_get_firstentry (

starpu_data_handle_t handle)

Return the index at which all arrays (the column indexes, the row pointers...) of the matrix desginated by handle.

30.9.5.70 starpu_bcsr_get_local_nzval()

uintptr_t starpu_bcsr_get_local_nzval (

starpu_data_handle_t handle)

Return a pointer to the non-zero values of the matrix designated by handle.

30.9.5.71 starpu_bcsr_get_local_colind()

uint32_t∗ starpu_bcsr_get_local_colind (

starpu_data_handle_t handle)

Return a pointer to the column index, which holds the positions of the non-zero entries in the matrix designated by
handle.

30.9.5.72 starpu_bcsr_get_local_rowptr()

uint32_t∗ starpu_bcsr_get_local_rowptr (

starpu_data_handle_t handle)

Return the row pointer array of the matrix designated by handle.

30.9.5.73 starpu_bcsr_get_r()

uint32_t starpu_bcsr_get_r (

starpu_data_handle_t handle)

Return the number of rows in a block.

30.9.5.74 starpu_bcsr_get_c()

uint32_t starpu_bcsr_get_c (

starpu_data_handle_t handle)

Return the number of columns in a block.

30.9.5.75 starpu_bcsr_get_elemsize()

size_t starpu_bcsr_get_elemsize (

starpu_data_handle_t handle)

Return the size of the elements in the matrix designated by handle.

30.9.5.76 starpu_multiformat_data_register()

void starpu_multiformat_data_register (

starpu_data_handle_t ∗ handle,

int home_node,

void ∗ ptr,

uint32_t nobjects,

struct starpu_multiformat_data_interface_ops ∗ format_ops)

Register a piece of data that can be represented in different ways, depending upon the processing unit that manipu-
lates it. It allows the programmer, for instance, to use an array of structures when working on a CPU, and a structure
of arrays when working on a GPU. nobjects is the number of elements in the data. format_ops describes the
format.

Generated by Doxygen

30.9 Data Interfaces 273

30.9.5.77 starpu_hash_crc32c_be_n()

uint32_t starpu_hash_crc32c_be_n (

const void ∗ input,

size_t n,

uint32_t inputcrc)

Compute the CRC of a byte buffer seeded by the inputcrc current state. The return value should be considered
as the new current state for future CRC computation. This is used for computing data size footprint.

30.9.5.78 starpu_hash_crc32c_be()

uint32_t starpu_hash_crc32c_be (

uint32_t input,

uint32_t inputcrc)

Compute the CRC of a 32bit number seeded by the inputcrc current state. The return value should be con-
sidered as the new current state for future CRC computation. This is used for computing data size footprint.

30.9.5.79 starpu_hash_crc32c_string()

uint32_t starpu_hash_crc32c_string (

const char ∗ str,

uint32_t inputcrc)

Compute the CRC of a string seeded by the inputcrc current state. The return value should be considered as
the new current state for future CRC computation. This is used for computing data size footprint.

Generated by Doxygen

274 Module Documentation a.k.a StarPU’s API

30.10 Data Partition

Data Structures

• struct starpu_data_filter

Basic API

• void starpu_data_partition (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f)
• void starpu_data_unpartition (starpu_data_handle_t root_data, unsigned gathering_node)

• starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t handle, unsigned i)

• int starpu_data_get_nb_children (starpu_data_handle_t handle)

• starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t root_data, unsigned depth,...)

• starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t root_data, unsigned depth, va_list
pa)

• void starpu_data_map_filters (starpu_data_handle_t root_data, unsigned nfilters,...)

• void starpu_data_vmap_filters (starpu_data_handle_t root_data, unsigned nfilters, va_list pa)

Asynchronous API

• void starpu_data_partition_plan (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f, starpu_←↩
data_handle_t ∗children)

• void starpu_data_partition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_←↩
handle_t ∗children)

• void starpu_data_partition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu←↩
_data_handle_t ∗children)

• void starpu_data_partition_readwrite_upgrade_submit (starpu_data_handle_t initial_handle, unsigned
nparts, starpu_data_handle_t ∗children)

• void starpu_data_unpartition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_←↩
handle_t ∗children, int gathering_node)

• void starpu_data_unpartition_submit_r (starpu_data_handle_t initial_handle, int gathering_node)

• void starpu_data_unpartition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children, int gathering_node)

• void starpu_data_partition_clean (starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t
∗children)

• void starpu_data_unpartition_submit_sequential_consistency_cb (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int gather_node, int sequential_consistency, void(∗callback←↩
_func)(void ∗), void ∗callback_arg)

• void starpu_data_partition_submit_sequential_consistency (starpu_data_handle_t initial_handle, unsigned
nparts, starpu_data_handle_t ∗children, int sequential_consistency)

• void starpu_data_unpartition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int gathering_node, int sequential_consistency)

Predefined BCSR Filter Functions

Predefined partitioning functions for BCSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_bcsr_filter_canonical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• unsigned starpu_bcsr_filter_canonical_block_get_nchildren (struct starpu_data_filter ∗f, starpu_data_←↩
handle_t handle)

• struct starpu_data_interface_ops ∗ starpu_bcsr_filter_canonical_block_child_ops (struct starpu_data_filter
∗f, unsigned child)

• void starpu_bcsr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Generated by Doxygen

30.10 Data Partition 275

Predefined CSR Filter Functions

Predefined partitioning functions for CSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_csr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

Predefined Matrix Filter Functions

Predefined partitioning functions for matrix data. Examples on how to use them are shown in Partitioning Data.
Note: this is using the C element order which is row-major, i.e. elements with consecutive x coordinates are
consecutive in memory.

• void starpu_matrix_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_matrix_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_←↩
filter ∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu←↩
_data_filter ∗f, unsigned id, unsigned nparts)

Predefined Vector Filter Functions

Predefined partitioning functions for vector data. Examples on how to use them are shown in Partitioning Data.

• void starpu_vector_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_←↩
filter ∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list_long (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_vector_filter_list (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_divide_in_2 (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Predefined Block Filter Functions

Predefined partitioning functions for block data. Examples on how to use them are shown in Partitioning Data. An
example is available in examples/filters/shadow3d.c Note: this is using the C element order which is
row-major, i.e. elements with consecutive x coordinates are consecutive in memory.

• void starpu_block_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_block_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu←↩
_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_←↩
data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_filter_nparts_compute_chunk_size_and_offset (unsigned n, unsigned nparts, size_t elemsize,
unsigned id, unsigned ld, unsigned ∗chunk_size, size_t ∗offset)

Generated by Doxygen

276 Module Documentation a.k.a StarPU’s API

30.10.1 Detailed Description

30.10.2 Data Structure Documentation

30.10.2.1 struct starpu_data_filter

Describe a data partitioning operation, to be given to starpu_data_partition()

Data Fields

• void(∗ filter_func)(void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗, unsigned id, un-
signed nparts)

• unsigned nchildren

• unsigned(∗ get_nchildren)(struct starpu_data_filter ∗, starpu_data_handle_t initial_handle)

• struct starpu_data_interface_ops ∗(∗ get_child_ops)(struct starpu_data_filter ∗, unsigned id)

• unsigned filter_arg

• void ∗ filter_arg_ptr

30.10.2.1.1 Field Documentation

30.10.2.1.1.1 filter_func

void(∗ starpu_data_filter::filter_func) (void ∗father_interface, void ∗child_interface, struct

starpu_data_filter ∗, unsigned id, unsigned nparts)

Fill the child_interface structure with interface information for the i -th child of the parent father_←↩
interface (among nparts). The filter structure is provided, allowing to inspect the starpu_data_filter←↩
::filter_arg and starpu_data_filter::filter_arg_ptr parameters. The details of what needs to be filled in child_←↩
interface vary according to the data interface, but generally speaking:

• id is usually just copied over from the father, when the sub data has the same structure as the father, e.g. a
subvector is a vector, a submatrix is a matrix, etc. This is however not the case for instance when dividing a
BCSR matrix into its dense blocks, which then are matrices.

• nx, ny and alike are usually divided by the number of subdata, depending how the subdivision is done (e.g.
nx division vs ny division for vertical matrix division vs horizontal matrix division).

• ld for matrix interfaces are usually just copied over: the leading dimension (ld) usually does not change.

• elemsize is usually just copied over.

• ptr, the pointer to the data, has to be computed according to i and the father's ptr, so as to point to the
start of the sub data. This should however be done only if the father has ptr different from NULL: in the
OpenCL case notably, the dev_handle and offset fields are used instead.

• dev_handle should be just copied over from the parent.

• offset has to be computed according to i and the father's offset, so as to provide the offset of the start
of the sub data. This is notably used for the OpenCL case.

30.10.2.1.1.2 nchildren

unsigned starpu_data_filter::nchildren

Number of parts to partition the data into.

30.10.2.1.1.3 get_nchildren

unsigned(∗ starpu_data_filter::get_nchildren) (struct starpu_data_filter ∗, starpu_data_←↩

handle_t initial_handle)

Return the number of children. This can be used instead of starpu_data_filter::nchildren when the number of
children depends on the actual data (e.g. the number of blocks in a sparse matrix).

Generated by Doxygen

30.10 Data Partition 277

30.10.2.1.1.4 get_child_ops

struct starpu_data_interface_ops∗(∗ starpu_data_filter::get_child_ops) (struct starpu_data_←↩

filter ∗, unsigned id)

When children use different data interface, return which interface is used by child number id.

30.10.2.1.1.5 filter_arg

unsigned starpu_data_filter::filter_arg

Additional parameter for the filter function

30.10.2.1.1.6 filter_arg_ptr

void∗ starpu_data_filter::filter_arg_ptr

Additional pointer parameter for the filter function, such as the sizes of the different parts.

30.10.3 Function Documentation

30.10.3.1 starpu_data_partition()

void starpu_data_partition (

starpu_data_handle_t initial_handle,

struct starpu_data_filter ∗ f)

Request the partitioning of initial_handle into several subdata according to the filter f.
Here an example of how to use the function.

struct starpu_data_filter f =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = nslicesx
};
starpu_data_partition(A_handle, &f);

30.10.3.2 starpu_data_unpartition()

void starpu_data_unpartition (

starpu_data_handle_t root_data,

unsigned gathering_node)

Unapply the filter which has been applied to root_data, thus unpartitioning the data. The pieces of data are
collected back into one big piece in the gathering_node (usually STARPU_MAIN_RAM). Tasks working on the
partitioned data will be waited for by starpu_data_unpartition().
Here an example of how to use the function.

starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);

30.10.3.3 starpu_data_get_child()

starpu_data_handle_t starpu_data_get_child (

starpu_data_handle_t handle,

unsigned i)

Return the i -th child of the given handle, which must have been partitionned beforehand.

30.10.3.4 starpu_data_get_nb_children()

int starpu_data_get_nb_children (

starpu_data_handle_t handle)

Return the number of children handle has been partitioned into.

Generated by Doxygen

278 Module Documentation a.k.a StarPU’s API

30.10.3.5 starpu_data_get_sub_data()

starpu_data_handle_t starpu_data_get_sub_data (

starpu_data_handle_t root_data,

unsigned depth,

...)

After partitioning a StarPU data by applying a filter, starpu_data_get_sub_data() can be used to get handles for
each of the data portions. root_data is the parent data that was partitioned. depth is the number of filters to
traverse (in case several filters have been applied, to e.g. partition in row blocks, and then in column blocks), and
the subsequent parameters are the indexes. The function returns a handle to the subdata.
Here an example of how to use the function.

h = starpu_data_get_sub_data(A_handle, 1, taskx);

30.10.3.6 starpu_data_vget_sub_data()

starpu_data_handle_t starpu_data_vget_sub_data (

starpu_data_handle_t root_data,

unsigned depth,

va_list pa)

Similar to starpu_data_get_sub_data() but use a va_list for the parameter list.

30.10.3.7 starpu_data_map_filters()

void starpu_data_map_filters (

starpu_data_handle_t root_data,

unsigned nfilters,

...)

Apply nfilters filters to the handle designated by root_handle recursively. nfilters pointers to variables
of the type starpu_data_filter should be given.

30.10.3.8 starpu_data_vmap_filters()

void starpu_data_vmap_filters (

starpu_data_handle_t root_data,

unsigned nfilters,

va_list pa)

Apply nfilters filters to the handle designated by root_handle recursively. Use a va_list of pointers to
variables of the type starpu_data_filter.

30.10.3.9 starpu_data_partition_plan()

void starpu_data_partition_plan (

starpu_data_handle_t initial_handle,

struct starpu_data_filter ∗ f,

starpu_data_handle_t ∗ children)

Plan to partition initial_handle into several subdata according to the filter f. The handles are returned into
the children array, which has to be the same size as the number of parts described in f. These handles are not
immediately usable, starpu_data_partition_submit() has to be called to submit the actual partitioning.
Here is an example of how to use the function:

starpu_data_handle_t children[nslicesx];
struct starpu_data_filter f =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = nslicesx
};
starpu_data_partition_plan(A_handle, &f, children);

Generated by Doxygen

30.10 Data Partition 279

30.10.3.10 starpu_data_partition_submit()

void starpu_data_partition_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Submit the actual partitioning of initial_handle into the nparts children handles. This call is asyn-
chronous, it only submits that the partitioning should be done, so that the children handles can now be used to
submit tasks, and initial_handle can not be used to submit tasks any more (to guarantee coherency). For
instance,

starpu_data_partition_submit(A_handle, nslicesx, children);

30.10.3.11 starpu_data_partition_readonly_submit()

void starpu_data_partition_readonly_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Similar to starpu_data_partition_submit(), but do not invalidate initial_handle. This allows to continue using
it, but the application has to be careful not to write to initial_handle or children handles, only read from
them, since the coherency is otherwise not guaranteed. This thus allows to submit various tasks which concurrently
read from various partitions of the data.
When the application wants to write to initial_handle again, it should call starpu_data_unpartition_submit(),
which will properly add dependencies between the reads on the children and the writes to be submitted.
If instead the application wants to write to children handles, it should call starpu_data_partition_readwrite_←↩
upgrade_submit(), which will correctly add dependencies between the reads on the initial_handle and the
writes to be submitted.

30.10.3.12 starpu_data_partition_readwrite_upgrade_submit()

void starpu_data_partition_readwrite_upgrade_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children)

Assume that a partitioning of initial_handle has already been submited in readonly mode through starpu←↩
_data_partition_readonly_submit(), and will upgrade that partitioning into read-write mode for the children, by
invalidating initial_handle, and adding the necessary dependencies.

30.10.3.13 starpu_data_unpartition_submit()

void starpu_data_unpartition_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node)

Assuming that initial_handle is partitioned into children, submit an unpartitionning of initial_←↩
handle, i.e. submit a gathering of the pieces on the requested gathering_node memory node, and submit
an invalidation of the children.

30.10.3.14 starpu_data_unpartition_readonly_submit()

void starpu_data_unpartition_readonly_submit (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node)

Similar to starpu_data_partition_submit(), but do not invalidate initial_handle. This allows to continue using
it, but the application has to be careful not to write to initial_handle or children handles, only read from

Generated by Doxygen

280 Module Documentation a.k.a StarPU’s API

them, since the coherency is otherwise not guaranteed. This thus allows to submit various tasks which concurrently
read from various partitions of the data.

30.10.3.15 starpu_data_partition_clean()

void starpu_data_partition_clean (

starpu_data_handle_t root_data,

unsigned nparts,

starpu_data_handle_t ∗ children)

Clear the partition planning established between root_data and children with starpu_data_partition_plan().
This will notably submit an unregister all the children, which can thus not be used any more afterwards.

30.10.3.16 starpu_data_unpartition_submit_sequential_consistency_cb()

void starpu_data_unpartition_submit_sequential_consistency_cb (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gather_node,

int sequential_consistency,

void(∗)(void ∗) callback_func,

void ∗ callback_arg)

Similar to starpu_data_unpartition_submit_sequential_consistency() but allow to specify a callback function for the
unpartitiong task

30.10.3.17 starpu_data_partition_submit_sequential_consistency()

void starpu_data_partition_submit_sequential_consistency (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int sequential_consistency)

Similar to starpu_data_partition_submit() but also allow to specify the coherency to be used for the main data
initial_handle through the parameter sequential_consistency.

30.10.3.18 starpu_data_unpartition_submit_sequential_consistency()

void starpu_data_unpartition_submit_sequential_consistency (

starpu_data_handle_t initial_handle,

unsigned nparts,

starpu_data_handle_t ∗ children,

int gathering_node,

int sequential_consistency)

Similar to starpu_data_unpartition_submit() but also allow to specify the coherency to be used for the main data
initial_handle through the parameter sequential_consistency.

30.10.3.19 starpu_bcsr_filter_canonical_block()

void starpu_bcsr_filter_canonical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into dense matrices. starpu_data_filter::get_child_ops needs to be set to starpu_←↩
bcsr_filter_canonical_block_child_ops() and starpu_data_filter::get_nchildren set to starpu_bcsr_filter_canonical←↩
_block_get_nchildren().

Generated by Doxygen

30.10 Data Partition 281

30.10.3.20 starpu_bcsr_filter_canonical_block_get_nchildren()

unsigned starpu_bcsr_filter_canonical_block_get_nchildren (

struct starpu_data_filter ∗ f,

starpu_data_handle_t handle)

Return the number of children obtained with starpu_bcsr_filter_canonical_block().

30.10.3.21 starpu_bcsr_filter_canonical_block_child_ops()

struct starpu_data_interface_ops∗ starpu_bcsr_filter_canonical_block_child_ops (

struct starpu_data_filter ∗ f,

unsigned child)

Return the child_ops of the partition obtained with starpu_bcsr_filter_canonical_block().

30.10.3.22 starpu_bcsr_filter_vertical_block()

void starpu_bcsr_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into block-sparse matrices.
The split is done along the leading dimension, i.e. along adjacent nnz blocks.

30.10.3.23 starpu_csr_filter_vertical_block()

void starpu_csr_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block-sparse matrix into vertical block-sparse matrices.

30.10.3.24 starpu_matrix_filter_block()

void starpu_matrix_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the x dimension, thus getting (x/nparts ,y) matrices. If nparts does not divide x,
the last submatrix contains the remainder.

30.10.3.25 starpu_matrix_filter_block_shadow()

void starpu_matrix_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the x dimension, with a shadow border filter_arg_ptr, thus getting ((x-
2∗shadow)/nparts +2∗shadow,y) matrices. If nparts does not divide x-2∗shadow, the last submatrix contains
the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. A
usage example is available in examples/filters/shadow2d.c

Generated by Doxygen

282 Module Documentation a.k.a StarPU’s API

30.10.3.26 starpu_matrix_filter_vertical_block()

void starpu_matrix_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the y dimension, thus getting (x,y/nparts) matrices. If nparts does not divide y,
the last submatrix contains the remainder.

30.10.3.27 starpu_matrix_filter_vertical_block_shadow()

void starpu_matrix_filter_vertical_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a dense Matrix along the y dimension, with a shadow border filter_arg_ptr, thus getting (x,(y-
2∗shadow)/nparts +2∗shadow) matrices. If nparts does not divide y-2∗shadow, the last submatrix contains
the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. A
usage example is available in examples/filters/shadow2d.c

30.10.3.28 starpu_vector_filter_block()

void starpu_vector_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in nparts chunks of equal size.

30.10.3.29 starpu_vector_filter_block_shadow()

void starpu_vector_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in nparts chunks of equal size with a shadow border filter_arg_ptr, thus getting a vector of
size (n-2∗shadow)/nparts+2∗shadow. The filter_arg_ptr field of fmust be the shadow size casted
into void∗.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts. An
usage example is available in examples/filters/shadow.c

30.10.3.30 starpu_vector_filter_list_long()

void starpu_vector_filter_list_long (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Generated by Doxygen

30.10 Data Partition 283

Return in child_interface the id th element of the vector represented by father_interface once
partitioned into nparts chunks according to the filter_arg_ptr field of f. The filter_arg_ptr field
must point to an array of nparts long elements, each of which specifies the number of elements in each chunk of
the partition.

30.10.3.31 starpu_vector_filter_list()

void starpu_vector_filter_list (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned into nparts chunks according to the filter_arg_ptr field of f. The filter_arg_ptr field
must point to an array of nparts uint32_t elements, each of which specifies the number of elements in each chunk
of the partition.

30.10.3.32 starpu_vector_filter_divide_in_2()

void starpu_vector_filter_divide_in_2 (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Return in child_interface the id th element of the vector represented by father_interface once
partitioned in 2 chunks of equal size, ignoring nparts. Thus, id must be 0 or 1.

30.10.3.33 starpu_block_filter_block()

void starpu_block_filter_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the X dimension, thus getting (x/nparts ,y,z) 3D matrices. If nparts does not divide x,
the last submatrix contains the remainder.

30.10.3.34 starpu_block_filter_block_shadow()

void starpu_block_filter_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the X dimension, with a shadow border filter_arg_ptr, thus getting ((x-
2∗shadow)/nparts +2∗shadow,y,z) blocks. If nparts does not divide x, the last submatrix contains the
remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.

30.10.3.35 starpu_block_filter_vertical_block()

void starpu_block_filter_vertical_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

Generated by Doxygen

284 Module Documentation a.k.a StarPU’s API

unsigned id,

unsigned nparts)

Partition a block along the Y dimension, thus getting (x,y/nparts ,z) blocks. If nparts does not divide y, the last
submatrix contains the remainder.

30.10.3.36 starpu_block_filter_vertical_block_shadow()

void starpu_block_filter_vertical_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Y dimension, with a shadow border filter_arg_ptr, thus getting (x,(y-
2∗shadow)/nparts +2∗shadow,z) 3D matrices. If nparts does not divide y, the last submatrix contains
the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.

30.10.3.37 starpu_block_filter_depth_block()

void starpu_block_filter_depth_block (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Z dimension, thus getting (x,y,z/nparts) blocks. If nparts does not divide z, the last
submatrix contains the remainder.

30.10.3.38 starpu_block_filter_depth_block_shadow()

void starpu_block_filter_depth_block_shadow (

void ∗ father_interface,

void ∗ child_interface,

struct starpu_data_filter ∗ f,

unsigned id,

unsigned nparts)

Partition a block along the Z dimension, with a shadow border filter_arg_ptr, thus getting (x,y,(z-
2∗shadow)/nparts +2∗shadow) blocks. If nparts does not divide z, the last submatrix contains the remainder.
IMPORTANT: This can only be used for read-only access, as no coherency is enforced for the shadowed parts.

30.10.3.39 starpu_filter_nparts_compute_chunk_size_and_offset()

void starpu_filter_nparts_compute_chunk_size_and_offset (

unsigned n,

unsigned nparts,

size_t elemsize,

unsigned id,

unsigned ld,

unsigned ∗ chunk_size,

size_t ∗ offset)

Given an integer n, n the number of parts it must be divided in, id the part currently considered, determines
the chunk_size and the offset, taking into account the size of the elements stored in the data structure
elemsize and ld, the leading dimension, which is most often 1.

Generated by Doxygen

30.11 Out Of Core 285

30.11 Out Of Core

Data Structures

• struct starpu_disk_ops

Macros

• #define STARPU_DISK_SIZE_MIN

Functions

• void starpu_disk_close (unsigned node, void ∗obj, size_t size)
• void ∗ starpu_disk_open (unsigned node, void ∗pos, size_t size)
• int starpu_disk_register (struct starpu_disk_ops ∗func, void ∗parameter, starpu_ssize_t size)

Variables

• struct starpu_disk_ops starpu_disk_stdio_ops
• struct starpu_disk_ops starpu_disk_hdf5_ops
• struct starpu_disk_ops starpu_disk_unistd_ops
• struct starpu_disk_ops starpu_disk_unistd_o_direct_ops
• struct starpu_disk_ops starpu_disk_leveldb_ops
• int starpu_disk_swap_node

30.11.1 Detailed Description

30.11.2 Data Structure Documentation

30.11.2.1 struct starpu_disk_ops

Set of functions to manipulate datas on disk.

Data Fields

• void ∗(∗ plug)(void ∗parameter, starpu_ssize_t size)
• void(∗ unplug)(void ∗base)
• int(∗ bandwidth)(unsigned node, void ∗base)
• void ∗(∗ alloc)(void ∗base, size_t size)
• void(∗ free)(void ∗base, void ∗obj, size_t size)
• void ∗(∗ open)(void ∗base, void ∗pos, size_t size)
• void(∗ close)(void ∗base, void ∗obj, size_t size)
• int(∗ read)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• int(∗ write)(void ∗base, void ∗obj, const void ∗buf, off_t offset, size_t size)
• int(∗ full_read)(void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size, unsigned dst_node)
• int(∗ full_write)(void ∗base, void ∗obj, void ∗ptr, size_t size)
• void ∗(∗ async_write)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• void ∗(∗ async_read)(void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)
• void ∗(∗ async_full_read)(void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size, unsigned dst_node)
• void ∗(∗ async_full_write)(void ∗base, void ∗obj, void ∗ptr, size_t size)
• void ∗(∗ copy)(void ∗base_src, void ∗obj_src, off_t offset_src, void ∗base_dst, void ∗obj_dst, off_t offset_dst,

size_t size)
• void(∗ wait_request)(void ∗async_channel)
• int(∗ test_request)(void ∗async_channel)
• void(∗ free_request)(void ∗async_channel)

30.11.2.1.1 Field Documentation

Generated by Doxygen

286 Module Documentation a.k.a StarPU’s API

30.11.2.1.1.1 plug

void∗(∗ starpu_disk_ops::plug) (void ∗parameter, starpu_ssize_t size)

Connect a disk memory at location parameter with size size, and return a base as void∗, which will be passed
by StarPU to all other methods.

30.11.2.1.1.2 unplug

void(∗ starpu_disk_ops::unplug) (void ∗base)
Disconnect a disk memory base.

30.11.2.1.1.3 bandwidth

int(∗ starpu_disk_ops::bandwidth) (unsigned node, void ∗base)
Measure the bandwidth and the latency for the disk node and save it. Returns 1 if it could measure it.

30.11.2.1.1.4 alloc

void∗(∗ starpu_disk_ops::alloc) (void ∗base, size_t size)

Create a new location for datas of size size. Return an opaque object pointer.

30.11.2.1.1.5 free

void(∗ starpu_disk_ops::free) (void ∗base, void ∗obj, size_t size)

Free a data obj previously allocated with starpu_disk_ops::alloc.

30.11.2.1.1.6 open

void∗(∗ starpu_disk_ops::open) (void ∗base, void ∗pos, size_t size)

Open an existing location of datas, at a specific position pos dependent on the backend.

30.11.2.1.1.7 close

void(∗ starpu_disk_ops::close) (void ∗base, void ∗obj, size_t size)

Close, without deleting it, a location of datas obj.

30.11.2.1.1.8 read

int(∗ starpu_disk_ops::read) (void ∗base, void ∗obj, void ∗buf, off_t offset, size_t size)

Read size bytes of data from obj in base, at offset offset, and put into buf. Return the actual number of
read bytes.

30.11.2.1.1.9 write

int(∗ starpu_disk_ops::write) (void ∗base, void ∗obj, const void ∗buf, off_t offset, size_←↩

t size)

Write size bytes of data to obj in base, at offset offset, from buf. Return 0 on success.

30.11.2.1.1.10 full_read

int(∗ starpu_disk_ops::full_read) (void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size, unsigned

dst_node)

Read all data from obj of base, from offset 0. Returns it in an allocated buffer ptr, of size size

30.11.2.1.1.11 full_write

int(∗ starpu_disk_ops::full_write) (void ∗base, void ∗obj, void ∗ptr, size_t size)

Write data in ptr to obj of base, from offset 0, and truncate obj to size, so that a full_read will get it.

30.11.2.1.1.12 async_write

void∗(∗ starpu_disk_ops::async_write) (void ∗base, void ∗obj, void ∗buf, off_t offset, size_t

size)

Asynchronously write size bytes of data to obj in base, at offset offset, from buf. Return a void∗ pointer
that StarPU will pass to xxx_request methods for testing for the completion.

30.11.2.1.1.13 async_read

void∗(∗ starpu_disk_ops::async_read) (void ∗base, void ∗obj, void ∗buf, off_t offset, size_←↩

t size)

Asynchronously read size bytes of data from obj in base, at offset offset, and put into buf. Return a void∗
pointer that StarPU will pass to xxx_request methods for testing for the completion.

Generated by Doxygen

30.11 Out Of Core 287

30.11.2.1.1.14 async_full_read

void∗(∗ starpu_disk_ops::async_full_read) (void ∗base, void ∗obj, void ∗∗ptr, size_t ∗size,
unsigned dst_node)

Read all data from obj of base, from offset 0. Return it in an allocated buffer ptr, of size size

30.11.2.1.1.15 async_full_write

void∗(∗ starpu_disk_ops::async_full_write) (void ∗base, void ∗obj, void ∗ptr, size_t size)

Write data in ptr to obj of base, from offset 0, and truncate obj to size, so that a starpu_disk_ops::full_read
will get it.

30.11.2.1.1.16 copy

void∗(∗ starpu_disk_ops::copy) (void ∗base_src, void ∗obj_src, off_t offset_src, void ∗base_←↩
dst, void ∗obj_dst, off_t offset_dst, size_t size)

Copy from offset offset_src of disk object obj_src in base_src to offset offset_dst of disk object
obj_dst in base_dst. Return a void∗ pointer that StarPU will pass to xxx_request methods for testing for
the completion.

30.11.2.1.1.17 wait_request

void(∗ starpu_disk_ops::wait_request) (void ∗async_channel)
Wait for completion of request async_channel returned by a previous asynchronous read, write or copy.

30.11.2.1.1.18 test_request

int(∗ starpu_disk_ops::test_request) (void ∗async_channel)
Test for completion of request async_channel returned by a previous asynchronous read, write or copy. Return
1 on completion, 0 otherwise.

30.11.2.1.1.19 free_request

void(∗ starpu_disk_ops::free_request) (void ∗async_channel)
Free the request allocated by a previous asynchronous read, write or copy.

30.11.3 Macro Definition Documentation

30.11.3.1 STARPU_DISK_SIZE_MIN

#define STARPU_DISK_SIZE_MIN

Minimum size of a registered disk. The size of a disk is the last parameter of the function starpu_disk_register().

30.11.4 Function Documentation

30.11.4.1 starpu_disk_close()

void starpu_disk_close (

unsigned node,

void ∗ obj,

size_t size)

Close an existing data opened with starpu_disk_open().

30.11.4.2 starpu_disk_open()

void∗ starpu_disk_open (

unsigned node,

void ∗ pos,

size_t size)

Open an existing file memory in a disk node. size is the size of the file. pos is the specific position dependent on
the backend, given to the open method of the disk operations. Return an opaque object pointer.

Generated by Doxygen

288 Module Documentation a.k.a StarPU’s API

30.11.4.3 starpu_disk_register()

int starpu_disk_register (

struct starpu_disk_ops ∗ func,

void ∗ parameter,

starpu_ssize_t size)

Register a disk memory node with a set of functions to manipulate datas. The plug member of func will be
passed parameter, and return a base which will be passed to all func methods.
SUCCESS: return the disk node.
FAIL: return an error code.
size must be at least STARPU_DISK_SIZE_MIN bytes ! size being negative means infinite size.

30.11.5 Variable Documentation

30.11.5.1 starpu_disk_stdio_ops

struct starpu_disk_ops starpu_disk_stdio_ops

Use the stdio library (fwrite, fread...) to read/write on disk.
Warning: It creates one file per allocation !
Do not support asynchronous transfers.

30.11.5.2 starpu_disk_hdf5_ops

struct starpu_disk_ops starpu_disk_hdf5_ops

Use the HDF5 library.
It doesn't support multiple opening from different processes.
You may only allow one process to write in the HDF5 file.
If HDF5 library is not compiled with –thread-safe you can't open more than one HDF5 file at the same time.

30.11.5.3 starpu_disk_unistd_ops

struct starpu_disk_ops starpu_disk_unistd_ops

Use the unistd library (write, read...) to read/write on disk.
Warning: It creates one file per allocation !

30.11.5.4 starpu_disk_unistd_o_direct_ops

struct starpu_disk_ops starpu_disk_unistd_o_direct_ops

Use the unistd library (write, read...) to read/write on disk with the O_DIRECT flag.
Warning: It creates one file per allocation !
Only available on Linux systems.

30.11.5.5 starpu_disk_leveldb_ops

struct starpu_disk_ops starpu_disk_leveldb_ops

Use the leveldb created by Google. More information at https://code.google.com/p/leveldb/ Do not
support asynchronous transfers.

30.11.5.6 starpu_disk_swap_node

int starpu_disk_swap_node

Contain the node number of the disk swap, if set up through the STARPU_DISK_SWAP variable.

Generated by Doxygen

https://code.google.com/p/leveldb/

30.12 Codelet And Tasks 289

30.12 Codelet And Tasks

This section describes the interface to manipulate codelets and tasks.

Data Structures

• struct starpu_codelet
• struct starpu_data_descr
• struct starpu_task

Macros

• #define STARPU_NMAXBUFS
• #define STARPU_NOWHERE
• #define STARPU_CPU
• #define STARPU_CUDA
• #define STARPU_OPENCL
• #define STARPU_MIC
• #define STARPU_MPI_MS
• #define STARPU_CODELET_SIMGRID_EXECUTE
• #define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
• #define STARPU_CODELET_NOPLANS
• #define STARPU_CUDA_ASYNC
• #define STARPU_OPENCL_ASYNC
• #define STARPU_MAIN_RAM
• #define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
• #define STARPU_VARIABLE_NBUFFERS
• #define STARPU_SPECIFIC_NODE_LOCAL
• #define STARPU_SPECIFIC_NODE_CPU
• #define STARPU_SPECIFIC_NODE_SLOW
• #define STARPU_SPECIFIC_NODE_FAST
• #define STARPU_TASK_TYPE_NORMAL
• #define STARPU_TASK_TYPE_INTERNAL
• #define STARPU_TASK_TYPE_DATA_ACQUIRE
• #define STARPU_TASK_INITIALIZER
• #define STARPU_TASK_GET_NBUFFERS(task)
• #define STARPU_TASK_GET_HANDLE(task, i)
• #define STARPU_TASK_GET_HANDLES(task)
• #define STARPU_TASK_SET_HANDLE(task, handle, i)
• #define STARPU_CODELET_GET_MODE(codelet, i)
• #define STARPU_CODELET_SET_MODE(codelet, mode, i)
• #define STARPU_TASK_GET_MODE(task, i)
• #define STARPU_TASK_SET_MODE(task, mode, i)
• #define STARPU_CODELET_GET_NODE(codelet, i)
• #define STARPU_CODELET_SET_NODE(codelet, __node, i)

Typedefs

• typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_mic_kernel_t) (void ∗∗, void ∗)
• typedef starpu_mic_kernel_t(∗ starpu_mic_func_t) (void)
• typedef void(∗ starpu_mpi_ms_kernel_t) (void ∗∗, void ∗)
• typedef starpu_mpi_ms_kernel_t(∗ starpu_mpi_ms_func_t) (void)

Generated by Doxygen

290 Module Documentation a.k.a StarPU’s API

Enumerations

• enum starpu_codelet_type { STARPU_SEQ, STARPU_SPMD, STARPU_FORKJOIN }
• enum starpu_task_status {

STARPU_TASK_INIT, STARPU_TASK_INIT, STARPU_TASK_BLOCKED, STARPU_TASK_READY,
STARPU_TASK_RUNNING, STARPU_TASK_FINISHED, STARPU_TASK_BLOCKED_ON_TAG, STAR←↩
PU_TASK_BLOCKED_ON_TASK,
STARPU_TASK_BLOCKED_ON_DATA, STARPU_TASK_STOPPED }

Functions

• void starpu_task_init (struct starpu_task ∗task)
• void starpu_task_clean (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_task_destroy (struct starpu_task ∗task)
• int starpu_task_submit (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_submit_to_ctx (struct starpu_task ∗task, unsigned sched_ctx_id)
• int starpu_task_finished (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_wait (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_wait_array (struct starpu_task ∗∗tasks, unsigned nb_tasks) STARPU_WARN_UNUSED_←↩

RESULT
• int starpu_task_wait_for_all (void)
• int starpu_task_wait_for_n_submitted (unsigned n)
• int starpu_task_wait_for_all_in_ctx (unsigned sched_ctx_id)
• int starpu_task_wait_for_n_submitted_in_ctx (unsigned sched_ctx_id, unsigned n)
• int starpu_task_wait_for_no_ready (void)
• int starpu_task_nready (void)
• int starpu_task_nsubmitted (void)
• void starpu_iteration_push (unsigned long iteration)
• void starpu_iteration_pop (void)
• void starpu_do_schedule (void)
• void starpu_codelet_init (struct starpu_codelet ∗cl)
• void starpu_codelet_display_stats (struct starpu_codelet ∗cl)
• struct starpu_task ∗ starpu_task_get_current (void)
• int starpu_task_get_current_data_node (unsigned i)
• const char ∗ starpu_task_get_model_name (struct starpu_task ∗task)
• const char ∗ starpu_task_get_name (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_dup (struct starpu_task ∗task)
• void starpu_task_set_implementation (struct starpu_task ∗task, unsigned impl)
• unsigned starpu_task_get_implementation (struct starpu_task ∗task)
• void starpu_create_sync_task (starpu_tag_t sync_tag, unsigned ndeps, starpu_tag_t ∗deps, void(∗callback)(void
∗), void ∗callback_arg)

• void starpu_create_callback_task (void(∗callback)(void ∗), void ∗callback_arg)
• void starpu_task_watchdog_set_hook (void(∗hook)(void ∗), void ∗hook_arg)

30.12.1 Detailed Description

This section describes the interface to manipulate codelets and tasks.

30.12.2 Data Structure Documentation

30.12.2.1 struct starpu_codelet

The codelet structure describes a kernel that is possibly implemented on various targets. For compatibility, make
sure to initialize the whole structure to zero, either by using explicit memset, or the function starpu_codelet_init(), or
by letting the compiler implicitly do it in e.g. static storage case.

Generated by Doxygen

30.12 Codelet And Tasks 291

Data Fields

• uint32_t where
• int(∗ can_execute)(unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• enum starpu_codelet_type type
• int max_parallelism
• starpu_cpu_func_t cpu_func
• starpu_cuda_func_t cuda_func
• starpu_opencl_func_t opencl_func
• starpu_cpu_func_t cpu_funcs [STARPU_MAXIMPLEMENTATIONS]
• starpu_cuda_func_t cuda_funcs [STARPU_MAXIMPLEMENTATIONS]
• char cuda_flags [STARPU_MAXIMPLEMENTATIONS]
• starpu_opencl_func_t opencl_funcs [STARPU_MAXIMPLEMENTATIONS]
• char opencl_flags [STARPU_MAXIMPLEMENTATIONS]
• starpu_mic_func_t mic_funcs [STARPU_MAXIMPLEMENTATIONS]
• starpu_mpi_ms_func_t mpi_ms_funcs [STARPU_MAXIMPLEMENTATIONS]
• const char ∗ cpu_funcs_name [STARPU_MAXIMPLEMENTATIONS]
• int nbuffers
• enum starpu_data_access_mode modes [STARPU_NMAXBUFS]
• enum starpu_data_access_mode ∗ dyn_modes
• unsigned specific_nodes
• int nodes [STARPU_NMAXBUFS]
• int ∗ dyn_nodes
• struct starpu_perfmodel ∗ model
• struct starpu_perfmodel ∗ energy_model
• unsigned long per_worker_stats [STARPU_NMAXWORKERS]
• const char ∗ name
• unsigned color
• void(∗ callback_func)(void ∗)
• int flags
• int checked

30.12.2.1.1 Field Documentation

30.12.2.1.1.1 where

uint32_t starpu_codelet::where

Optional field to indicate which types of processing units are able to execute the codelet. The different values ST←↩
ARPU_CPU, STARPU_CUDA, STARPU_OPENCL can be combined to specify on which types of processing units
the codelet can be executed. STARPU_CPU|STARPU_CUDA for instance indicates that the codelet is implemented
for both CPU cores and CUDA devices while STARPU_OPENCL indicates that it is only available on OpenCL
devices. If the field is unset, its value will be automatically set based on the availability of the XXX_funcs fields
defined below. It can also be set to STARPU_NOWHERE to specify that no computation has to be actually done.

30.12.2.1.1.2 can_execute

int(∗ starpu_codelet::can_execute) (unsigned workerid, struct starpu_task ∗task, unsigned

nimpl)

Define a function which should return 1 if the worker designated by workerid can execute the nimpl -th imple-
mentation of task, 0 otherwise.

30.12.2.1.1.3 type

enum starpu_codelet_type starpu_codelet::type

Optional field to specify the type of the codelet. The default is STARPU_SEQ, i.e. usual sequential implementation.
Other values (STARPU_SPMD or STARPU_FORKJOIN) declare that a parallel implementation is also available.
See Parallel Tasks for details.

Generated by Doxygen

292 Module Documentation a.k.a StarPU’s API

30.12.2.1.1.4 max_parallelism

int starpu_codelet::max_parallelism

Optional field. If a parallel implementation is available, this denotes the maximum combined worker size that StarPU
will use to execute parallel tasks for this codelet.

30.12.2.1.1.5 cpu_func

starpu_cpu_func_t starpu_codelet::cpu_func

Deprecated Optional field which has been made deprecated. One should use instead the field starpu_codelet←↩
::cpu_funcs.

30.12.2.1.1.6 cuda_func

starpu_cuda_func_t starpu_codelet::cuda_func

Deprecated Optional field which has been made deprecated. One should use instead the starpu_codelet::cuda←↩
_funcs field.

30.12.2.1.1.7 opencl_func

starpu_opencl_func_t starpu_codelet::opencl_func

Deprecated Optional field which has been made deprecated. One should use instead the starpu_codelet::opencl←↩
_funcs field.

30.12.2.1.1.8 cpu_funcs

starpu_cpu_func_t starpu_codelet::cpu_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the CPU implementations of the codelet. The functions prototype must be:

void cpu_func(void *buffers[], void *cl_arg)

The first argument being the array of data managed by the data management library, and the second argument is
a pointer to the argument passed from the field starpu_task::cl_arg. If the field starpu_codelet::where is set, then
the field tarpu_codelet::cpu_funcs is ignored if STARPU_CPU does not appear in the field starpu_codelet::where,
it must be non-NULL otherwise.

30.12.2.1.1.9 cuda_funcs

starpu_cuda_func_t starpu_codelet::cuda_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the CUDA implementations of the codelet. The functions must be host-
functions written in the CUDA runtime API. Their prototype must be:

void cuda_func(void *buffers[], void *cl_arg)

If the field starpu_codelet::where is set, then the field starpu_codelet::cuda_funcs is ignored if STARPU_CUDA
does not appear in the field starpu_codelet::where, it must be non-NULL otherwise.

30.12.2.1.1.10 cuda_flags

char starpu_codelet::cuda_flags[STARPU_MAXIMPLEMENTATIONS]

Optional array of flags for CUDA execution. They specify some semantic details about CUDA kernel execution, such
as asynchronous execution.

30.12.2.1.1.11 opencl_funcs

starpu_opencl_func_t starpu_codelet::opencl_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to the OpenCL implementations of the codelet. The functions prototype must be:

void opencl_func(void *buffers[], void *cl_arg)

If the field starpu_codelet::where field is set, then the field starpu_codelet::opencl_funcs is ignored if STARPU_←↩
OPENCL does not appear in the field starpu_codelet::where, it must be non-NULL otherwise.

Generated by Doxygen

30.12 Codelet And Tasks 293

30.12.2.1.1.12 opencl_flags

char starpu_codelet::opencl_flags[STARPU_MAXIMPLEMENTATIONS]

Optional array of flags for OpenCL execution. They specify some semantic details about OpenCL kernel execution,
such as asynchronous execution.

30.12.2.1.1.13 mic_funcs

starpu_mic_func_t starpu_codelet::mic_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to a function which returns the MIC implementation of the codelet. The functions
prototype must be:
starpu_mic_kernel_t mic_func(struct starpu_codelet *cl, unsigned nimpl)

If the field starpu_codelet::where is set, then the field starpu_codelet::mic_funcs is ignored if STARPU_MIC does
not appear in the field starpu_codelet::where. It can be NULL if starpu_codelet::cpu_funcs_name is non-NULL, in
which case StarPU will simply make a symbol lookup to get the implementation.

30.12.2.1.1.14 mpi_ms_funcs

starpu_mpi_ms_func_t starpu_codelet::mpi_ms_funcs[STARPU_MAXIMPLEMENTATIONS]

Optional array of function pointers to a function which returns the MPI Master Slave implementation of the codelet.
The functions prototype must be:
starpu_mpi_ms_kernel_t mpi_ms_func(struct starpu_codelet *cl, unsigned

nimpl)

If the field starpu_codelet::where is set, then the field starpu_codelet::mpi_ms_funcs is ignored if STARPU_M←↩
PI_MS does not appear in the field starpu_codelet::where. It can be NULL if starpu_codelet::cpu_funcs_name is
non-NULL, in which case StarPU will simply make a symbol lookup to get the implementation.

30.12.2.1.1.15 cpu_funcs_name

const char∗ starpu_codelet::cpu_funcs_name[STARPU_MAXIMPLEMENTATIONS]

Optional array of strings which provide the name of the CPU functions referenced in the array starpu_codelet::cpu←↩
_funcs. This can be used when running on MIC devices for StarPU to simply look up the MIC function implementa-
tion through its name.

30.12.2.1.1.16 nbuffers

int starpu_codelet::nbuffers

Specify the number of arguments taken by the codelet. These arguments are managed by the DSM and are
accessed from the void ∗buffers[] array. The constant argument passed with the field starpu_task::cl_arg is
not counted in this number. This value should not be above STARPU_NMAXBUFS. It may be set to STARPU_←↩
VARIABLE_NBUFFERS to specify that the number of buffers and their access modes will be set in starpu_task←↩
::nbuffers and starpu_task::modes or starpu_task::dyn_modes, which thus permits to define codelets with a varying
number of data.

30.12.2.1.1.17 modes

enum starpu_data_access_mode starpu_codelet::modes[STARPU_NMAXBUFS]

Is an array of starpu_data_access_mode. It describes the required access modes to the data neeeded by the
codelet (e.g. STARPU_RW). The number of entries in this array must be specified in the field starpu_codelet←↩
::nbuffers, and should not exceed STARPU_NMAXBUFS. If unsufficient, this value can be set with the configure
option --enable-maxbuffers.

30.12.2.1.1.18 dyn_modes

enum starpu_data_access_mode∗ starpu_codelet::dyn_modes

Is an array of starpu_data_access_mode. It describes the required access modes to the data needed by the codelet
(e.g. STARPU_RW). The number of entries in this array must be specified in the field starpu_codelet::nbuffers. This
field should be used for codelets having a number of datas greater than STARPU_NMAXBUFS (see Setting Many
Data Handles For a Task). When defining a codelet, one should either define this field or the field starpu_codelet←↩
::modes defined above.

30.12.2.1.1.19 specific_nodes

unsigned starpu_codelet::specific_nodes

Default value is 0. If this flag is set, StarPU will not systematically send all data to the memory node where the task
will be executing, it will read the starpu_codelet::nodes or starpu_codelet::dyn_nodes array to determine, for each
data, whether to send it on the memory node where the task will be executing (-1), or on a specific node (!= -1).

Generated by Doxygen

294 Module Documentation a.k.a StarPU’s API

30.12.2.1.1.20 nodes

int starpu_codelet::nodes[STARPU_NMAXBUFS]

Optional field. When starpu_codelet::specific_nodes is 1, this specifies the memory nodes where each data should
be sent to for task execution. The number of entries in this array is starpu_codelet::nbuffers, and should not exceed
STARPU_NMAXBUFS.

30.12.2.1.1.21 dyn_nodes

int∗ starpu_codelet::dyn_nodes

Optional field. When starpu_codelet::specific_nodes is 1, this specifies the memory nodes where each data should
be sent to for task execution. The number of entries in this array is starpu_codelet::nbuffers. This field should be
used for codelets having a number of datas greater than STARPU_NMAXBUFS (see Setting Many Data Handles
For a Task). When defining a codelet, one should either define this field or the field starpu_codelet::nodes defined
above.

30.12.2.1.1.22 model

struct starpu_perfmodel∗ starpu_codelet::model

Optional pointer to the task duration performance model associated to this codelet. This optional field is ignored
when set to NULL or when its field starpu_perfmodel::symbol is not set.

30.12.2.1.1.23 energy_model

struct starpu_perfmodel∗ starpu_codelet::energy_model

Optional pointer to the task energy consumption performance model associated to this codelet. This optional field
is ignored when set to NULL or when its field starpu_perfmodel::symbol is not set. In the case of parallel codelets,
this has to account for all processing units involved in the parallel execution.

30.12.2.1.1.24 per_worker_stats

unsigned long starpu_codelet::per_worker_stats[STARPU_NMAXWORKERS]

Optional array for statistics collected at runtime: this is filled by StarPU and should not be accessed directly, but for
example by calling the function starpu_codelet_display_stats() (See starpu_codelet_display_stats() for details).

30.12.2.1.1.25 name

const char∗ starpu_codelet::name

Optional name of the codelet. This can be useful for debugging purposes.

30.12.2.1.1.26 color

unsigned starpu_codelet::color

Optional color of the codelet. This can be useful for debugging purposes.

30.12.2.1.1.27 callback_func

void(∗ starpu_codelet::callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host after the
execution of the task. If the task defines a callback, the codelet callback is not called, unless called within the task
callback function. The callback is passed the value contained in the starpu_task::callback_arg field. No callback is
executed if the field is set to NULL.

30.12.2.1.1.28 flags

int starpu_codelet::flags

Various flags for the codelet.

30.12.2.1.1.29 checked

int starpu_codelet::checked

Whether _starpu_codelet_check_deprecated_fields was already done or not.

30.12.2.2 struct starpu_data_descr

Describe a data handle along with an access mode.

Generated by Doxygen

30.12 Codelet And Tasks 295

Data Fields

starpu_data_handle_t handle data

enum starpu_data_access_mode mode access mode

30.12.2.3 struct starpu_task

Describe a task that can be offloaded on the various processing units managed by StarPU. It instantiates a codelet.
It can either be allocated dynamically with the function starpu_task_create(), or declared statically. In the latter case,
the programmer has to zero the structure starpu_task and to fill the different fields properly. The indicated default
values correspond to the configuration of a task allocated with starpu_task_create().

Data Fields

• const char ∗ name
• struct starpu_codelet ∗ cl
• int32_t where
• int nbuffers
• starpu_data_handle_t ∗ dyn_handles
• void ∗∗ dyn_interfaces
• enum starpu_data_access_mode ∗ dyn_modes
• starpu_data_handle_t handles [STARPU_NMAXBUFS]
• void ∗ interfaces [STARPU_NMAXBUFS]
• enum starpu_data_access_mode modes [STARPU_NMAXBUFS]
• unsigned char ∗ handles_sequential_consistency
• void ∗ cl_arg
• size_t cl_arg_size
• void(∗ callback_func)(void ∗)
• void ∗ callback_arg
• void(∗ prologue_callback_func)(void ∗)
• void ∗ prologue_callback_arg
• void(∗ prologue_callback_pop_func)(void ∗)
• void ∗ prologue_callback_pop_arg
• starpu_tag_t tag_id
• unsigned cl_arg_free:1
• unsigned callback_arg_free:1
• unsigned prologue_callback_arg_free:1
• unsigned prologue_callback_pop_arg_free:1
• unsigned use_tag:1
• unsigned sequential_consistency:1
• unsigned synchronous:1
• unsigned execute_on_a_specific_worker:1
• unsigned detach:1
• unsigned destroy:1
• unsigned regenerate:1
• unsigned no_submitorder:1
• unsigned char scheduled
• unsigned char prefetched
• unsigned workerid
• unsigned workerorder
• uint32_t ∗ workerids
• unsigned workerids_len
• int priority
• enum starpu_task_status status

Generated by Doxygen

296 Module Documentation a.k.a StarPU’s API

• unsigned type
• unsigned color
• unsigned sched_ctx
• int hypervisor_tag
• unsigned possibly_parallel
• starpu_task_bundle_t bundle
• struct starpu_profiling_task_info ∗ profiling_info
• double flops
• double predicted
• double predicted_transfer
• double predicted_start
• void ∗ sched_data

Private Attributes

• unsigned char mf_skip
• int magic
• struct starpu_task ∗ prev
• struct starpu_task ∗ next
• void ∗ starpu_private
• struct starpu_omp_task ∗ omp_task
• unsigned nb_termination_call_required

30.12.2.3.1 Field Documentation

30.12.2.3.1.1 name

const char∗ starpu_task::name

Optional name of the task. This can be useful for debugging purposes.
With starpu_task_insert() and alike this can be specified thanks to STARPU_NAME followed by the const char ∗.
30.12.2.3.1.2 cl

struct starpu_codelet∗ starpu_task::cl

Pointer to the corresponding structure starpu_codelet. This describes where the kernel should be executed, and
supplies the appropriate implementations. When set to NULL, no code is executed during the tasks, such empty
tasks can be useful for synchronization purposes.

30.12.2.3.1.3 where

int32_t starpu_task::where

When set, specify where the task is allowed to be executed. When unset, take the value of starpu_codelet::where.
With starpu_task_insert() and alike this can be specified thanks to STARPU_EXECUTE_WHERE followed by an
unsigned long long.

30.12.2.3.1.4 nbuffers

int starpu_task::nbuffers

Specify the number of buffers. This is only used when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFF←↩
ERS.
With starpu_task_insert() and alike this is automatically computed when using STARPU_DATA_ARRAY and alike.

30.12.2.3.1.5 dyn_handles

starpu_data_handle_t∗ starpu_task::dyn_handles

Array of starpu_data_handle_t. Specify the handles to the different pieces of data accessed by the task. The
number of entries in this array must be specified in the field starpu_codelet::nbuffers. This field should be used for
tasks having a number of datas greater than STARPU_NMAXBUFS (see Setting Many Data Handles For a Task).
When defining a task, one should either define this field or the field starpu_task::handles defined below.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_ARRAY and alike.

Generated by Doxygen

30.12 Codelet And Tasks 297

30.12.2.3.1.6 dyn_interfaces

void∗∗ starpu_task::dyn_interfaces

Array of data pointers to the memory node where execution will happen, managed by the DSM. Is used when the
field starpu_task::dyn_handles is defined.
This is filled by StarPU.

30.12.2.3.1.7 dyn_modes

enum starpu_data_access_mode∗ starpu_task::dyn_modes

Used only when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFFERS. Array of starpu_data_access_←↩
mode which describes the required access modes to the data needed by the codelet (e.g. STARPU_RW). The
number of entries in this array must be specified in the field starpu_codelet::nbuffers. This field should be used
for codelets having a number of datas greater than STARPU_NMAXBUFS (see Setting Many Data Handles For a
Task). When defining a codelet, one should either define this field or the field starpu_task::modes defined below.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_MODE_ARRAY and
alike.

30.12.2.3.1.8 handles

starpu_data_handle_t starpu_task::handles[STARPU_NMAXBUFS]

Array of starpu_data_handle_t. Specify the handles to the different pieces of data accessed by the task. The
number of entries in this array must be specified in the field starpu_codelet::nbuffers, and should not exceed ST←↩
ARPU_NMAXBUFS. If unsufficient, this value can be set with the configure option --enable-maxbuffers.
With starpu_task_insert() and alike this is automatically filled when using STARPU_R and alike.

30.12.2.3.1.9 interfaces

void∗ starpu_task::interfaces[STARPU_NMAXBUFS]

Array of Data pointers to the memory node where execution will happen, managed by the DSM.
This is filled by StarPU.

30.12.2.3.1.10 modes

enum starpu_data_access_mode starpu_task::modes[STARPU_NMAXBUFS]

Used only when starpu_codelet::nbuffers is STARPU_VARIABLE_NBUFFERS. Array of starpu_data_access_←↩
mode which describes the required access modes to the data neeeded by the codelet (e.g. STARPU_RW). The
number of entries in this array must be specified in the field starpu_task::nbuffers, and should not exceed STAR←↩
PU_NMAXBUFS. If unsufficient, this value can be set with the configure option --enable-maxbuffers.
With starpu_task_insert() and alike this is automatically filled when using STARPU_DATA_MODE_ARRAY and
alike.

30.12.2.3.1.11 handles_sequential_consistency

unsigned char∗ starpu_task::handles_sequential_consistency

Optional pointer to an array of characters which allows to define the sequential consistency for each handle for the
current task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_HANDLES_SEQUENTIAL_CONSI←↩
STENCY followed by an unsigned char ∗
30.12.2.3.1.12 cl_arg

void∗ starpu_task::cl_arg

Optional pointer which is passed to the codelet through the second argument of the codelet implementation (e.g.
starpu_codelet::cpu_func or starpu_codelet::cuda_func). The default value is NULL. starpu_codelet_pack_args()
and starpu_codelet_unpack_args() are helpers that can can be used to respectively pack and unpack data into and
from it, but the application can manage it any way, the only requirement is that the size of the data must be set in
starpu_task::cl_arg_size .
With starpu_task_insert() and alike this can be specified thanks to STARPU_CL_ARGS followed by a void∗ and a
size_t.

30.12.2.3.1.13 cl_arg_size

size_t starpu_task::cl_arg_size

Optional field. For some specific drivers, the pointer starpu_task::cl_arg cannot not be directly given to the driver
function. A buffer of size starpu_task::cl_arg_size needs to be allocated on the driver. This buffer is then filled with
the starpu_task::cl_arg_size bytes starting at address starpu_task::cl_arg. In this case, the argument given to the

Generated by Doxygen

298 Module Documentation a.k.a StarPU’s API

codelet is therefore not the starpu_task::cl_arg pointer, but the address of the buffer in local store (LS) instead. This
field is ignored for CPU, CUDA and OpenCL codelets, where the starpu_task::cl_arg pointer is given as such.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CL_ARGS followed by a void∗ and a
size_t.

30.12.2.3.1.14 callback_func

void(∗ starpu_task::callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host after the
execution of the task. Tasks which depend on it might already be executing. The callback is passed the value
contained in the starpu_task::callback_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CALLBACK followed by the function
pointer, or thanks to STARPU_CALLBACK_WITH_ARG (or STARPU_CALLBACK_WITH_ARG_NFREE) followed
by the function pointer and the argument.

30.12.2.3.1.15 callback_arg

void∗ starpu_task::callback_arg

Optional field, the default value is NULL. This is the pointer passed to the callback function. This field is ignored if
the field starpu_task::callback_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_CALLBACK_ARG followed by the
argument pointer, or thanks to STARPU_CALLBACK_WITH_ARG or STARPU_CALLBACK_WITH_ARG_NFREE
followed by the function pointer and the argument.

30.12.2.3.1.16 prologue_callback_func

void(∗ starpu_task::prologue_callback_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void ∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host when the
task becomes ready for execution, before getting scheduled. The callback is passed the value contained in the
starpu_task::prologue_callback_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK followed by
the function pointer.

30.12.2.3.1.17 prologue_callback_arg

void∗ starpu_task::prologue_callback_arg

Optional field, the default value is NULL. This is the pointer passed to the prologue callback function. This field is
ignored if the field starpu_task::prologue_callback_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_ARG fol-
lowed by the argument

30.12.2.3.1.18 prologue_callback_pop_func

void(∗ starpu_task::prologue_callback_pop_func) (void ∗)
Optional field, the default value is NULL. This is a function pointer of prototype void (∗f)(void∗) which
specifies a possible callback. If this pointer is non-NULL, the callback function is executed on the host when the
task is pop-ed from the scheduler, just before getting executed. The callback is passed the value contained in the
starpu_task::prologue_callback_pop_arg field. No callback is executed if the field is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_POP fol-
lowed by the function pointer.

30.12.2.3.1.19 prologue_callback_pop_arg

void∗ starpu_task::prologue_callback_pop_arg

Optional field, the default value is NULL. This is the pointer passed to the prologue_callback_pop function. This
field is ignored if the field starpu_task::prologue_callback_pop_func is set to NULL.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PROLOGUE_CALLBACK_POP_ARG
followed by the argument.

30.12.2.3.1.20 tag_id

starpu_tag_t starpu_task::tag_id

Optional field. Contain the tag associated to the task if the field starpu_task::use_tag is set, ignored otherwise.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TAG followed by a starpu_tag_t.

Generated by Doxygen

30.12 Codelet And Tasks 299

30.12.2.3.1.21 cl_arg_free

unsigned starpu_task::cl_arg_free

Optional field. In case starpu_task::cl_arg was allocated by the application through malloc(), setting starpu_←↩
task::cl_arg_free to 1 makes StarPU automatically call free(cl_arg) when destroying the task. This saves the
user from defining a callback just for that. This is mostly useful when targetting MIC, where the codelet does not
execute in the same memory space as the main thread.
With starpu_task_insert() and alike this is set to 1 when using STARPU_CL_ARGS.

30.12.2.3.1.22 callback_arg_free

unsigned starpu_task::callback_arg_free

Optional field. In case starpu_task::callback_arg was allocated by the application through malloc(), setting
starpu_task::callback_arg_free to 1 makes StarPU automatically call free(callback_arg) when destroying
the task.
With starpu_task_insert() and alike, this is set to 1 when using STARPU_CALLBACK_ARG or STARPU_CALLB←↩
ACK_WITH_ARG, or set to 0 when using STARPU_CALLBACK_ARG_NFREE

30.12.2.3.1.23 prologue_callback_arg_free

unsigned starpu_task::prologue_callback_arg_free

Optional field. In case starpu_task::prologue_callback_arg was allocated by the application through malloc(),
setting starpu_task::prologue_callback_arg_free to 1 makes StarPU automatically call free(prologue_←↩
callback_arg) when destroying the task.
With starpu_task_insert() and alike this is set to 1 when using STARPU_PROLOGUE_CALLBACK_ARG, or set to
0 when using STARPU_PROLOGUE_CALLBACK_ARG_NFREE

30.12.2.3.1.24 prologue_callback_pop_arg_free

unsigned starpu_task::prologue_callback_pop_arg_free

Optional field. In case starpu_task::prologue_callback_pop_arg was allocated by the application through
malloc(), setting starpu_task::prologue_callback_pop_arg_free to 1 makes StarPU automatically call
free(prologue_callback_pop_arg) when destroying the task.
With starpu_task_insert() and alike this is set to 1 when using STARPU_PROLOGUE_CALLBACK_POP_ARG, or
set to 0 when using STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

30.12.2.3.1.25 use_tag

unsigned starpu_task::use_tag

Optional field, the default value is 0. If set, this flag indicates that the task should be associated with the tag
contained in the starpu_task::tag_id field. Tag allow the application to synchronize with the task and to express task
dependencies easily.
With starpu_task_insert() and alike this is set to 1 when using STARPU_TAG.

30.12.2.3.1.26 sequential_consistency

unsigned starpu_task::sequential_consistency

If this flag is set (which is the default), sequential consistency is enforced for the data parameters of this task for
which sequential consistency is enabled. Clearing this flag permits to disable sequential consistency for this task,
even if data have it enabled.
With starpu_task_insert() and alike this can be specified thanks to STARPU_SEQUENTIAL_CONSISTENCY fol-
lowed by an unsigned.

30.12.2.3.1.27 synchronous

unsigned starpu_task::synchronous

If this flag is set, the function starpu_task_submit() is blocking and returns only when the task has been executed
(or if no worker is able to process the task). Otherwise, starpu_task_submit() returns immediately.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_SYNCHRONOUS followed an
int.

30.12.2.3.1.28 execute_on_a_specific_worker

unsigned starpu_task::execute_on_a_specific_worker

Default value is 0. If this flag is set, StarPU will bypass the scheduler and directly affect this task to the worker
specified by the field starpu_task::workerid.
With starpu_task_insert() and alike this is set to 1 when using STARPU_EXECUTE_ON_WORKER.

Generated by Doxygen

300 Module Documentation a.k.a StarPU’s API

30.12.2.3.1.29 detach

unsigned starpu_task::detach

Optional field, default value is 1. If this flag is set, it is not possible to synchronize with the task by the means of
starpu_task_wait() later on. Internal data structures are only guaranteed to be freed once starpu_task_wait() is
called if the flag is not set.
With starpu_task_insert() and alike this is set to 1.

30.12.2.3.1.30 destroy

unsigned starpu_task::destroy

Optional value. Default value is 0 for starpu_task_init(), and 1 for starpu_task_create(). If this flag is set, the
task structure will automatically be freed, either after the execution of the callback if the task is detached, or dur-
ing starpu_task_wait() otherwise. If this flag is not set, dynamically allocated data structures will not be freed
until starpu_task_destroy() is called explicitly. Setting this flag for a statically allocated task structure will result
in undefined behaviour. The flag is set to 1 when the task is created by calling starpu_task_create(). Note that
starpu_task_wait_for_all() will not free any task.
With starpu_task_insert() and alike this is set to 1.

30.12.2.3.1.31 regenerate

unsigned starpu_task::regenerate

Optional field. If this flag is set, the task will be re-submitted to StarPU once it has been executed. This flag must
not be set if the flag starpu_task::destroy is set. This flag must be set before making another task depend on this
one.
With starpu_task_insert() and alike this is set to 0.

30.12.2.3.1.32 no_submitorder

unsigned starpu_task::no_submitorder

do not allocate a submitorder id for this task
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_NO_SUBMITORDER followed
by an unsigned.

30.12.2.3.1.33 mf_skip

unsigned char starpu_task::mf_skip [private]

This is only used for tasks that use multiformat handle. This should only be used by StarPU.

30.12.2.3.1.34 scheduled

unsigned char starpu_task::scheduled

Whether the scheduler has pushed the task on some queue
Set by StarPU.

30.12.2.3.1.35 prefetched

unsigned char starpu_task::prefetched

Whether the scheduler has prefetched the task's data
Set by StarPU.

30.12.2.3.1.36 workerid

unsigned starpu_task::workerid

Optional field. If the field starpu_task::execute_on_a_specific_worker is set, this field indicates the identifier of
the worker that should process this task (as returned by starpu_worker_get_id()). This field is ignored if the field
starpu_task::execute_on_a_specific_worker is set to 0.
With starpu_task_insert() and alike this can be specified thanks to STARPU_EXECUTE_ON_WORKER followed
by an int.

30.12.2.3.1.37 workerorder

unsigned starpu_task::workerorder

Optional field. If the field starpu_task::execute_on_a_specific_worker is set, this field indicates the per-worker
consecutive order in which tasks should be executed on the worker. Tasks will be executed in consecutive starpu←↩
_task::workerorder values, thus ignoring the availability order or task priority. See Static Scheduling for more details.
This field is ignored if the field starpu_task::execute_on_a_specific_worker is set to 0.
With starpu_task_insert() and alike this can be specified thanks to STARPU_WORKER_ORDER followed by an
unsigned.

Generated by Doxygen

30.12 Codelet And Tasks 301

30.12.2.3.1.38 workerids

uint32_t∗ starpu_task::workerids

Optional field. If the field starpu_task::workerids_len is different from 0, this field indicates an array of bits (stored
as uint32_t values) which indicate the set of workers which are allowed to execute the task. starpu_task::workerid
takes precedence over this.
With starpu_task_insert() and alike, this can be specified along the field workerids_len thanks to STARPU_TA←↩
SK_WORKERIDS followed by a number of workers and an array of bits which size is the number of workers.

30.12.2.3.1.39 workerids_len

unsigned starpu_task::workerids_len

Optional field. This provides the number of uint32_t values in the starpu_task::workerids array.
With starpu_task_insert() and alike, this can be specified along the field workerids thanks to STARPU_TASK_W←↩
ORKERIDS followed by a number of workers and an array of bits which size is the number of workers.

30.12.2.3.1.40 priority

int starpu_task::priority

Optional field, the default value is STARPU_DEFAULT_PRIO. This field indicates a level of priority for the task.
This is an integer value that must be set between the return values of the function starpu_sched_get_min_priority()
for the least important tasks, and that of the function starpu_sched_get_max_priority() for the most important tasks
(included). The STARPU_MIN_PRIO and STARPU_MAX_PRIO macros are provided for convenience and respec-
tively return the value of starpu_sched_get_min_priority() and starpu_sched_get_max_priority(). Default priority
is STARPU_DEFAULT_PRIO, which is always defined as 0 in order to allow static task initialization. Schedul-
ing strategies that take priorities into account can use this parameter to take better scheduling decisions, but the
scheduling policy may also ignore it.
With starpu_task_insert() and alike this can be specified thanks to STARPU_PRIORITY followed by an unsigned
long long.

30.12.2.3.1.41 status

enum starpu_task_status starpu_task::status

Current state of the task.
Set by StarPU.

30.12.2.3.1.42 magic

int starpu_task::magic [private]

This field is set when initializing a task. The function starpu_task_submit() will fail if the field does not have the
correct value. This will hence avoid submitting tasks which have not been properly initialised.

30.12.2.3.1.43 type

unsigned starpu_task::type

Allow to get the type of task, for filtering out tasks in profiling outputs, whether it is really internal to StarPU (STARP←↩
U_TASK_TYPE_INTERNAL), a data acquisition synchronization task (STARPU_TASK_TYPE_DATA_ACQUIRE),
or a normal task (STARPU_TASK_TYPE_NORMAL)
Set by StarPU.

30.12.2.3.1.44 color

unsigned starpu_task::color

color of the task to be used in dag.dot.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_COLOR followed by an int.

30.12.2.3.1.45 sched_ctx

unsigned starpu_task::sched_ctx

Scheduling context.
With starpu_task_insert() and alike this can be specified thanks to STARPU_SCHED_CTX followed by an unsigned.

30.12.2.3.1.46 hypervisor_tag

int starpu_task::hypervisor_tag

Help the hypervisor monitor the execution of this task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_HYPERVISOR_TAG followed by an

Generated by Doxygen

302 Module Documentation a.k.a StarPU’s API

int.

30.12.2.3.1.47 possibly_parallel

unsigned starpu_task::possibly_parallel

TODO: related with sched contexts and parallel tasks
With starpu_task_insert() and alike this can be specified thanks to STARPU_POSSIBLY_PARALLEL followed by
an unsigned.

30.12.2.3.1.48 bundle

starpu_task_bundle_t starpu_task::bundle

Optional field. The bundle that includes this task. If no bundle is used, this should be NULL.

30.12.2.3.1.49 profiling_info

struct starpu_profiling_task_info∗ starpu_task::profiling_info

Optional field. Profiling information for the task.
With starpu_task_insert() and alike this can be specified thanks to STARPU_TASK_PROFILING_INFO followed by
a pointer to the appropriate struct.

30.12.2.3.1.50 flops

double starpu_task::flops

The application can set this to the number of floating points operations that the task will have to achieve. StarPU
will measure the time that the task takes, and divide the two to get the GFlop/s achieved by the task. This will
allow getting GFlops/s curves from the tool starpu_perfmodel_plot, and is useful for the hypervisor load
balancing.
With starpu_task_insert() and alike this can be specified thanks to STARPU_FLOPS followed by a double.

30.12.2.3.1.51 predicted

double starpu_task::predicted

Output field. Predicted duration of the task. This field is only set if the scheduling strategy uses performance models.
Set by StarPU.

30.12.2.3.1.52 predicted_transfer

double starpu_task::predicted_transfer

Output field. Predicted data transfer duration for the task in microseconds. This field is only valid if the scheduling
strategy uses performance models.
Set by StarPU.

30.12.2.3.1.53 prev

struct starpu_task∗ starpu_task::prev [private]

A pointer to the previous task. This should only be used by StarPU schedulers.

30.12.2.3.1.54 next

struct starpu_task∗ starpu_task::next [private]

A pointer to the next task. This should only be used by StarPU schedulers.

30.12.2.3.1.55 starpu_private

void∗ starpu_task::starpu_private [private]

This is private to StarPU, do not modify.

30.12.2.3.1.56 omp_task

struct starpu_omp_task∗ starpu_task::omp_task [private]

This is private to StarPU, do not modify.

30.12.2.3.1.57 nb_termination_call_required

unsigned starpu_task::nb_termination_call_required [private]

This is private to StarPU, do not modify.

30.12.2.3.1.58 sched_data

void∗ starpu_task::sched_data

This field is managed by the scheduler, is it allowed to do whatever with it. Typically, some area would be allocated
on push, and released on pop.

Generated by Doxygen

30.12 Codelet And Tasks 303

With starpu_task_insert() and alike this is set when using STARPU_TASK_SCHED_DATA.

30.12.3 Macro Definition Documentation

30.12.3.1 STARPU_NMAXBUFS

#define STARPU_NMAXBUFS

Define the maximum number of buffers that tasks will be able to take as parameters. The default value is 8, it can
be changed by using the configure option --enable-maxbuffers.

30.12.3.2 STARPU_NOWHERE

#define STARPU_NOWHERE

To be used when setting the field starpu_codelet::where to specify that the codelet has no computation part, and
thus does not need to be scheduled, and data does not need to be actually loaded. This is thus essentially used for
synchronization tasks.

30.12.3.3 STARPU_CPU

#define STARPU_CPU

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a CPU processing unit.

30.12.3.4 STARPU_CUDA

#define STARPU_CUDA

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a CUDA processing unit.

30.12.3.5 STARPU_OPENCL

#define STARPU_OPENCL

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a OpenCL processing unit.

30.12.3.6 STARPU_MIC

#define STARPU_MIC

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a MIC processing unit.

30.12.3.7 STARPU_MPI_MS

#define STARPU_MPI_MS

To be used when setting the field starpu_codelet::where (or starpu_task::where) to specify the codelet (or the task)
may be executed on a MPI Slave processing unit.

30.12.3.8 STARPU_CODELET_SIMGRID_EXECUTE

#define STARPU_CODELET_SIMGRID_EXECUTE

Value to be set in starpu_codelet::flags to execute the codelet functions even in simgrid mode.

30.12.3.9 STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT

#define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT

Value to be set in starpu_codelet::flags to execute the codelet functions even in simgrid mode, and later inject the
measured timing inside the simulation.

Generated by Doxygen

304 Module Documentation a.k.a StarPU’s API

30.12.3.10 STARPU_CODELET_NOPLANS

#define STARPU_CODELET_NOPLANS

Value to be set in starpu_codelet::flags to make starpu_task_submit() not submit automatic asynchronous partition-
ing/unpartitioning.

30.12.3.11 STARPU_CUDA_ASYNC

#define STARPU_CUDA_ASYNC

Value to be set in starpu_codelet::cuda_flags to allow asynchronous CUDA kernel execution.

30.12.3.12 STARPU_OPENCL_ASYNC

#define STARPU_OPENCL_ASYNC

Value to be set in starpu_codelet::opencl_flags to allow asynchronous OpenCL kernel execution.

30.12.3.13 STARPU_MAIN_RAM

#define STARPU_MAIN_RAM

To be used when the RAM memory node is specified.

30.12.3.14 STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

#define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::cpu_func with this macro indicates the codelet will have several im-
plementations. The use of this macro is deprecated. One should always only define the field starpu←↩
_codelet::cpu_funcs.

30.12.3.15 STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

#define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::cuda_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::cuda_funcs.

30.12.3.16 STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

#define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Deprecated Setting the field starpu_codelet::opencl_func with this macro indicates the codelet will have several
implementations. The use of this macro is deprecated. One should always only define the field
starpu_codelet::opencl_funcs.

30.12.3.17 STARPU_VARIABLE_NBUFFERS

#define STARPU_VARIABLE_NBUFFERS

Value to set in starpu_codelet::nbuffers to specify that the codelet can accept a variable number of buffers, specified
in starpu_task::nbuffers.

30.12.3.18 STARPU_SPECIFIC_NODE_LOCAL

#define STARPU_SPECIFIC_NODE_LOCAL

Value to be set in the field starpu_codelet::nodes to request StarPU to put the data in CPU-accessible memory (and
let StarPU choose the NUMA node).

Generated by Doxygen

30.12 Codelet And Tasks 305

30.12.3.19 STARPU_TASK_TYPE_NORMAL

#define STARPU_TASK_TYPE_NORMAL

To be used in the starpu_task::type field, for normal application tasks.

30.12.3.20 STARPU_TASK_TYPE_INTERNAL

#define STARPU_TASK_TYPE_INTERNAL

To be used in the starpu_task::type field, for StarPU-internal tasks.

30.12.3.21 STARPU_TASK_TYPE_DATA_ACQUIRE

#define STARPU_TASK_TYPE_DATA_ACQUIRE

To be used in the starpu_task::type field, for StarPU-internal data acquisition tasks.

30.12.3.22 STARPU_TASK_INITIALIZER

#define STARPU_TASK_INITIALIZER

Value to be used to initialize statically allocated tasks. This is equivalent to initializing a structure starpu_task with
the function starpu_task_init().

30.12.3.23 STARPU_TASK_GET_NBUFFERS

#define STARPU_TASK_GET_NBUFFERS(

task)

Return the number of buffers for task, i.e. starpu_codelet::nbuffers, or starpu_task::nbuffers if the former is ST←↩
ARPU_VARIABLE_NBUFFERS.

30.12.3.24 STARPU_TASK_GET_HANDLE

#define STARPU_TASK_GET_HANDLE(

task,

i)

Return the i -th data handle of task. If task is defined with a static or dynamic number of handles, will either
return the i -th element of the field starpu_task::handles or the i -th element of the field starpu_task::dyn_handles
(see Setting Many Data Handles For a Task)

30.12.3.25 STARPU_TASK_SET_HANDLE

#define STARPU_TASK_SET_HANDLE(

task,

handle,

i)

Set the i -th data handle of task with handle. If task is defined with a static or dynamic number of handles,
will either set the i -th element of the field starpu_task::handles or the i -th element of the field starpu_task::dyn←↩
_handles (see Setting Many Data Handles For a Task)

30.12.3.26 STARPU_CODELET_GET_MODE

#define STARPU_CODELET_GET_MODE(

codelet,

i)

Return the access mode of the i -th data handle of codelet. If codelet is defined with a static or dynamic
number of handles, will either return the i -th element of the field starpu_codelet::modes or the i -th element of the
field starpu_codelet::dyn_modes (see Setting Many Data Handles For a Task)

30.12.3.27 STARPU_CODELET_SET_MODE

#define STARPU_CODELET_SET_MODE(

codelet,

Generated by Doxygen

306 Module Documentation a.k.a StarPU’s API

mode,

i)

Set the access mode of the i -th data handle of codelet. If codelet is defined with a static or dynamic number
of handles, will either set the i -th element of the field starpu_codelet::modes or the i -th element of the field
starpu_codelet::dyn_modes (see Setting Many Data Handles For a Task)

30.12.3.28 STARPU_TASK_GET_MODE

#define STARPU_TASK_GET_MODE(

task,

i)

Return the access mode of the i -th data handle of task. If task is defined with a static or dynamic number
of handles, will either return the i -th element of the field starpu_task::modes or the i -th element of the field
starpu_task::dyn_modes (see Setting Many Data Handles For a Task)

30.12.3.29 STARPU_TASK_SET_MODE

#define STARPU_TASK_SET_MODE(

task,

mode,

i)

Set the access mode of the i -th data handle of task. If task is defined with a static or dynamic number of
handles, will either set the i -th element of the field starpu_task::modes or the i -th element of the field starpu_←↩
task::dyn_modes (see Setting Many Data Handles For a Task)

30.12.3.30 STARPU_CODELET_GET_NODE

#define STARPU_CODELET_GET_NODE(

codelet,

i)

Return the target node of the i -th data handle of codelet. If node is defined with a static or dynamic number
of handles, will either return the i -th element of the field starpu_codelet::nodes or the i -th element of the field
starpu_codelet::dyn_nodes (see Setting Many Data Handles For a Task)

30.12.3.31 STARPU_CODELET_SET_NODE

#define STARPU_CODELET_SET_NODE(

codelet,

__node,

i)

Set the target node of the i -th data handle of codelet. If codelet is defined with a static or dynamic number
of handles, will either set the i -th element of the field starpu_codelet::nodes or the i -th element of the field
starpu_codelet::dyn_nodes (see Setting Many Data Handles For a Task)

30.12.4 Typedef Documentation

30.12.4.1 starpu_cpu_func_t

typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
CPU implementation of a codelet.

30.12.4.2 starpu_cuda_func_t

typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
CUDA implementation of a codelet.

Generated by Doxygen

30.12 Codelet And Tasks 307

30.12.4.3 starpu_opencl_func_t

typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
OpenCL implementation of a codelet.

30.12.4.4 starpu_mic_kernel_t

typedef void(∗ starpu_mic_kernel_t) (void ∗∗, void ∗)
MIC implementation of a codelet.

30.12.4.5 starpu_mic_func_t

typedef starpu_mic_kernel_t(∗ starpu_mic_func_t) (void)

MIC kernel for a codelet

30.12.4.6 starpu_mpi_ms_kernel_t

typedef void(∗ starpu_mpi_ms_kernel_t) (void ∗∗, void ∗)
MPI Master Slave kernel for a codelet

30.12.4.7 starpu_mpi_ms_func_t

typedef starpu_mpi_ms_kernel_t(∗ starpu_mpi_ms_func_t) (void)

MPI Master Slave implementation of a codelet.

30.12.5 Enumeration Type Documentation

30.12.5.1 starpu_codelet_type

enum starpu_codelet_type

Describe the type of parallel task. See Parallel Tasks for details.

Enumerator

STARPU_SEQ (default) for classical sequential tasks.

STARPU_SPMD for a parallel task whose threads are handled by StarPU, the code has to use
starpu_combined_worker_get_size() and starpu_combined_worker_get_rank() to
distribute the work.

STARPU_FORKJOIN for a parallel task whose threads are started by the codelet function, which has to use
starpu_combined_worker_get_size() to determine how many threads should be
started.

30.12.5.2 starpu_task_status

enum starpu_task_status

Enumerator

STARPU_TASK_INIT The task has just been initialized.

STARPU_TASK_INIT The task has just been initialized.

STARPU_TASK_BLOCKED The task has just been submitted, and its dependencies has not
been checked yet.

STARPU_TASK_READY The task is ready for execution.

STARPU_TASK_RUNNING The task is running on some worker.

STARPU_TASK_FINISHED The task is finished executing.

Generated by Doxygen

308 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_TASK_BLOCKED_ON_TAG The task is waiting for a tag.

STARPU_TASK_BLOCKED_ON_TASK The task is waiting for a task.

STARPU_TASK_BLOCKED_ON_DATA The task is waiting for some data.

STARPU_TASK_STOPPED The task is stopped.

30.12.6 Function Documentation

30.12.6.1 starpu_task_init()

void starpu_task_init (

struct starpu_task ∗ task)

Initialize task with default values. This function is implicitly called by starpu_task_create(). By default, tasks ini-
tialized with starpu_task_init() must be deinitialized explicitly with starpu_task_clean(). Tasks can also be initialized
statically, using STARPU_TASK_INITIALIZER.

30.12.6.2 starpu_task_clean()

void starpu_task_clean (

struct starpu_task ∗ task)

Release all the structures automatically allocated to execute task, but not the task structure itself and values set
by the user remain unchanged. It is thus useful for statically allocated tasks for instance. It is also useful when users
want to execute the same operation several times with as least overhead as possible. It is called automatically by
starpu_task_destroy(). It has to be called only after explicitly waiting for the task or after starpu_shutdown() (waiting
for the callback is not enough, since StarPU still manipulates the task after calling the callback).

30.12.6.3 starpu_task_create()

struct starpu_task∗ starpu_task_create (

void)

Allocate a task structure and initialize it with default values. Tasks allocated dynamically with starpu_task_create()
are automatically freed when the task is terminated. This means that the task pointer can not be used any more
once the task is submitted, since it can be executed at any time (unless dependencies make it wait) and thus freed
at any time. If the field starpu_task::destroy is explicitly unset, the resources used by the task have to be freed by
calling starpu_task_destroy().

30.12.6.4 starpu_task_destroy()

void starpu_task_destroy (

struct starpu_task ∗ task)

Free the resource allocated during starpu_task_create() and associated with task. This function is called automat-
ically after the execution of a task when the field starpu_task::destroy is set, which is the default for tasks created
by starpu_task_create(). Calling this function on a statically allocated task results in an undefined behaviour.

30.12.6.5 starpu_task_submit()

int starpu_task_submit (

struct starpu_task ∗ task)

Submit task to StarPU. Calling this function does not mean that the task will be executed immediately as there can
be data or task (tag) dependencies that are not fulfilled yet: StarPU will take care of scheduling this task with respect
to such dependencies. This function returns immediately if the field starpu_task::synchronous is set to 0, and block
until the termination of the task otherwise. It is also possible to synchronize the application with asynchronous tasks
by the means of tags, using the function starpu_tag_wait() function for instance. In case of success, this function
returns 0, a return value of -ENODEV means that there is no worker able to process this task (e.g. there is no GPU

Generated by Doxygen

30.12 Codelet And Tasks 309

available and this task is only implemented for CUDA devices). starpu_task_submit() can be called from anywhere,
including codelet functions and callbacks, provided that the field starpu_task::synchronous is set to 0.

30.12.6.6 starpu_task_submit_to_ctx()

int starpu_task_submit_to_ctx (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

Submit task to the context sched_ctx_id. By default, starpu_task_submit() submits the task to a global context
that is created automatically by StarPU.

30.12.6.7 starpu_task_wait()

int starpu_task_wait (

struct starpu_task ∗ task)

Block until task has been executed. It is not possible to synchronize with a task more than once. It is not possible to
wait for synchronous or detached tasks. Upon successful completion, this function returns 0. Otherwise, -EINVAL
indicates that the specified task was either synchronous or detached.

30.12.6.8 starpu_task_wait_array()

int starpu_task_wait_array (

struct starpu_task ∗∗ tasks,

unsigned nb_tasks)

Allow to wait for an array of tasks. Upon successful completion, this function returns 0. Otherwise, -EINVAL
indicates that one of the tasks was either synchronous or detached.

30.12.6.9 starpu_task_wait_for_all()

int starpu_task_wait_for_all (

void)

Block until all the tasks that were submitted (to the current context or the global one if there is no current context)
are terminated. It does not destroy these tasks.

30.12.6.10 starpu_task_wait_for_n_submitted()

int starpu_task_wait_for_n_submitted (

unsigned n)

Block until there are n submitted tasks left (to the current context or the global one if there is no current context) to
be executed. It does not destroy these tasks.

30.12.6.11 starpu_task_wait_for_all_in_ctx()

int starpu_task_wait_for_all_in_ctx (

unsigned sched_ctx_id)

Wait until all the tasks that were already submitted to the context sched_ctx_id have been terminated.

30.12.6.12 starpu_task_wait_for_n_submitted_in_ctx()

int starpu_task_wait_for_n_submitted_in_ctx (

unsigned sched_ctx_id,

unsigned n)

Wait until there are n tasks submitted left to be executed that were already submitted to the context sched_ctx←↩
_id.

30.12.6.13 starpu_task_wait_for_no_ready()

int starpu_task_wait_for_no_ready (

void)

Wait until there is no more ready task.

Generated by Doxygen

310 Module Documentation a.k.a StarPU’s API

30.12.6.14 starpu_task_nready()

int starpu_task_nready (

void)

Return the number of submitted tasks which are ready for execution are already executing. It thus does not include
tasks waiting for dependencies.

30.12.6.15 starpu_task_nsubmitted()

int starpu_task_nsubmitted (

void)

Return the number of submitted tasks which have not completed yet.

30.12.6.16 starpu_iteration_push()

void starpu_iteration_push (

unsigned long iteration)

Set the iteration number for all the tasks to be submitted after this call. This is typically called at the beginning of a
task submission loop. This number will then show up in tracing tools. A corresponding starpu_iteration_pop() call
must be made to match the call to starpu_iteration_push(), at the end of the same task submission loop, typically.
Nested calls to starpu_iteration_push() and starpu_iteration_pop() are allowed, to describe a loop nest for instance,
provided that they match properly.

30.12.6.17 starpu_iteration_pop()

void starpu_iteration_pop (

void)

Drop the iteration number for submitted tasks. This must match a previous call to starpu_iteration_push(), and is
typically called at the end of a task submission loop.

30.12.6.18 starpu_codelet_init()

void starpu_codelet_init (

struct starpu_codelet ∗ cl)

Initialize cl with default values. Codelets should preferably be initialized statically as shown in Defining A Codelet.
However such a initialisation is not always possible, e.g. when using C++.

30.12.6.19 starpu_codelet_display_stats()

void starpu_codelet_display_stats (

struct starpu_codelet ∗ cl)

Output on stderr some statistics on the codelet cl.

30.12.6.20 starpu_task_get_current()

struct starpu_task∗ starpu_task_get_current (

void)

Return the task currently executed by the worker, or NULL if it is called either from a thread that is not a task or
simply because there is no task being executed at the moment.

30.12.6.21 starpu_task_get_current_data_node()

int starpu_task_get_current_data_node (

unsigned i)

Return the memory node number of parameter i of the task currently executed, or -1 if it is called either from a
thread that is not a task or simply because there is no task being executed at the moment.
Usually, the returned memory node number is simply the memory node for the current worker. That may however
be different when using e.g. starpu_codelet::specific_nodes.

Generated by Doxygen

30.12 Codelet And Tasks 311

30.12.6.22 starpu_task_get_model_name()

const char∗ starpu_task_get_model_name (

struct starpu_task ∗ task)

Return the name of the performance model of task.

30.12.6.23 starpu_task_get_name()

const char∗ starpu_task_get_name (

struct starpu_task ∗ task)

Return the name of task, i.e. either its starpu_task::name field, or the name of the corresponding performance
model.

30.12.6.24 starpu_task_dup()

struct starpu_task∗ starpu_task_dup (

struct starpu_task ∗ task)

Allocate a task structure which is the exact duplicate of task.

30.12.6.25 starpu_task_set_implementation()

void starpu_task_set_implementation (

struct starpu_task ∗ task,

unsigned impl)

This function should be called by schedulers to specify the codelet implementation to be executed when executing
task.

30.12.6.26 starpu_task_get_implementation()

unsigned starpu_task_get_implementation (

struct starpu_task ∗ task)

Return the codelet implementation to be executed when executing task.

30.12.6.27 starpu_create_sync_task()

void starpu_create_sync_task (

starpu_tag_t sync_tag,

unsigned ndeps,

starpu_tag_t ∗ deps,

void(∗)(void ∗) callback,

void ∗ callback_arg)

Create and submit an empty task that unlocks a tag once all its dependencies are fulfilled.

30.12.6.28 starpu_create_callback_task()

void starpu_create_callback_task (

void(∗)(void ∗) callback,

void ∗ callback_arg)

Create and submit an empty task with the given callback

30.12.6.29 starpu_task_watchdog_set_hook()

void starpu_task_watchdog_set_hook (

void(∗)(void ∗) hook,

void ∗ hook_arg)

Set the function to call when the watchdog detects that StarPU has not finished any task for STARPU_WATCHD←↩
OG_TIMEOUT seconds

Generated by Doxygen

312 Module Documentation a.k.a StarPU’s API

30.13 Task Insert Utility

Data Structures

• struct starpu_codelet_pack_arg_data

Macros

• #define STARPU_MODE_SHIFT

• #define STARPU_VALUE

• #define STARPU_CALLBACK

• #define STARPU_CALLBACK_WITH_ARG

• #define STARPU_CALLBACK_ARG

• #define STARPU_PRIORITY

• #define STARPU_DATA_ARRAY

• #define STARPU_DATA_MODE_ARRAY

• #define STARPU_TAG

• #define STARPU_HYPERVISOR_TAG

• #define STARPU_FLOPS

• #define STARPU_SCHED_CTX

• #define STARPU_PROLOGUE_CALLBACK

• #define STARPU_PROLOGUE_CALLBACK_ARG

• #define STARPU_PROLOGUE_CALLBACK_POP

• #define STARPU_PROLOGUE_CALLBACK_POP_ARG

• #define STARPU_EXECUTE_ON_WORKER

• #define STARPU_EXECUTE_WHERE

• #define STARPU_TAG_ONLY

• #define STARPU_POSSIBLY_PARALLEL

• #define STARPU_WORKER_ORDER

• #define STARPU_NAME

• #define STARPU_CL_ARGS

• #define STARPU_CL_ARGS_NFREE

• #define STARPU_TASK_DEPS_ARRAY

• #define STARPU_TASK_COLOR

• #define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY

• #define STARPU_TASK_SYNCHRONOUS

• #define STARPU_TASK_END_DEPS_ARRAY

• #define STARPU_TASK_END_DEP

• #define STARPU_TASK_WORKERIDS

• #define STARPU_SEQUENTIAL_CONSISTENCY

• #define STARPU_TASK_PROFILING_INFO

• #define STARPU_TASK_NO_SUBMITORDER

• #define STARPU_CALLBACK_ARG_NFREE

• #define STARPU_CALLBACK_WITH_ARG_NFREE

• #define STARPU_PROLOGUE_CALLBACK_ARG_NFREE

• #define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

• #define STARPU_TASK_SCHED_DATA

• #define STARPU_SHIFTED_MODE_MAX

Generated by Doxygen

30.13 Task Insert Utility 313

Functions

• int starpu_task_set (struct starpu_task ∗task, struct starpu_codelet ∗cl,...)
• struct starpu_task ∗ starpu_task_build (struct starpu_codelet ∗cl,...)
• int starpu_task_insert (struct starpu_codelet ∗cl,...)
• int starpu_insert_task (struct starpu_codelet ∗cl,...)
• void starpu_task_insert_data_make_room (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int current_buffer, int room)

• void starpu_task_insert_data_process_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int arg_type, starpu_data_handle_t handle)

• void starpu_task_insert_data_process_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int nb_handles, starpu_data_handle_t ∗handles)

• void starpu_task_insert_data_process_mode_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task,
int ∗allocated_buffers, int ∗current_buffer, int nb_descrs, struct starpu_data_descr ∗descrs)

• void starpu_codelet_pack_args (void ∗∗arg_buffer, size_t ∗arg_buffer_size,...)
• void starpu_codelet_pack_arg_init (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_pack_arg (struct starpu_codelet_pack_arg_data ∗state, const void ∗ptr, size_t ptr_size)
• void starpu_codelet_pack_arg_fini (struct starpu_codelet_pack_arg_data ∗state, void ∗∗cl_arg, size_t ∗cl←↩

_arg_size)
• void starpu_codelet_unpack_args (void ∗cl_arg,...)
• void starpu_codelet_unpack_args_and_copyleft (void ∗cl_arg, void ∗buffer, size_t buffer_size,...)

30.13.1 Detailed Description

30.13.2 Data Structure Documentation

30.13.2.1 struct starpu_codelet_pack_arg_data

Data Fields

char ∗ arg_buffer

size_t arg_buffer_size

size_t current_offset
int nargs

30.13.3 Macro Definition Documentation

30.13.3.1 STARPU_VALUE

#define STARPU_VALUE

Used when calling starpu_task_insert(), must be followed by a pointer to a constant value and the size of the
constant

30.13.3.2 STARPU_CALLBACK

#define STARPU_CALLBACK

Used when calling starpu_task_insert(), must be followed by a pointer to a callback function

30.13.3.3 STARPU_CALLBACK_WITH_ARG

#define STARPU_CALLBACK_WITH_ARG

Used when calling starpu_task_insert(), must be followed by two pointers: one to a callback function, and the other
to be given as an argument to the callback function; this is equivalent to using both STARPU_CALLBACK and
STARPU_CALLBACK_ARG.

Generated by Doxygen

314 Module Documentation a.k.a StarPU’s API

30.13.3.4 STARPU_CALLBACK_ARG

#define STARPU_CALLBACK_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the callback
function

30.13.3.5 STARPU_PRIORITY

#define STARPU_PRIORITY

Used when calling starpu_task_insert(), must be followed by a integer defining a priority level

30.13.3.6 STARPU_DATA_ARRAY

#define STARPU_DATA_ARRAY

Used when calling starpu_task_in_sert(), must be followed by an array of handles and the number of elements in
the array (as int). This is equivalent to passing the handles as separate parameters with STARPU_R/W/RW.

30.13.3.7 STARPU_DATA_MODE_ARRAY

#define STARPU_DATA_MODE_ARRAY

Used when calling starpu_task_in_sert(), must be followed by an array of struct starpu_data_descr and the number
of elements in the array (as int). This is equivalent to passing the handles with the corresponding modes.

30.13.3.8 STARPU_TAG

#define STARPU_TAG

Used when calling starpu_task_insert(), must be followed by a tag.

30.13.3.9 STARPU_HYPERVISOR_TAG

#define STARPU_HYPERVISOR_TAG

Used when calling starpu_task_insert(), must be followed by a tag.

30.13.3.10 STARPU_FLOPS

#define STARPU_FLOPS

Used when calling starpu_task_insert(), must be followed by an amount of floating point operations, as a double.
Users MUST explicitly cast into double, otherwise parameter passing will not work.

30.13.3.11 STARPU_SCHED_CTX

#define STARPU_SCHED_CTX

Used when calling starpu_task_insert(), must be followed by the id of the scheduling context to which to submit the
task to.

30.13.3.12 STARPU_PROLOGUE_CALLBACK

#define STARPU_PROLOGUE_CALLBACK

Used when calling starpu_task_insert(), must be followed by a pointer to a prologue callback function

30.13.3.13 STARPU_PROLOGUE_CALLBACK_ARG

#define STARPU_PROLOGUE_CALLBACK_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the prologue
callback function

30.13.3.14 STARPU_PROLOGUE_CALLBACK_POP

#define STARPU_PROLOGUE_CALLBACK_POP

Used when calling starpu_task_insert(), must be followed by a pointer to a prologue callback pop function

Generated by Doxygen

30.13 Task Insert Utility 315

30.13.3.15 STARPU_PROLOGUE_CALLBACK_POP_ARG

#define STARPU_PROLOGUE_CALLBACK_POP_ARG

Used when calling starpu_task_insert(), must be followed by a pointer to be given as an argument to the prologue
callback pop function

30.13.3.16 STARPU_EXECUTE_ON_WORKER

#define STARPU_EXECUTE_ON_WORKER

Used when calling starpu_task_insert(), must be followed by an integer value specifying the worker on which to
execute the task (as specified by starpu_task::execute_on_a_specific_worker)

30.13.3.17 STARPU_EXECUTE_WHERE

#define STARPU_EXECUTE_WHERE

Used when calling starpu_task_insert(), must be followed by an unsigned long long value specifying the mask of
worker on which to execute the task (as specified by starpu_task::where)

30.13.3.18 STARPU_TAG_ONLY

#define STARPU_TAG_ONLY

Used when calling starpu_task_insert(), must be followed by a tag stored in starpu_task::tag_id. Leave starpu_←↩
task::use_tag as 0.

30.13.3.19 STARPU_POSSIBLY_PARALLEL

#define STARPU_POSSIBLY_PARALLEL

Used when calling starpu_task_insert(), must be followed by an unsigned stored in starpu_task::possibly_parallel.

30.13.3.20 STARPU_WORKER_ORDER

#define STARPU_WORKER_ORDER

used when calling starpu_task_insert(), must be followed by an integer value specifying the worker order in which
to execute the tasks (as specified by starpu_task::workerorder)

30.13.3.21 STARPU_NAME

#define STARPU_NAME

Used when calling starpu_task_insert(), must be followed by a char ∗ stored in starpu_task::name.

30.13.3.22 STARPU_CL_ARGS

#define STARPU_CL_ARGS

Used when calling starpu_task_insert(), must be followed by a memory buffer containing the arguments to be given
to the task, and by the size of the arguments. The memory buffer should be the result of a previous call to starpu←↩
_codelet_pack_args(), and will be freed (i.e. starpu_task::cl_arg_free will be set to 1)

30.13.3.23 STARPU_CL_ARGS_NFREE

#define STARPU_CL_ARGS_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CL_ARGS, must be followed by a memory buffer
containing the arguments to be given to the task, and by the size of the arguments. The memory buffer should be
the result of a previous call to starpu_codelet_pack_args(), and will NOT be freed (i.e. starpu_task::cl_arg_free will
be set to 0)

30.13.3.24 STARPU_TASK_DEPS_ARRAY

#define STARPU_TASK_DEPS_ARRAY

Used when calling starpu_task_insert(), must be followed by a number of tasks as int, and an array containing these
tasks. The function starpu_task_declare_deps_array() will be called with the given values.

Generated by Doxygen

316 Module Documentation a.k.a StarPU’s API

30.13.3.25 STARPU_TASK_COLOR

#define STARPU_TASK_COLOR

Used when calling starpu_task_insert(), must be followed by an integer representing a color

30.13.3.26 STARPU_HANDLES_SEQUENTIAL_CONSISTENCY

#define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY

Used when calling starpu_task_insert(), must be followed by an array of characters representing the sequential
consistency for each buffer of the task.

30.13.3.27 STARPU_TASK_SYNCHRONOUS

#define STARPU_TASK_SYNCHRONOUS

Used when calling starpu_task_insert(), must be followed by an integer stating if the task is synchronous or not

30.13.3.28 STARPU_TASK_END_DEPS_ARRAY

#define STARPU_TASK_END_DEPS_ARRAY

Used when calling starpu_task_insert(), must be followed by a number of tasks as int, and an array containing these
tasks. The function starpu_task_declare_end_deps_array() will be called with the given values.

30.13.3.29 STARPU_TASK_END_DEP

#define STARPU_TASK_END_DEP

Used when calling starpu_task_insert(), must be followed by an integer which will be given to starpu_task_end_←↩
dep_add()

30.13.3.30 STARPU_TASK_WORKERIDS

#define STARPU_TASK_WORKERIDS

Used when calling starpu_task_insert(), must be followed by an unsigned being a number of workers, and an array
of bits which size is the number of workers, the array indicates the set of workers which are allowed to execute the
task.

30.13.3.31 STARPU_SEQUENTIAL_CONSISTENCY

#define STARPU_SEQUENTIAL_CONSISTENCY

Used when calling starpu_task_insert(), must be followed by an unsigned which sets the sequential consistency for
the data parameters of the task.

30.13.3.32 STARPU_TASK_PROFILING_INFO

#define STARPU_TASK_PROFILING_INFO

Used when calling starpu_task_insert() and alike, must be followed by a pointer to a struct starpu_profiling_task_info

30.13.3.33 STARPU_TASK_NO_SUBMITORDER

#define STARPU_TASK_NO_SUBMITORDER

Used when calling starpu_task_insert() and alike, must be followed by an unsigned specifying not to allocate a
submitorder id for the task

30.13.3.34 STARPU_CALLBACK_ARG_NFREE

#define STARPU_CALLBACK_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CALLBACK_ARG, must be followed by a pointer to
be given as an argument to the callback function, the argument will not be freed, i.e starpu_task::callback_arg_free
will be set to 0

Generated by Doxygen

30.13 Task Insert Utility 317

30.13.3.35 STARPU_CALLBACK_WITH_ARG_NFREE

#define STARPU_CALLBACK_WITH_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_CALLBACK_WITH_ARG, must be followed by two
pointers: one to a callback function, and the other to be given as an argument to the callback function; this is
equivalent to using both STARPU_CALLBACK and STARPU_CALLBACK_ARG_NFREE.

30.13.3.36 STARPU_PROLOGUE_CALLBACK_ARG_NFREE

#define STARPU_PROLOGUE_CALLBACK_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_PROLOGUE_CALLBACK_ARG, must be followed
by a pointer to be given as an argument to the prologue callback function, the argument will not be freed, i.e
starpu_task::prologue_callback_arg_free will be set to 0

30.13.3.37 STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

#define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE

Used when calling starpu_task_insert(), similarly to STARPU_PROLOGUE_CALLBACK_POP_ARG, must be fol-
lowed by a pointer to be given as an argument to the prologue callback pop function, the argument will not be freed,
i.e starpu_task::prologue_callback_pop_arg_free will be set to 0

30.13.3.38 STARPU_TASK_SCHED_DATA

#define STARPU_TASK_SCHED_DATA

Used when calling starpu_task_insert() and alike, must be followed by a void∗ specifying the value to be set in the
sched_data field of the task.

30.13.4 Function Documentation

30.13.4.1 starpu_task_set()

int starpu_task_set (

struct starpu_task ∗ task,

struct starpu_codelet ∗ cl,

...)

Set the given task corresponding to cl with the following arguments. The argument list must be zero-terminated.
The arguments following the codelet are the same as the ones for the function starpu_task_insert(). If some argu-
ments of type STARPU_VALUE are given, the parameter starpu_task::cl_arg_free will be set to 1.

30.13.4.2 starpu_task_build()

struct starpu_task∗ starpu_task_build (

struct starpu_codelet ∗ cl,

...)

Create a task corresponding to cl with the following arguments. The argument list must be zero-terminated. The
arguments following the codelet are the same as the ones for the function starpu_task_insert(). If some arguments
of type STARPU_VALUE are given, the parameter starpu_task::cl_arg_free will be set to 1.

30.13.4.3 starpu_task_insert()

int starpu_task_insert (

struct starpu_codelet ∗ cl,

...)

Create and submit a task corresponding to cl with the following given arguments. The argument list must be
zero-terminated.
The arguments following the codelet can be of the following types:

Generated by Doxygen

318 Module Documentation a.k.a StarPU’s API

• STARPU_R, STARPU_W, STARPU_RW, STARPU_SCRATCH, STARPU_REDUX an access mode fol-
lowed by a data handle;

• STARPU_DATA_ARRAY followed by an array of data handles and its number of elements;

• STARPU_DATA_MODE_ARRAY followed by an array of struct starpu_data_descr, i.e data handles with their
associated access modes, and its number of elements;

• STARPU_EXECUTE_ON_WORKER, STARPU_WORKER_ORDER followed by an integer value specifying
the worker on which to execute the task (as specified by starpu_task::execute_on_a_specific_worker)

• the specific values STARPU_VALUE, STARPU_CALLBACK, STARPU_CALLBACK_ARG, STARPU_CAL←↩
LBACK_WITH_ARG, STARPU_PRIORITY, STARPU_TAG, STARPU_TAG_ONLY, STARPU_FLOPS, ST←↩
ARPU_SCHED_CTX, STARPU_CL_ARGS, STARPU_CL_ARGS_NFREE, STARPU_TASK_DEPS_ARR←↩
AY, STARPU_TASK_COLOR, STARPU_HANDLES_SEQUENTIAL_CONSISTENCY, STARPU_TASK_S←↩
YNCHRONOUS, STARPU_TASK_END_DEP followed by the appropriated objects as defined elsewhere.

When using STARPU_DATA_ARRAY, the access mode of the data handles is not defined, it will be taken from the
codelet starpu_codelet::modes or starpu_codelet::dyn_modes field. One should use STARPU_DATA_MODE_A←↩
RRAY to define the data handles along with the access modes.
Parameters to be passed to the codelet implementation are defined through the type STARPU_VALUE. The function
starpu_codelet_unpack_args() must be called within the codelet implementation to retrieve them.

30.13.4.4 starpu_insert_task()

int starpu_insert_task (

struct starpu_codelet ∗ cl,

...)

Similar to starpu_task_insert(). Kept to avoid breaking old codes.

30.13.4.5 starpu_task_insert_data_make_room()

void starpu_task_insert_data_make_room (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int current_buffer,

int room)

Assuming that there are already current_buffer data handles passed to the task, and if ∗allocated_buffers is
not 0, the task->dyn_handles array has size ∗allocated_buffers, this function makes room for room
other data handles, allocating or reallocating task->dyn_handles as necessary and updating allocated←↩
_buffers accordingly. One can thus start with allocated_buffers equal to 0 and current_buffer equal to 0, then
make room by calling this function, then store handles with STARPU_TASK_SET_HANDLE(), make room again
with this function, store yet more handles, etc.

30.13.4.6 starpu_task_insert_data_process_arg()

void starpu_task_insert_data_process_arg (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

int arg_type,

starpu_data_handle_t handle)

Store data handle handle into task task with mode arg_type, updating ∗allocated_buffers and
∗current_buffer accordingly.

30.13.4.7 starpu_task_insert_data_process_array_arg()

void starpu_task_insert_data_process_array_arg (

struct starpu_codelet ∗ cl,

Generated by Doxygen

30.13 Task Insert Utility 319

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

int nb_handles,

starpu_data_handle_t ∗ handles)

Store nb_handles data handles handles into task task, updating ∗allocated_buffers and
∗current_buffer accordingly.

30.13.4.8 starpu_task_insert_data_process_mode_array_arg()

void starpu_task_insert_data_process_mode_array_arg (

struct starpu_codelet ∗ cl,

struct starpu_task ∗ task,

int ∗ allocated_buffers,

int ∗ current_buffer,

int nb_descrs,

struct starpu_data_descr ∗ descrs)

Store nb_descrs data handles described by descrs into task task, updating ∗allocated_buffers and
∗current_buffer accordingly.

30.13.4.9 starpu_codelet_pack_args()

void starpu_codelet_pack_args (

void ∗∗ arg_buffer,

size_t ∗ arg_buffer_size,

...)

Pack arguments of type STARPU_VALUE into a buffer which can be given to a codelet and later unpacked with the
function starpu_codelet_unpack_args().
Instead of calling starpu_codelet_pack_args(), one can also call starpu_codelet_pack_arg_init(), then starpu_←↩
codelet_pack_arg() for each data, then starpu_codelet_pack_arg_fini().

30.13.4.10 starpu_codelet_pack_arg_init()

void starpu_codelet_pack_arg_init (

struct starpu_codelet_pack_arg_data ∗ state)

Initialize struct starpu_codelet_pack_arg before calling starpu_codelet_pack_arg() and starpu_codelet_pack_arg←↩
_fini(). This will simply initialize the content of the structure.

30.13.4.11 starpu_codelet_pack_arg()

void starpu_codelet_pack_arg (

struct starpu_codelet_pack_arg_data ∗ state,

const void ∗ ptr,

size_t ptr_size)

Pack one argument into struct starpu_codelet_pack_arg state. That structure has to be initialized before with
starpu_codelet_pack_arg_init(), and after all starpu_codelet_pack_arg() calls performed, starpu_codelet_pack_←↩
arg_fini() has to be used to get the cl_arg and cl_arg_size to be put in the task.

30.13.4.12 starpu_codelet_pack_arg_fini()

void starpu_codelet_pack_arg_fini (

struct starpu_codelet_pack_arg_data ∗ state,

void ∗∗ cl_arg,

size_t ∗ cl_arg_size)

Finish packing data, after calling starpu_codelet_pack_arg_init() once and starpu_codelet_pack_arg() several times.

Generated by Doxygen

320 Module Documentation a.k.a StarPU’s API

30.13.4.13 starpu_codelet_unpack_args()

void starpu_codelet_unpack_args (

void ∗ cl_arg,

...)

Retrieve the arguments of type STARPU_VALUE associated to a task automatically created using the function
starpu_task_insert(). If any parameter's value is 0, unpacking will stop there and ignore the remaining parameters.

30.13.4.14 starpu_codelet_unpack_args_and_copyleft()

void starpu_codelet_unpack_args_and_copyleft (

void ∗ cl_arg,

void ∗ buffer,

size_t buffer_size,

...)

Similar to starpu_codelet_unpack_args(), but if any parameter is 0, copy the part of cl_arg that has not been read
in buffer which can then be used in a later call to one of the unpack functions.

Generated by Doxygen

30.14 Explicit Dependencies 321

30.14 Explicit Dependencies

Typedefs

• typedef uint64_t starpu_tag_t

Functions

• void starpu_task_declare_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task←↩
_array[])

• void starpu_task_declare_deps (struct starpu_task ∗task, unsigned ndeps,...)
• void starpu_task_declare_end_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_declare_end_deps (struct starpu_task ∗task, unsigned ndeps,...)
• int starpu_task_get_task_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task_array[])
• int starpu_task_get_task_scheduled_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_end_dep_add (struct starpu_task ∗t, int nb_deps)
• void starpu_task_end_dep_release (struct starpu_task ∗t)
• void starpu_tag_declare_deps (starpu_tag_t id, unsigned ndeps,...)
• void starpu_tag_declare_deps_array (starpu_tag_t id, unsigned ndeps, starpu_tag_t ∗array)
• int starpu_tag_wait (starpu_tag_t id)
• int starpu_tag_wait_array (unsigned ntags, starpu_tag_t ∗id)
• void starpu_tag_restart (starpu_tag_t id)
• void starpu_tag_remove (starpu_tag_t id)
• void starpu_tag_notify_from_apps (starpu_tag_t id)
• void starpu_tag_notify_restart_from_apps (starpu_tag_t id)
• struct starpu_task ∗ starpu_tag_get_task (starpu_tag_t id)

30.14.1 Detailed Description

30.14.2 Typedef Documentation

30.14.2.1 starpu_tag_t

typedef uint64_t starpu_tag_t

Define a task logical identifer. It is possible to associate a task with a unique tag chosen by the application, and to
express dependencies between tasks by the means of those tags. To do so, fill the field starpu_task::tag_id with
a tag number (can be arbitrary) and set the field starpu_task::use_tag to 1. If starpu_tag_declare_deps() is called
with this tag number, the task will not be started until the tasks which holds the declared dependency tags are
completed.

30.14.3 Function Documentation

30.14.3.1 starpu_task_declare_deps_array()

void starpu_task_declare_deps_array (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Declare task dependencies between a task and an array of tasks of length ndeps. This function must be called
prior to the submission of the task, but it may called after the submission or the execution of the tasks in the array,
provided the tasks are still valid (i.e. they were not automatically destroyed). Calling this function on a task that was
already submitted or with an entry of task_array that is no longer a valid task results in an undefined behaviour.

Generated by Doxygen

322 Module Documentation a.k.a StarPU’s API

If ndeps is 0, no dependency is added. It is possible to call starpu_task_declare_deps_array() several times on the
same task, in this case, the dependencies are added. It is possible to have redundancy in the task dependencies.

30.14.3.2 starpu_task_declare_deps()

void starpu_task_declare_deps (

struct starpu_task ∗ task,

unsigned ndeps,

...)

Declare task dependencies between a task and an series of ndeps tasks, similarly to starpu_task_declare←↩
_deps_array(), but the tasks are passed after ndeps, which indicates how many tasks task shall be made to
depend on. If ndeps is 0, no dependency is added.

30.14.3.3 starpu_task_declare_end_deps_array()

void starpu_task_declare_end_deps_array (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Declare task end dependencies between a task and an array of tasks of length ndeps. task will appear as
terminated not only when task is termination, but also when the tasks of task_array have terminated. This
function must be called prior to the termination of the task, but it may called after the submission or the execution
of the tasks in the array, provided the tasks are still valid (i.e. they were not automatically destroyed). Calling this
function on a task that was already terminated or with an entry of task_array that is no longer a valid task results
in an undefined behaviour. If ndeps is 0, no dependency is added. It is possible to call starpu_task_declare←↩
_end_deps_array() several times on the same task, in this case, the dependencies are added. It is currently not
implemented to have redundancy in the task dependencies.

30.14.3.4 starpu_task_declare_end_deps()

void starpu_task_declare_end_deps (

struct starpu_task ∗ task,

unsigned ndeps,

...)

Declare task end dependencies between a task and an series of ndeps tasks, similarly to starpu_task_declare←↩
_end_deps_array(), but the tasks are passed after ndeps, which indicates how many tasks task 's termination
shall be made to depend on. If ndeps is 0, no dependency is added.

30.14.3.5 starpu_task_get_task_succs()

int starpu_task_get_task_succs (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Fill task_array with the list of tasks which are direct children of task. ndeps is the size of task_array.
This function returns the number of direct children. task_array can be set to NULL if ndeps is 0, which allows
to compute the number of children before allocating an array to store them. This function can only be called if task
has not completed yet, otherwise the results are undefined. The result may also be outdated if some additional
dependency has been added in the meanwhile.

30.14.3.6 starpu_task_get_task_scheduled_succs()

int starpu_task_get_task_scheduled_succs (

struct starpu_task ∗ task,

unsigned ndeps,

struct starpu_task ∗ task_array[])

Behave like starpu_task_get_task_succs(), except that it only reports tasks which will go through the scheduler,
thus avoiding tasks with not codelet, or with explicit placement.

Generated by Doxygen

30.14 Explicit Dependencies 323

30.14.3.7 starpu_task_end_dep_add()

void starpu_task_end_dep_add (

struct starpu_task ∗ t,

int nb_deps)

Add nb_deps end dependencies to the task t. This means the task will not terminate until the required number of
calls to the function starpu_task_end_dep_release() has been made.

30.14.3.8 starpu_task_end_dep_release()

void starpu_task_end_dep_release (

struct starpu_task ∗ t)

Unlock 1 end dependency to the task t. This function must be called after starpu_task_end_dep_add().

30.14.3.9 starpu_tag_declare_deps()

void starpu_tag_declare_deps (

starpu_tag_t id,

unsigned ndeps,

...)

Specify the dependencies of the task identified by tag id. The first argument specifies the tag which is configured,
the second argument gives the number of tag(s) on which id depends. The following arguments are the tags which
have to be terminated to unlock the task. This function must be called before the associated task is submitted to
StarPU with starpu_task_submit().
WARNING! Use with caution. Because of the variable arity of starpu_tag_declare_deps(), note that the last
arguments must be of type starpu_tag_t : constant values typically need to be explicitly casted. Otherwise, due to
integer sizes and argument passing on the stack, the C compiler might consider the tag 0x200000003 instead of
0x2 and 0x3 when calling starpu_tag_declare_deps(0x1, 2, 0x2, 0x3). Using the starpu_tag←↩
_declare_deps_array() function avoids this hazard.

// Tag 0x1 depends on tags 0x32 and 0x52
starpu_tag_declare_deps((starpu_tag_t)0x1, 2, (starpu_tag_t)

0x32, (starpu_tag_t)0x52);

30.14.3.10 starpu_tag_declare_deps_array()

void starpu_tag_declare_deps_array (

starpu_tag_t id,

unsigned ndeps,

starpu_tag_t ∗ array)

Similar to starpu_tag_declare_deps(), except that its does not take a variable number of arguments but an array
of tags of size ndeps.

// Tag 0x1 depends on tags 0x32 and 0x52
starpu_tag_t tag_array[2] = {0x32, 0x52};
starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);

30.14.3.11 starpu_tag_wait()

int starpu_tag_wait (

starpu_tag_t id)

Block until the task associated to tag id has been executed. This is a blocking call which must therefore not be
called within tasks or callbacks, but only from the application directly. It is possible to synchronize with the same tag
multiple times, as long as the starpu_tag_remove() function is not called. Note that it is still possible to synchronize
with a tag associated to a task for which the strucuture starpu_task was freed (e.g. if the field starpu_task::destroy
was enabled).

Generated by Doxygen

324 Module Documentation a.k.a StarPU’s API

30.14.3.12 starpu_tag_wait_array()

int starpu_tag_wait_array (

unsigned ntags,

starpu_tag_t ∗ id)

Similar to starpu_tag_wait() except that it blocks until all the ntags tags contained in the array id are terminated.

30.14.3.13 starpu_tag_restart()

void starpu_tag_restart (

starpu_tag_t id)

Clear the already notified status of a tag which is not associated with a task. Before that, calling starpu_tag_←↩
notify_from_apps() again will not notify the successors. After that, the next call to starpu_tag_notify_from_apps()
will notify the successors.

30.14.3.14 starpu_tag_remove()

void starpu_tag_remove (

starpu_tag_t id)

Release the resources associated to tag id. It can be called once the corresponding task has been executed and
when there is no other tag that depend on this tag anymore.

30.14.3.15 starpu_tag_notify_from_apps()

void starpu_tag_notify_from_apps (

starpu_tag_t id)

Explicitly unlock tag id. It may be useful in the case of applications which execute part of their computation outside
StarPU tasks (e.g. third-party libraries). It is also provided as a convenient tool for the programmer, for instance
to entirely construct the task DAG before actually giving StarPU the opportunity to execute the tasks. When called
several times on the same tag, notification will be done only on first call, thus implementing "OR" dependencies,
until the tag is restarted using starpu_tag_restart().

30.14.3.16 starpu_tag_notify_restart_from_apps()

void starpu_tag_notify_restart_from_apps (

starpu_tag_t id)

Atomically call starpu_tag_notify_from_apps() and starpu_tag_restart() on tag id. This is useful with cyclic graphs,
when we want to safely trigger its startup.

Generated by Doxygen

30.15 Performance Model 325

30.15 Performance Model

Data Structures

• struct starpu_perfmodel_device
• struct starpu_perfmodel_arch
• struct starpu_perfmodel_history_entry
• struct starpu_perfmodel_history_list
• struct starpu_perfmodel_regression_model
• struct starpu_perfmodel_per_arch
• struct starpu_perfmodel

Macros

• #define STARPU_NARCH
• #define starpu_per_arch_perfmodel

Typedefs

• typedef double(∗ starpu_perfmodel_per_arch_cost_function) (struct starpu_task ∗task, struct starpu_←↩
perfmodel_arch ∗arch, unsigned nimpl)

• typedef size_t(∗ starpu_perfmodel_per_arch_size_base) (struct starpu_task ∗task, struct starpu_←↩
perfmodel_arch ∗arch, unsigned nimpl)

• typedef struct _starpu_perfmodel_state ∗ starpu_perfmodel_state_t

Enumerations

• enum starpu_perfmodel_type {
STARPU_PERFMODEL_INVALID, STARPU_PER_ARCH, STARPU_COMMON, STARPU_HISTORY_B←↩
ASED,
STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED, STARPU_MULTIPLE_REGR←↩
ESSION_BASED }

Functions

• void starpu_perfmodel_init (struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_file (const char ∗filename, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_symbol (const char ∗symbol, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_unload_model (struct starpu_perfmodel ∗model)
• void starpu_perfmodel_get_model_path (const char ∗symbol, char ∗path, size_t maxlen)
• void starpu_perfmodel_dump_xml (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_free_sampling (void)
• struct starpu_perfmodel_arch ∗ starpu_worker_get_perf_archtype (int workerid, unsigned sched_ctx_id)
• int starpu_perfmodel_get_narch_combs (void)
• int starpu_perfmodel_arch_comb_add (int ndevices, struct starpu_perfmodel_device ∗devices)
• int starpu_perfmodel_arch_comb_get (int ndevices, struct starpu_perfmodel_device ∗devices)
• struct starpu_perfmodel_arch ∗ starpu_perfmodel_arch_comb_fetch (int comb)
• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_arch (struct starpu_perfmodel
∗model, struct starpu_perfmodel_arch ∗arch, unsigned impl)

• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_devices (struct starpu_perfmodel
∗model, int impl,...)

• int starpu_perfmodel_set_per_devices_cost_function (struct starpu_perfmodel ∗model, int impl, starpu←↩
_perfmodel_per_arch_cost_function func,...)

• int starpu_perfmodel_set_per_devices_size_base (struct starpu_perfmodel ∗model, int impl, starpu_←↩
perfmodel_per_arch_size_base func,...)

• void starpu_perfmodel_debugfilepath (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch,
char ∗path, size_t maxlen, unsigned nimpl)

Generated by Doxygen

326 Module Documentation a.k.a StarPU’s API

• char ∗ starpu_perfmodel_get_archtype_name (enum starpu_worker_archtype archtype)
• void starpu_perfmodel_get_arch_name (struct starpu_perfmodel_arch ∗arch, char ∗archname, size_←↩

t maxlen, unsigned nimpl)
• double starpu_perfmodel_history_based_expected_perf (struct starpu_perfmodel ∗model, struct starpu_←↩

perfmodel_arch ∗arch, uint32_t footprint)
• void starpu_perfmodel_initialize (void)
• int starpu_perfmodel_list (FILE ∗output)
• void starpu_perfmodel_print (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl, char ∗parameter, uint32_t ∗footprint, FILE ∗output)
• int starpu_perfmodel_print_all (struct starpu_perfmodel ∗model, char ∗arch, char ∗parameter, uint32_t
∗footprint, FILE ∗output)

• int starpu_perfmodel_print_estimations (struct starpu_perfmodel ∗model, uint32_t footprint, FILE ∗output)
• int starpu_perfmodel_list_combs (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_update_history (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct

starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double measured)
• void starpu_perfmodel_directory (FILE ∗output)
• void starpu_bus_print_bandwidth (FILE ∗f)
• void starpu_bus_print_affinity (FILE ∗f)
• void starpu_bus_print_filenames (FILE ∗f)
• double starpu_transfer_bandwidth (unsigned src_node, unsigned dst_node)
• double starpu_transfer_latency (unsigned src_node, unsigned dst_node)
• double starpu_transfer_predict (unsigned src_node, unsigned dst_node, size_t size)

Variables

• struct starpu_perfmodel starpu_perfmodel_nop

30.15.1 Detailed Description

30.15.2 Data Structure Documentation

30.15.2.1 struct starpu_perfmodel_device

todo

Data Fields

enum starpu_worker_archtype type type of the device

int devid identifier of the precise device

int ncores number of execution in parallel, minus 1

30.15.2.2 struct starpu_perfmodel_arch

todo

Data Fields

int ndevices number of the devices for the given arch

struct starpu_perfmodel_device ∗ devices list of the devices for the given arch

30.15.2.3 struct starpu_perfmodel_history_entry

Generated by Doxygen

30.15 Performance Model 327

Data Fields

double mean mean_n = 1/n sum

double deviation n dev_n = sum2 - 1/n (sum)∧2

double sum sum of samples (in µs)

double sum2 sum of samples∧2

unsigned nsample number of samples

unsigned nerror

uint32_t footprint data footprint

size_t size in bytes

double flops Provided by the application

double duration
starpu_tag_t tag

double ∗ parameters

30.15.2.4 struct starpu_perfmodel_history_list

Data Fields

struct
starpu_perfmodel_history_list ∗ next

struct
starpu_perfmodel_history_entry ∗ entry

30.15.2.5 struct starpu_perfmodel_regression_model

todo

Data Fields

double sumlny sum of ln(measured)

double sumlnx sum of ln(size)

double sumlnx2 sum of ln(size)∧2

unsigned long minx minimum size

unsigned long maxx maximum size

double sumlnxlny sum of ln(size)∗ln(measured)

double alpha estimated = alpha ∗ size ∧ beta

double beta estimated = alpha ∗ size ∧ beta

unsigned valid whether the linear regression model is valid (i.e. enough measures)

double a estimated = a size ∧b + c

double b estimated = a size ∧b + c

double c estimated = a size ∧b + c
unsigned nl_valid whether the non-linear regression model is valid (i.e. enough measures)

unsigned nsample number of sample values for non-linear regression

double ∗ coeff list of computed coefficients for multiple linear regression model

unsigned ncoeff number of coefficients for multiple linear regression model

unsigned multi_valid whether the multiple linear regression model is valid

Generated by Doxygen

328 Module Documentation a.k.a StarPU’s API

30.15.2.6 struct starpu_perfmodel_per_arch

information about the performance model of a given arch.

Data Fields

• starpu_perfmodel_per_arch_cost_function cost_function
• starpu_perfmodel_per_arch_size_base size_base
• char debug_path [256]

Private Attributes

• struct starpu_perfmodel_history_table ∗ history
• struct starpu_perfmodel_history_list ∗ list
• struct starpu_perfmodel_regression_model regression

30.15.2.6.1 Field Documentation

30.15.2.6.1.1 cost_function

starpu_perfmodel_per_arch_cost_function starpu_perfmodel_per_arch::cost_function

Used by STARPU_PER_ARCH, must point to functions which take a task, the target arch and implementation num-
ber (as mere conveniency, since the array is already indexed by these), and must return a task duration estimation
in micro-seconds.

30.15.2.6.1.2 size_base

starpu_perfmodel_per_arch_size_base starpu_perfmodel_per_arch::size_base

Same as in structure starpu_perfmodel, but per-arch, in case it depends on the architecture-specific implementation.

30.15.2.6.1.3 history

struct starpu_perfmodel_history_table∗ starpu_perfmodel_per_arch::history [private]

The history of performance measurements.

30.15.2.6.1.4 list

struct starpu_perfmodel_history_list∗ starpu_perfmodel_per_arch::list [private]

Used by STARPU_HISTORY_BASED, STARPU_NL_REGRESSION_BASED and STARPU_MULTIPLE_REGR←↩
ESSION_BASED, records all execution history measures.

30.15.2.6.1.5 regression

struct starpu_perfmodel_regression_model starpu_perfmodel_per_arch::regression [private]

Used by STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED and STARPU_MULTIPLE_R←↩
EGRESSION_BASED, contains the estimated factors of the regression.

30.15.2.7 struct starpu_perfmodel

Contain all information about a performance model. At least the type and symbol fields have to be filled when
defining a performance model for a codelet. For compatibility, make sure to initialize the whole structure to zero,
either by using explicit memset, or by letting the compiler implicitly do it in e.g. static storage case. If not provided,
other fields have to be zero.

Data Fields

• enum starpu_perfmodel_type type
• double(∗ cost_function)(struct starpu_task ∗, unsigned nimpl)
• double(∗ arch_cost_function)(struct starpu_task ∗, struct starpu_perfmodel_arch ∗arch, unsigned nimpl)
• size_t(∗ size_base)(struct starpu_task ∗, unsigned nimpl)
• uint32_t(∗ footprint)(struct starpu_task ∗)
• const char ∗ symbol
• void(∗ parameters)(struct starpu_task ∗task, double ∗parameters)

Generated by Doxygen

30.15 Performance Model 329

Private Attributes

• unsigned is_loaded
• unsigned benchmarking
• unsigned is_init
• const char ∗∗ parameters_names
• unsigned nparameters
• unsigned ∗∗ combinations
• unsigned ncombinations
• starpu_perfmodel_state_t state

30.15.2.7.1 Field Documentation

30.15.2.7.1.1 type

enum starpu_perfmodel_type starpu_perfmodel::type

type of performance model

• STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED←↩
: No other fields needs to be provided, this is purely history-based.

• STARPU_MULTIPLE_REGRESSION_BASED: Need to provide fields starpu_perfmodel::nparameters (num-
ber of different parameters), starpu_perfmodel::ncombinations (number of parameters combinations-tuples)
and table starpu_perfmodel::combinations which defines exponents of the equation. Function cl_perf_func
also needs to define how to extract parameters from the task.

• STARPU_PER_ARCH: either field starpu_perfmodel::arch_cost_function has to be filled with a function that
returns the cost in micro-seconds on the arch given as parameter, or field starpu_perfmodel::per_arch has to
be filled with functions which return the cost in micro-seconds.

• STARPU_COMMON: field starpu_perfmodel::cost_function has to be filled with a function that returns the
cost in micro-seconds on a CPU, timing on other archs will be determined by multiplying by an arch-specific
factor.

30.15.2.7.1.2 cost_function

double(∗ starpu_perfmodel::cost_function) (struct starpu_task ∗, unsigned nimpl)

Used by STARPU_COMMON. Take a task and implementation number, and must return a task duration estimation
in micro-seconds.

30.15.2.7.1.3 arch_cost_function

double(∗ starpu_perfmodel::arch_cost_function) (struct starpu_task ∗, struct starpu_perfmodel←↩

_arch ∗arch, unsigned nimpl)

Used by STARPU_COMMON. Take a task, an arch and implementation number, and must return a task duration
estimation in micro-seconds on that arch.

30.15.2.7.1.4 size_base

size_t(∗ starpu_perfmodel::size_base) (struct starpu_task ∗, unsigned nimpl)

Used by STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_B←↩
ASED. If not NULL, take a task and implementation number, and return the size to be used as index to distinguish
histories and as a base for regressions.

30.15.2.7.1.5 footprint

uint32_t(∗ starpu_perfmodel::footprint) (struct starpu_task ∗)
Used by STARPU_HISTORY_BASED. If not NULL, take a task and return the footprint to be used as index to
distinguish histories. The default is to use the starpu_task_data_footprint() function.

30.15.2.7.1.6 symbol

const char∗ starpu_perfmodel::symbol

symbol name for the performance model, which will be used as file name to store the model. It must be set otherwise
the model will be ignored.

Generated by Doxygen

330 Module Documentation a.k.a StarPU’s API

30.15.2.7.1.7 is_loaded

unsigned starpu_perfmodel::is_loaded [private]

Whether the performance model is already loaded from the disk.

30.15.2.7.1.8 parameters_names

const char∗∗ starpu_perfmodel::parameters_names [private]

Names of parameters used for multiple linear regression models (M, N, K)

30.15.2.7.1.9 nparameters

unsigned starpu_perfmodel::nparameters [private]

Number of parameters used for multiple linear regression models

30.15.2.7.1.10 combinations

unsigned∗∗ starpu_perfmodel::combinations [private]

Table of combinations of parameters (and the exponents) used for multiple linear regression models

30.15.2.7.1.11 ncombinations

unsigned starpu_perfmodel::ncombinations [private]

Number of combination of parameters used for multiple linear regression models

30.15.3 Enumeration Type Documentation

30.15.3.1 starpu_perfmodel_type

enum starpu_perfmodel_type

todo

Enumerator

STARPU_PER_ARCH Application-provided per-arch cost model function

STARPU_COMMON Application-provided common cost model function, with
per-arch factor

STARPU_HISTORY_BASED Automatic history-based cost model

STARPU_REGRESSION_BASED Automatic linear regression-based cost model (alpha ∗ size
∧ beta)

STARPU_NL_REGRESSION_BASED Automatic non-linear regression-based cost model (a ∗ size
∧ b + c)

STARPU_MULTIPLE_REGRESSION_BASED Automatic multiple linear regression-based cost model.
Application provides parameters, their combinations and
exponents.

30.15.4 Function Documentation

30.15.4.1 starpu_perfmodel_init()

void starpu_perfmodel_init (

struct starpu_perfmodel ∗ model)

Initialize the model performance model structure. This is automatically called when e.g. submitting a task using a
codelet using this performance model.

30.15.4.2 starpu_perfmodel_load_file()

int starpu_perfmodel_load_file (

Generated by Doxygen

30.15 Performance Model 331

const char ∗ filename,

struct starpu_perfmodel ∗ model)

Load the performance model found in the file named filename. model has to be completely zero, and will be
filled with the information stored in the given file.

30.15.4.3 starpu_perfmodel_load_symbol()

int starpu_perfmodel_load_symbol (

const char ∗ symbol,

struct starpu_perfmodel ∗ model)

Load a given performance model. model has to be completely zero, and will be filled with the information stored
in $STARPU_HOME/.starpu. The function is intended to be used by external tools that want to read the perfor-
mance model files.

30.15.4.4 starpu_perfmodel_unload_model()

int starpu_perfmodel_unload_model (

struct starpu_perfmodel ∗ model)

Unload model which has been previously loaded through the function starpu_perfmodel_load_symbol()

30.15.4.5 starpu_perfmodel_get_model_path()

void starpu_perfmodel_get_model_path (

const char ∗ symbol,

char ∗ path,

size_t maxlen)

Fills path (supposed to be maxlen long) with the full path to the performance model file for symbol symbol.
This path can later on be used for instance with starpu_perfmodel_load_file() .

30.15.4.6 starpu_perfmodel_dump_xml()

void starpu_perfmodel_dump_xml (

FILE ∗ output,

struct starpu_perfmodel ∗ model)

Dump performance model model to output stream output, in XML format.

30.15.4.7 starpu_perfmodel_free_sampling()

void starpu_perfmodel_free_sampling (

void)

Free internal memory used for sampling management. It should only be called by an application which is not
calling starpu_shutdown() as this function already calls it. See for example tools/starpu_perfmodel_←↩
display.c.

30.15.4.8 starpu_worker_get_perf_archtype()

struct starpu_perfmodel_arch∗ starpu_worker_get_perf_archtype (

int workerid,

unsigned sched_ctx_id)

Return the architecture type of the worker workerid.

30.15.4.9 starpu_perfmodel_debugfilepath()

void starpu_perfmodel_debugfilepath (

struct starpu_perfmodel ∗ model,

struct starpu_perfmodel_arch ∗ arch,

char ∗ path,

size_t maxlen,

unsigned nimpl)

Return the path to the debugging information for the performance model.

Generated by Doxygen

332 Module Documentation a.k.a StarPU’s API

30.15.4.10 starpu_perfmodel_get_arch_name()

void starpu_perfmodel_get_arch_name (

struct starpu_perfmodel_arch ∗ arch,

char ∗ archname,

size_t maxlen,

unsigned nimpl)

Return the architecture name for arch

30.15.4.11 starpu_perfmodel_history_based_expected_perf()

double starpu_perfmodel_history_based_expected_perf (

struct starpu_perfmodel ∗ model,

struct starpu_perfmodel_arch ∗ arch,

uint32_t footprint)

Return the estimated time of a task with the given model and the given footprint.

30.15.4.12 starpu_perfmodel_initialize()

void starpu_perfmodel_initialize (

void)

If starpu_init() is not used, starpu_perfmodel_initialize() should be used called calling starpu_perfmodel_∗ functions.

30.15.4.13 starpu_perfmodel_list()

int starpu_perfmodel_list (

FILE ∗ output)

Print a list of all performance models on output

30.15.4.14 starpu_perfmodel_update_history()

void starpu_perfmodel_update_history (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned cpuid,

unsigned nimpl,

double measured)

Feed the performance model model with an explicit measurement measured (in µs), in addition to measurements
done by StarPU itself. This can be useful when the application already has an existing set of measurements done
in good conditions, that StarPU could benefit from instead of doing on-line measurements. An example of use can
be seen in Performance Model Example.

30.15.4.15 starpu_perfmodel_directory()

void starpu_perfmodel_directory (

FILE ∗ output)

Print the directory name storing performance models on output

30.15.4.16 starpu_bus_print_bandwidth()

void starpu_bus_print_bandwidth (

FILE ∗ f)

Print a matrix of bus bandwidths on f.

30.15.4.17 starpu_bus_print_affinity()

void starpu_bus_print_affinity (

FILE ∗ f)

Generated by Doxygen

30.15 Performance Model 333

Print the affinity devices on f.

30.15.4.18 starpu_bus_print_filenames()

void starpu_bus_print_filenames (

FILE ∗ f)

Print on f the name of the files containing the matrix of bus bandwidths, the affinity devices and the latency.

30.15.4.19 starpu_transfer_bandwidth()

double starpu_transfer_bandwidth (

unsigned src_node,

unsigned dst_node)

Return the bandwidth of data transfer between two memory nodes

30.15.4.20 starpu_transfer_latency()

double starpu_transfer_latency (

unsigned src_node,

unsigned dst_node)

Return the latency of data transfer between two memory nodes

30.15.4.21 starpu_transfer_predict()

double starpu_transfer_predict (

unsigned src_node,

unsigned dst_node,

size_t size)

Return the estimated time to transfer a given size between two memory nodes.

30.15.5 Variable Documentation

30.15.5.1 starpu_perfmodel_nop

struct starpu_perfmodel starpu_perfmodel_nop

Performance model which just always return 1µs.

Generated by Doxygen

334 Module Documentation a.k.a StarPU’s API

30.16 Profiling

Data Structures

• struct starpu_profiling_task_info
• struct starpu_profiling_worker_info
• struct starpu_profiling_bus_info

Macros

• #define STARPU_PROFILING_DISABLE
• #define STARPU_PROFILING_ENABLE
• #define STARPU_NS_PER_S
• #define starpu_timespec_cmp(a, b, CMP)

Functions

• void starpu_profiling_init (void)
• void starpu_profiling_set_id (int new_id)
• int starpu_profiling_status_set (int status)
• int starpu_profiling_status_get (void)
• int starpu_profiling_worker_get_info (int workerid, struct starpu_profiling_worker_info ∗worker_info)
• int starpu_bus_get_count (void)
• int starpu_bus_get_id (int src, int dst)
• int starpu_bus_get_src (int busid)
• int starpu_bus_get_dst (int busid)
• void starpu_bus_set_direct (int busid, int direct)
• int starpu_bus_get_direct (int busid)
• void starpu_bus_set_ngpus (int busid, int ngpus)
• int starpu_bus_get_ngpus (int busid)
• int starpu_bus_get_profiling_info (int busid, struct starpu_profiling_bus_info ∗bus_info)
• static __starpu_inline void starpu_timespec_clear (struct timespec ∗tsp)
• static __starpu_inline void starpu_timespec_add (struct timespec ∗a, struct timespec ∗b, struct timespec
∗result)

• static __starpu_inline void starpu_timespec_accumulate (struct timespec ∗result, struct timespec ∗a)
• static __starpu_inline void starpu_timespec_sub (const struct timespec ∗a, const struct timespec ∗b, struct

timespec ∗result)
• double starpu_timing_timespec_delay_us (struct timespec ∗start, struct timespec ∗end)
• double starpu_timing_timespec_to_us (struct timespec ∗ts)
• void starpu_profiling_bus_helper_display_summary (void)
• void starpu_profiling_worker_helper_display_summary (void)
• void starpu_data_display_memory_stats ()

30.16.1 Detailed Description

30.16.2 Data Structure Documentation

30.16.2.1 struct starpu_profiling_task_info

Information about the execution of a task. It is accessible from the field starpu_task::profiling_info if profiling was
enabled.

Data Fields

struct timespec submit_time Date of task submission (relative to the initialization of StarPU).

struct timespec push_start_time Time when the task was submitted to the scheduler.

struct timespec push_end_time Time when the scheduler finished with the task submission.

Generated by Doxygen

30.16 Profiling 335

Data Fields

struct timespec pop_start_time Time when the scheduler started to be requested for a task, and
eventually gave that task.

struct timespec pop_end_time Time when the scheduler finished providing the task for
execution.

struct timespec acquire_data_start_time Time when the worker started fetching input data.

struct timespec acquire_data_end_time Time when the worker finished fetching input data.

struct timespec start_time Date of task execution beginning (relative to the initialization of
StarPU).

struct timespec end_time Date of task execution termination (relative to the initialization of
StarPU).

struct timespec release_data_start_time Time when the worker started releasing data.

struct timespec release_data_end_time Time when the worker finished releasing data.

struct timespec callback_start_time Time when the worker started the application callback for the
task.

struct timespec callback_end_time Time when the worker finished the application callback for the
task.

int workerid Identifier of the worker which has executed the task.
uint64_t used_cycles Number of cycles used by the task, only available in the MoviSim

uint64_t stall_cycles Number of cycles stalled within the task, only available in the
MoviSim

double energy_consumed Energy consumed by the task, in Joules

30.16.2.2 struct starpu_profiling_worker_info

Profiling information associated to a worker. The timing is provided since the previous call to starpu_profiling_←↩
worker_get_info()

Data Fields

struct timespec start_time Starting date for the reported profiling measurements.

struct timespec total_time Duration of the profiling measurement interval.

struct timespec executing_time Time spent by the worker to execute tasks during the profiling
measurement interval.

struct timespec sleeping_time Time spent idling by the worker during the profiling measurement
interval.

int executed_tasks Number of tasks executed by the worker during the profiling
measurement interval.

uint64_t used_cycles Number of cycles used by the worker, only available in the MoviSim

uint64_t stall_cycles Number of cycles stalled within the worker, only available in the
MoviSim

double energy_consumed Energy consumed by the worker, in Joules

double flops

30.16.2.3 struct starpu_profiling_bus_info

Data Fields

struct timespec start_time Time of bus profiling startup.

struct timespec total_time Total time of bus profiling.

int long long transferred_bytes Number of bytes transferred during profiling.

Generated by Doxygen

336 Module Documentation a.k.a StarPU’s API

Data Fields

int transfer_count Number of transfers during profiling.

30.16.3 Macro Definition Documentation

30.16.3.1 STARPU_PROFILING_DISABLE

#define STARPU_PROFILING_DISABLE

Used when calling the function starpu_profiling_status_set() to disable profiling.

30.16.3.2 STARPU_PROFILING_ENABLE

#define STARPU_PROFILING_ENABLE

Used when calling the function starpu_profiling_status_set() to enable profiling.

30.16.4 Function Documentation

30.16.4.1 starpu_profiling_init()

void starpu_profiling_init (

void)

Reset performance counters and enable profiling if the environment variable STARPU_PROFILING is set to a
positive value.

30.16.4.2 starpu_profiling_set_id()

void starpu_profiling_set_id (

int new_id)

Set the ID used for profiling trace filename. Has to be called before starpu_init().

30.16.4.3 starpu_profiling_status_set()

int starpu_profiling_status_set (

int status)

Set the profiling status. Profiling is activated by passing STARPU_PROFILING_ENABLE in status. Passing
STARPU_PROFILING_DISABLE disables profiling. Calling this function resets all profiling measurements. When
profiling is enabled, the field starpu_task::profiling_info points to a valid structure starpu_profiling_task_info contain-
ing information about the execution of the task. Negative return values indicate an error, otherwise the previous
status is returned.

30.16.4.4 starpu_profiling_status_get()

int starpu_profiling_status_get (

void)

Return the current profiling status or a negative value in case there was an error.

30.16.4.5 starpu_profiling_worker_get_info()

int starpu_profiling_worker_get_info (

int workerid,

struct starpu_profiling_worker_info ∗ worker_info)

Get the profiling info associated to the worker identified by workerid, and reset the profiling measurements. If the
argument worker_info is NULL, only reset the counters associated to worker workerid. Upon successful
completion, this function returns 0. Otherwise, a negative value is returned.

Generated by Doxygen

30.16 Profiling 337

30.16.4.6 starpu_bus_get_count()

int starpu_bus_get_count (

void)

Return the number of buses in the machine

30.16.4.7 starpu_bus_get_id()

int starpu_bus_get_id (

int src,

int dst)

Return the identifier of the bus between src and dst

30.16.4.8 starpu_bus_get_src()

int starpu_bus_get_src (

int busid)

Return the source point of bus busid

30.16.4.9 starpu_bus_get_dst()

int starpu_bus_get_dst (

int busid)

Return the destination point of bus busid

30.16.4.10 starpu_bus_get_profiling_info()

int starpu_bus_get_profiling_info (

int busid,

struct starpu_profiling_bus_info ∗ bus_info)

See _starpu_profiling_bus_helper_display_summary in src/profiling/profiling_helpers.c for a usage example. Note
that calling starpu_bus_get_profiling_info() resets the counters to zero.

30.16.4.11 starpu_timing_timespec_delay_us()

double starpu_timing_timespec_delay_us (

struct timespec ∗ start,

struct timespec ∗ end)

Return the time elapsed between start and end in microseconds.

30.16.4.12 starpu_timing_timespec_to_us()

double starpu_timing_timespec_to_us (

struct timespec ∗ ts)

Convert the given timespec ts into microseconds

30.16.4.13 starpu_profiling_bus_helper_display_summary()

void starpu_profiling_bus_helper_display_summary (

void)

Display statistics about the bus on stderr. if the environment variable STARPU_BUS_STATS is defined. The
function is called automatically by starpu_shutdown().

30.16.4.14 starpu_profiling_worker_helper_display_summary()

void starpu_profiling_worker_helper_display_summary (

void)

Display statistic about the workers on stderr if the environment variable STARPU_WORKER_STATS is defined.
The function is called automatically by starpu_shutdown().

Generated by Doxygen

338 Module Documentation a.k.a StarPU’s API

30.16.4.15 starpu_data_display_memory_stats()

void starpu_data_display_memory_stats ()

Display statistics about the current data handles registered within StarPU. StarPU must have been configured with
the configure option --enable-memory-stats (see Memory Feedback).

Generated by Doxygen

30.17 Theoretical Lower Bound on Execution Time 339

30.17 Theoretical Lower Bound on Execution Time

Compute theoretical upper computation efficiency bound corresponding to some actual execution.

Functions

• void starpu_bound_start (int deps, int prio)

• void starpu_bound_stop (void)

• void starpu_bound_print_dot (FILE ∗output)

• void starpu_bound_compute (double ∗res, double ∗integer_res, int integer)

• void starpu_bound_print_lp (FILE ∗output)

• void starpu_bound_print_mps (FILE ∗output)

• void starpu_bound_print (FILE ∗output, int integer)

30.17.1 Detailed Description

Compute theoretical upper computation efficiency bound corresponding to some actual execution.

30.17.2 Function Documentation

30.17.2.1 starpu_bound_start()

void starpu_bound_start (

int deps,

int prio)

Start recording tasks (resets stats). deps tells whether dependencies should be recorded too (this is quite expen-
sive)

30.17.2.2 starpu_bound_stop()

void starpu_bound_stop (

void)

Stop recording tasks

30.17.2.3 starpu_bound_print_dot()

void starpu_bound_print_dot (

FILE ∗ output)

Emit the DAG that was recorded on output.

30.17.2.4 starpu_bound_compute()

void starpu_bound_compute (

double ∗ res,

double ∗ integer_res,

int integer)

Get theoretical upper bound (in ms) (needs glpk support detected by configure script). It returns 0 if some perfor-
mance models are not calibrated.

30.17.2.5 starpu_bound_print_lp()

void starpu_bound_print_lp (

FILE ∗ output)

Emit the Linear Programming system on output for the recorded tasks, in the lp format

Generated by Doxygen

340 Module Documentation a.k.a StarPU’s API

30.17.2.6 starpu_bound_print_mps()

void starpu_bound_print_mps (

FILE ∗ output)

Emit the Linear Programming system on output for the recorded tasks, in the mps format

30.17.2.7 starpu_bound_print()

void starpu_bound_print (

FILE ∗ output,

int integer)

Emit on output the statistics of actual execution vs theoretical upper bound. integer permits to choose be-
tween integer solving (which takes a long time but is correct), and relaxed solving (which provides an approximate
solution).

Generated by Doxygen

30.18 CUDA Extensions 341

30.18 CUDA Extensions

Macros

• #define STARPU_USE_CUDA
• #define STARPU_HAVE_LIBNVIDIA_ML
• #define STARPU_MAXCUDADEVS
• #define STARPU_CUBLAS_REPORT_ERROR(status)
• #define STARPU_CUDA_REPORT_ERROR(status)

Functions

• void starpu_cublas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_cuda_report_error (const char ∗func, const char ∗file, int line, cudaError_t status)
• cudaStream_t starpu_cuda_get_local_stream (void)
• const struct cudaDeviceProp ∗ starpu_cuda_get_device_properties (unsigned workerid)
• int starpu_cuda_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t ssize, cudaStream_t stream, enum cudaMemcpyKind kind)
• int starpu_cuda_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, cudaStream_t stream, enum cudaMemcpy←↩
Kind kind)

• int starpu_cuda_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,
size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, cudaStream_t stream, enum cudaMemcpyKind kind)

• void starpu_cuda_set_device (unsigned devid)

• void starpu_cusparse_init (void)
• void starpu_cusparse_shutdown (void)
• cusparseHandle_t starpu_cusparse_get_local_handle (void)

• void starpu_cublas_init (void)
• void starpu_cublas_set_stream (void)
• void starpu_cublas_shutdown (void)

• cublasHandle_t starpu_cublas_get_local_handle (void)

30.18.1 Detailed Description

30.18.2 Macro Definition Documentation

30.18.2.1 STARPU_USE_CUDA

#define STARPU_USE_CUDA

Defined when StarPU has been installed with CUDA support. It should be used in your code to detect the availability
of CUDA.

30.18.2.2 STARPU_HAVE_LIBNVIDIA_ML

#define STARPU_HAVE_LIBNVIDIA_ML

Defined when StarPU has been installed with NVidia-ML support. It should be used in your code to detect the
availability of NVML-related functions.

30.18.2.3 STARPU_MAXCUDADEVS

#define STARPU_MAXCUDADEVS

Define the maximum number of CUDA devices that are supported by StarPU.

Generated by Doxygen

342 Module Documentation a.k.a StarPU’s API

30.18.2.4 STARPU_CUBLAS_REPORT_ERROR

#define STARPU_CUBLAS_REPORT_ERROR(

status)

Call starpu_cublas_report_error(), passing the current function, file and line position.

30.18.2.5 STARPU_CUDA_REPORT_ERROR

#define STARPU_CUDA_REPORT_ERROR(

status)

Call starpu_cuda_report_error(), passing the current function, file and line position.

30.18.3 Function Documentation

30.18.3.1 starpu_cusparse_init()

void starpu_cusparse_init (

void)

Initialize CUSPARSE on every CUDA device controlled by StarPU. This call blocks until CUSPARSE has been
properly initialized on every device.

30.18.3.2 starpu_cublas_init()

void starpu_cublas_init (

void)

Initialize CUBLAS on every CUDA device. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
starpu_cublas_init() will initialize CUBLAS on every CUDA device controlled by StarPU. This call blocks until CU←↩
BLAS has been properly initialized on every device.

30.18.3.3 starpu_cublas_get_local_handle()

cublasHandle_t starpu_cublas_get_local_handle (

void)

Return the CUSPARSE handle to be used to queue CUSPARSE kernels. It is properly initialized and configured for
multistream by starpu_cusparse_init().

30.18.3.4 starpu_cublas_report_error()

void starpu_cublas_report_error (

const char ∗ func,

const char ∗ file,

int line,

int status)

Report a CUBLAS error.

30.18.3.5 starpu_cuda_report_error()

void starpu_cuda_report_error (

const char ∗ func,

const char ∗ file,

int line,

cudaError_t status)

Report a CUDA error.

30.18.3.6 starpu_cuda_get_local_stream()

cudaStream_t starpu_cuda_get_local_stream (

void)

Generated by Doxygen

30.18 CUDA Extensions 343

Return the current worker’s CUDA stream. StarPU provides a stream for every CUDA device controlled by Star←↩
PU. This function is only provided for convenience so that programmers can easily use asynchronous operations
within codelets without having to create a stream by hand. Note that the application is not forced to use the stream
provided by starpu_cuda_get_local_stream() and may also create its own streams. Synchronizing with cuda←↩
DeviceSynchronize() is allowed, but will reduce the likelihood of having all transfers overlapped.

30.18.3.7 starpu_cuda_get_device_properties()

const struct cudaDeviceProp∗ starpu_cuda_get_device_properties (

unsigned workerid)

Return a pointer to device properties for worker workerid (assumed to be a CUDA worker).

30.18.3.8 starpu_cuda_copy_async_sync()

int starpu_cuda_copy_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t ssize,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy ssize bytes from the pointer src_ptr on src_node to the pointer dst_ptr on dst_node. The
function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or if
stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successfull. It returns 0 if the synchronous copy was successful, or fails otherwise.

30.18.3.9 starpu_cuda_copy2d_async_sync()

int starpu_cuda_copy2d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t blocksize,

size_t numblocks,

size_t ld_src,

size_t ld_dst,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy numblocks blocks of blocksize bytes from the pointer src_ptr on src_node to the pointer dst←↩
_ptr on dst_node.
The blocks start at addresses which are ld_src (resp. ld_dst) bytes apart in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successfull. It returns 0 if the synchronous copy was successful, or fails otherwise.

30.18.3.10 starpu_cuda_copy3d_async_sync()

int starpu_cuda_copy3d_async_sync (

void ∗ src_ptr,

unsigned src_node,

void ∗ dst_ptr,

unsigned dst_node,

size_t blocksize,

size_t numblocks_1,

size_t ld1_src,

size_t ld1_dst,

size_t numblocks_2,

Generated by Doxygen

344 Module Documentation a.k.a StarPU’s API

size_t ld2_src,

size_t ld2_dst,

cudaStream_t stream,

enum cudaMemcpyKind kind)

Copy numblocks_1 ∗ numblocks_2 blocks of blocksize bytes from the pointer src_ptr on src_node
to the pointer dst_ptr on dst_node.
The blocks are grouped by numblocks_1 blocks whose start addresses are ld1_src (resp. ld1_dst) bytes apart
in the source (resp. destination) interface.
The function first tries to copy the data asynchronous (unless stream is NULL). If the asynchronous copy fails or
if stream is NULL, it copies the data synchronously. The function returns -EAGAIN if the asynchronous launch
was successfull. It returns 0 if the synchronous copy was successful, or fails otherwise.

30.18.3.11 starpu_cuda_set_device()

void starpu_cuda_set_device (

unsigned devid)

Call cudaSetDevice(devid) or cudaGLSetGLDevice(devid), according to whether devid is among
the field starpu_conf::cuda_opengl_interoperability.

30.18.3.12 starpu_cublas_set_stream()

void starpu_cublas_set_stream (

void)

Set the proper CUBLAS stream for CUBLAS v1. This must be called from the CUDA codelet before calling CUBLAS
v1 kernels, so that they are queued on the proper CUDA stream. When using one thread per CUDA worker, this
function does not do anything since the CUBLAS stream does not change, and is set once by starpu_cublas_init().

30.18.3.13 starpu_cublas_shutdown()

void starpu_cublas_shutdown (

void)

Synchronously deinitialize the CUBLAS library on every CUDA device.

30.18.3.14 starpu_cusparse_shutdown()

void starpu_cusparse_shutdown (

void)

Synchronously deinitialize the CUSPARSE library on every CUDA device.

30.18.3.15 starpu_cusparse_get_local_handle()

cusparseHandle_t starpu_cusparse_get_local_handle (

void)

Return the CUSPARSE handle to be used to queue CUSPARSE kernels. It is properly initialized and configured for
multistream by starpu_cusparse_init().

Generated by Doxygen

30.19 OpenCL Extensions 345

30.19 OpenCL Extensions

Data Structures

• struct starpu_opencl_program

Macros

• #define STARPU_USE_OPENCL

• #define STARPU_OPENCL_DATADIR

• #define STARPU_MAXOPENCLDEVS

Writing OpenCL kernels

• void starpu_opencl_get_context (int devid, cl_context ∗context)

• void starpu_opencl_get_device (int devid, cl_device_id ∗device)

• void starpu_opencl_get_queue (int devid, cl_command_queue ∗queue)

• void starpu_opencl_get_current_context (cl_context ∗context)

• void starpu_opencl_get_current_queue (cl_command_queue ∗queue)

• int starpu_opencl_set_kernel_args (cl_int ∗err, cl_kernel ∗kernel,...)

Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides functions to build the
program executable for each available OpenCL device as a cl_program object. This program executable can then
be loaded within a specific queue as explained in the next section. These are only helpers, Applications can also fill
a starpu_opencl_program array by hand for more advanced use (e.g. different programs on the different OpenCL
devices, for relocation purpose for instance).

• void starpu_opencl_load_program_source (const char ∗source_file_name, char ∗located_file_name, char
∗located_dir_name, char ∗opencl_program_source)

• void starpu_opencl_load_program_source_malloc (const char ∗source_file_name, char ∗∗located_file_←↩
name, char ∗∗located_dir_name, char ∗∗opencl_program_source)

• int starpu_opencl_compile_opencl_from_file (const char ∗source_file_name, const char ∗build_options)

• int starpu_opencl_compile_opencl_from_string (const char ∗opencl_program_source, const char ∗file_name,
const char ∗build_options)

• int starpu_opencl_load_binary_opencl (const char ∗kernel_id, struct starpu_opencl_program ∗opencl_←↩
programs)

• int starpu_opencl_load_opencl_from_file (const char ∗source_file_name, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_load_opencl_from_string (const char ∗opencl_program_source, struct starpu_opencl_←↩
program ∗opencl_programs, const char ∗build_options)

• int starpu_opencl_unload_opencl (struct starpu_opencl_program ∗opencl_programs)

Loading OpenCL kernels

• int starpu_opencl_load_kernel (cl_kernel ∗kernel, cl_command_queue ∗queue, struct starpu_opencl_←↩
program ∗opencl_programs, const char ∗kernel_name, int devid)

• int starpu_opencl_release_kernel (cl_kernel kernel)

OpenCL Statistics

• int starpu_opencl_collect_stats (cl_event event)

Generated by Doxygen

346 Module Documentation a.k.a StarPU’s API

OpenCL Utilities

• const char ∗ starpu_opencl_error_string (cl_int status)
• void starpu_opencl_display_error (const char ∗func, const char ∗file, int line, const char ∗msg, cl_int status)
• static __starpu_inline void starpu_opencl_report_error (const char ∗func, const char ∗file, int line, const char
∗msg, cl_int status)

• cl_int starpu_opencl_allocate_memory (int devid, cl_mem ∗addr, size_t size, cl_mem_flags flags)
• cl_int starpu_opencl_copy_ram_to_opencl (void ∗ptr, unsigned src_node, cl_mem buffer, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_ram (cl_mem buffer, unsigned src_node, void ∗ptr, unsigned dst_node,

size_t size, size_t offset, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem src, unsigned src_node, size_t src_offset, cl_mem

dst, unsigned dst_node, size_t dst_offset, size_t size, cl_event ∗event, int ∗ret)
• cl_int starpu_opencl_copy_async_sync (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst,

size_t dst_offset, unsigned dst_node, size_t size, cl_event ∗event)
• #define STARPU_OPENCL_DISPLAY_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR(status)
• #define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(msg, status)

30.19.1 Detailed Description

30.19.2 Data Structure Documentation

30.19.2.1 struct starpu_opencl_program

Store the OpenCL programs as compiled for the different OpenCL devices.

Data Fields

cl_program programs[STARPU_MAXOPENCLDEVS] Store each program for each OpenCL device.

30.19.3 Macro Definition Documentation

30.19.3.1 STARPU_USE_OPENCL

#define STARPU_USE_OPENCL

Defined when StarPU has been installed with OpenCL support. It should be used in your code to detect the
availability of OpenCL as shown in Full source code for the ’Scaling a Vector’ example.

30.19.3.2 STARPU_OPENCL_DATADIR

#define STARPU_OPENCL_DATADIR

Define the directory in which the OpenCL codelets of the applications provided with StarPU have been installed.

30.19.3.3 STARPU_MAXOPENCLDEVS

#define STARPU_MAXOPENCLDEVS

Define the maximum number of OpenCL devices that are supported by StarPU.

30.19.3.4 STARPU_OPENCL_DISPLAY_ERROR

#define STARPU_OPENCL_DISPLAY_ERROR(

status)

Call the function starpu_opencl_display_error() with the error status, the current function name, current file and
line number, and a empty message.

Generated by Doxygen

30.19 OpenCL Extensions 347

30.19.3.5 STARPU_OPENCL_REPORT_ERROR

#define STARPU_OPENCL_REPORT_ERROR(

status)

Call the function starpu_opencl_report_error() with the error status, the current function name, current file and
line number, and a empty message.

30.19.3.6 STARPU_OPENCL_REPORT_ERROR_WITH_MSG

#define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(

msg,

status)

Call the function starpu_opencl_report_error() with msg and status, the current function name, current file and
line number.

30.19.4 Function Documentation

30.19.4.1 starpu_opencl_get_context()

void starpu_opencl_get_context (

int devid,

cl_context ∗ context)

Return the OpenCL context of the device designated by devid in context.

30.19.4.2 starpu_opencl_get_device()

void starpu_opencl_get_device (

int devid,

cl_device_id ∗ device)

Return the cl_device_id corresponding to devid in device.

30.19.4.3 starpu_opencl_get_queue()

void starpu_opencl_get_queue (

int devid,

cl_command_queue ∗ queue)

Return the command queue of the device designated by devid into queue.

30.19.4.4 starpu_opencl_get_current_context()

void starpu_opencl_get_current_context (

cl_context ∗ context)

Return the context of the current worker.

30.19.4.5 starpu_opencl_get_current_queue()

void starpu_opencl_get_current_queue (

cl_command_queue ∗ queue)

Return the computation kernel command queue of the current worker.

30.19.4.6 starpu_opencl_set_kernel_args()

int starpu_opencl_set_kernel_args (

cl_int ∗ err,

cl_kernel ∗ kernel,

...)

Set the arguments of a given kernel. The list of arguments must be given as (size_t size_of_the_←↩
argument, cl_mem ∗ pointer_to_the_argument). The last argument must be 0. Return the number

Generated by Doxygen

348 Module Documentation a.k.a StarPU’s API

of arguments that were successfully set. In case of failure, return the id of the argument that could not be set and
err is set to the error returned by OpenCL. Otherwise, return the number of arguments that were set.
Here an example:

int n;
cl_int err;
cl_kernel kernel;
n = starpu_opencl_set_kernel_args(&err, 2, &kernel, sizeof(foo), &foo, sizeof(

bar), &bar, 0);
if (n != 2) fprintf(stderr, "Error : %d\n", err);

30.19.4.7 starpu_opencl_load_program_source()

void starpu_opencl_load_program_source (

const char ∗ source_file_name,

char ∗ located_file_name,

char ∗ located_dir_name,

char ∗ opencl_program_source)

Store the contents of the file source_file_name in the buffer opencl_program_source. The file
source_file_name can be located in the current directory, or in the directory specified by the environment
variable STARPU_OPENCL_PROGRAM_DIR, or in the directory share/starpu/opencl of the installation
directory of StarPU, or in the source directory of StarPU. When the file is found, located_file_name is the
full name of the file as it has been located on the system, located_dir_name the directory where it has been
located. Otherwise, they are both set to the empty string.

30.19.4.8 starpu_opencl_load_program_source_malloc()

void starpu_opencl_load_program_source_malloc (

const char ∗ source_file_name,

char ∗∗ located_file_name,

char ∗∗ located_dir_name,

char ∗∗ opencl_program_source)

Similar to function starpu_opencl_load_program_source() but allocate the buffers located_file_name,
located_dir_name and opencl_program_source.

30.19.4.9 starpu_opencl_compile_opencl_from_file()

int starpu_opencl_compile_opencl_from_file (

const char ∗ source_file_name,

const char ∗ build_options)

Compile the OpenCL kernel stored in the file source_file_name with the given options build_options
and store the result in the directory $STARPU_HOME/.starpu/opencl with the same filename as source←↩
_file_name. The compilation is done for every OpenCL device, and the filename is suffixed with the vendor id
and the device id of the OpenCL device.

30.19.4.10 starpu_opencl_compile_opencl_from_string()

int starpu_opencl_compile_opencl_from_string (

const char ∗ opencl_program_source,

const char ∗ file_name,

const char ∗ build_options)

Compile the OpenCL kernel in the string opencl_program_source with the given options build_options
and store the result in the directory $STARPU_HOME/.starpu/opencl with the filename file_name. The
compilation is done for every OpenCL device, and the filename is suffixed with the vendor id and the device id of
the OpenCL device.

Generated by Doxygen

30.19 OpenCL Extensions 349

30.19.4.11 starpu_opencl_load_binary_opencl()

int starpu_opencl_load_binary_opencl (

const char ∗ kernel_id,

struct starpu_opencl_program ∗ opencl_programs)

Compile the binary OpenCL kernel identified with kernel_id. For every OpenCL device, the binary Open←↩
CL kernel will be loaded from the file $STARPU_HOME/.starpu/opencl/<kernel_id>.<device_←↩
type>.vendor_id_<vendor_id>_device_id_<device_id>.

30.19.4.12 starpu_opencl_load_opencl_from_file()

int starpu_opencl_load_opencl_from_file (

const char ∗ source_file_name,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ build_options)

Compile an OpenCL source code stored in a file.

30.19.4.13 starpu_opencl_load_opencl_from_string()

int starpu_opencl_load_opencl_from_string (

const char ∗ opencl_program_source,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ build_options)

Compile an OpenCL source code stored in a string.

30.19.4.14 starpu_opencl_unload_opencl()

int starpu_opencl_unload_opencl (

struct starpu_opencl_program ∗ opencl_programs)

Unload an OpenCL compiled code.

30.19.4.15 starpu_opencl_load_kernel()

int starpu_opencl_load_kernel (

cl_kernel ∗ kernel,

cl_command_queue ∗ queue,

struct starpu_opencl_program ∗ opencl_programs,

const char ∗ kernel_name,

int devid)

Create a kernel kernel for device devid, on its computation command queue returned in queue, using program
opencl_programs and name kernel_name.

30.19.4.16 starpu_opencl_release_kernel()

int starpu_opencl_release_kernel (

cl_kernel kernel)

Release the given kernel, to be called after kernel execution.

30.19.4.17 starpu_opencl_collect_stats()

int starpu_opencl_collect_stats (

cl_event event)

Collect statistics on a kernel execution. After termination of the kernels, the OpenCL codelet should call this function
with the event returned by clEnqueueNDRangeKernel(), to let StarPU collect statistics about the kernel
execution (used cycles, consumed energy).

30.19.4.18 starpu_opencl_error_string()

const char∗ starpu_opencl_error_string (

cl_int status)

Generated by Doxygen

350 Module Documentation a.k.a StarPU’s API

Return the error message in English corresponding to status, an OpenCL error code.

30.19.4.19 starpu_opencl_display_error()

void starpu_opencl_display_error (

const char ∗ func,

const char ∗ file,

int line,

const char ∗ msg,

cl_int status)

Given a valid error status, print the corresponding error message on stdout, along with the function name func,
the filename file, the line number line and the message msg.

30.19.4.20 starpu_opencl_report_error()

static __starpu_inline void starpu_opencl_report_error (

const char ∗ func,

const char ∗ file,

int line,

const char ∗ msg,

cl_int status) [static]

Call the function starpu_opencl_display_error() and abort.

30.19.4.21 starpu_opencl_allocate_memory()

cl_int starpu_opencl_allocate_memory (

int devid,

cl_mem ∗ addr,

size_t size,

cl_mem_flags flags)

Allocate size bytes of memory, stored in addr. flags must be a valid combination of cl_mem_flags values.

30.19.4.22 starpu_opencl_copy_ram_to_opencl()

cl_int starpu_opencl_copy_ram_to_opencl (

void ∗ ptr,

unsigned src_node,

cl_mem buffer,

unsigned dst_node,

size_t size,

size_t offset,

cl_event ∗ event,

int ∗ ret)

Copy size bytes from the given ptr on RAM src_node to the given buffer on OpenCL dst_node. offset
is the offset, in bytes, in buffer. if event is NULL, the copy is synchronous, i.e the queue is synchronised before
returning. If not NULL, event can be used after the call to wait for this particular copy to complete. This function
returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code otherwise. The integer pointed to
by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if event was NULL.

30.19.4.23 starpu_opencl_copy_opencl_to_ram()

cl_int starpu_opencl_copy_opencl_to_ram (

cl_mem buffer,

unsigned src_node,

void ∗ ptr,

unsigned dst_node,

size_t size,

size_t offset,

Generated by Doxygen

30.19 OpenCL Extensions 351

cl_event ∗ event,

int ∗ ret)

Copy size bytes asynchronously from the given buffer on OpenCL src_node to the given ptr on RAM
dst_node. offset is the offset, in bytes, in buffer. if event is NULL, the copy is synchronous, i.e the
queue is synchronised before returning. If not NULL, event can be used after the call to wait for this particular
copy to complete. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
otherwise. The integer pointed to by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if
event was NULL.

30.19.4.24 starpu_opencl_copy_opencl_to_opencl()

cl_int starpu_opencl_copy_opencl_to_opencl (

cl_mem src,

unsigned src_node,

size_t src_offset,

cl_mem dst,

unsigned dst_node,

size_t dst_offset,

size_t size,

cl_event ∗ event,

int ∗ ret)

Copy size bytes asynchronously from byte offset src_offset of src on OpenCL src_node to byte offset
dst_offset of dst on OpenCL dst_node. if event is NULL, the copy is synchronous, i.e. the queue is
synchronised before returning. If not NULL, event can be used after the call to wait for this particular copy to
complete. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code otherwise.
The integer pointed to by ret is set to -EAGAIN if the asynchronous launch was successful, or to 0 if event was
NULL.

30.19.4.25 starpu_opencl_copy_async_sync()

cl_int starpu_opencl_copy_async_sync (

uintptr_t src,

size_t src_offset,

unsigned src_node,

uintptr_t dst,

size_t dst_offset,

unsigned dst_node,

size_t size,

cl_event ∗ event)

Copy size bytes from byte offset src_offset of src on src_node to byte offset dst_offset of dst on
dst_node. if event is NULL, the copy is synchronous, i.e. the queue is synchronised before returning. If not
NULL, event can be used after the call to wait for this particular copy to complete. The function returns -EAGAIN
if the asynchronous launch was successfull. It returns 0 if the synchronous copy was successful, or fails otherwise.

Generated by Doxygen

352 Module Documentation a.k.a StarPU’s API

30.20 OpenMP Runtime Support

This section describes the interface provided for implementing OpenMP runtimes on top of StarPU.

Data Structures

• struct starpu_omp_lock_t
• struct starpu_omp_nest_lock_t
• struct starpu_omp_parallel_region_attr
• struct starpu_omp_task_region_attr

Macros

• #define STARPU_OPENMP
• #define __STARPU_OMP_NOTHROW

Enumerations

• enum starpu_omp_sched_value {
starpu_omp_sched_undefined, starpu_omp_sched_static, starpu_omp_sched_dynamic, starpu_omp_←↩
sched_guided,
starpu_omp_sched_auto, starpu_omp_sched_runtime }

• enum starpu_omp_proc_bind_value {
starpu_omp_proc_bind_undefined, starpu_omp_proc_bind_false, starpu_omp_proc_bind_true, starpu_←↩
omp_proc_bind_master,
starpu_omp_proc_bind_close, starpu_omp_proc_bind_spread }

Initialisation

• int starpu_omp_init (void) __STARPU_OMP_NOTHROW
• void starpu_omp_shutdown (void) __STARPU_OMP_NOTHROW

Parallel

• void starpu_omp_parallel_region (const struct starpu_omp_parallel_region_attr ∗attr) __STARPU_OMP_←↩
NOTHROW

• void starpu_omp_master (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• int starpu_omp_master_inline (void) __STARPU_OMP_NOTHROW

Synchronization

• void starpu_omp_barrier (void) __STARPU_OMP_NOTHROW
• void starpu_omp_critical (void(∗f)(void ∗arg), void ∗arg, const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_begin (const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_end (const char ∗name) __STARPU_OMP_NOTHROW

Worksharing

• void starpu_omp_single (void(∗f)(void ∗arg), void ∗arg, int nowait) __STARPU_OMP_NOTHROW
• int starpu_omp_single_inline (void) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate (void(∗f)(void ∗arg, void ∗data, unsigned long long data_size), void ∗arg,

void ∗data, unsigned long long data_size) __STARPU_OMP_NOTHROW
• void ∗ starpu_omp_single_copyprivate_inline_begin (void ∗data) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_for (void(∗f)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg), void ∗arg,

unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __STAR←↩
PU_OMP_NOTHROW

Generated by Doxygen

30.20 OpenMP Runtime Support 353

• int starpu_omp_for_inline_first (unsigned long long nb_iterations, unsigned long long chunk, int schedule, int
ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_next (unsigned long long nb_iterations, unsigned long long chunk, int schedule, int
ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• void starpu_omp_for_alt (void(∗f)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg), void
∗arg, unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __←↩
STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_first_alt (unsigned long long nb_iterations, unsigned long long chunk, int schedule,
int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_next_alt (unsigned long long nb_iterations, unsigned long long chunk, int schedule,
int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHROW

• void starpu_omp_ordered (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_sections (unsigned long long nb_sections, void(∗∗section_f)(void ∗arg), void ∗∗section_arg,

int nowait) __STARPU_OMP_NOTHROW
• void starpu_omp_sections_combined (unsigned long long nb_sections, void(∗section_f)(unsigned long long

section_num, void ∗arg), void ∗section_arg, int nowait) __STARPU_OMP_NOTHROW

Task

• void starpu_omp_task_region (const struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP_NOTH←↩
ROW

• void starpu_omp_taskwait (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskloop_inline_begin (struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP←↩

_NOTHROW
• void starpu_omp_taskloop_inline_end (const struct starpu_omp_task_region_attr ∗attr) __STARPU_O←↩

MP_NOTHROW

API

• void starpu_omp_set_num_threads (int threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_threads () __STARPU_OMP_NOTHROW
• int starpu_omp_get_thread_num () __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_threads () __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_procs (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_parallel (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_dynamic (int dynamic_threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_dynamic (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nested (int nested) __STARPU_OMP_NOTHROW
• int starpu_omp_get_nested (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_cancellation (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_schedule (enum starpu_omp_sched_value kind, int modifier) __STARPU_OMP_NO←↩

THROW
• void starpu_omp_get_schedule (enum starpu_omp_sched_value ∗kind, int ∗modifier) __STARPU_OMP_←↩

NOTHROW
• int starpu_omp_get_thread_limit (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_max_active_levels (int max_levels) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_active_levels (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_ancestor_thread_num (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_size (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_active_level (void) __STARPU_OMP_NOTHROW

Generated by Doxygen

354 Module Documentation a.k.a StarPU’s API

• int starpu_omp_in_final (void) __STARPU_OMP_NOTHROW
• enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_places (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num_procs (int place_num) __STARPU_OMP_NOTHROW
• void starpu_omp_get_place_proc_ids (int place_num, int ∗ids) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_partition_num_places (void) __STARPU_OMP_NOTHROW
• void starpu_omp_get_partition_place_nums (int ∗place_nums) __STARPU_OMP_NOTHROW
• void starpu_omp_set_default_device (int device_num) __STARPU_OMP_NOTHROW
• int starpu_omp_get_default_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_devices (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_teams (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_is_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_task_priority (void) __STARPU_OMP_NOTHROW
• void starpu_omp_init_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_init_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_end (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtime (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtick (void) __STARPU_OMP_NOTHROW
• void starpu_omp_vector_annotate (starpu_data_handle_t handle, uint32_t slice_base) __STARPU_OMP←↩

_NOTHROW
• struct starpu_arbiter ∗ starpu_omp_get_default_arbiter (void) __STARPU_OMP_NOTHROW

30.20.1 Detailed Description

This section describes the interface provided for implementing OpenMP runtimes on top of StarPU.

30.20.2 Data Structure Documentation

30.20.2.1 struct starpu_omp_lock_t

Opaque Simple Lock object () for inter-task synchronization operations.

See also

starpu_omp_init_lock()
starpu_omp_destroy_lock()
starpu_omp_set_lock()
starpu_omp_unset_lock()
starpu_omp_test_lock()

Data Fields

void ∗ internal opaque pointer for internal use

Generated by Doxygen

30.20 OpenMP Runtime Support 355

30.20.2.2 struct starpu_omp_nest_lock_t

Opaque Nestable Lock object () for inter-task synchronization operations.

See also

starpu_omp_init_nest_lock()
starpu_omp_destroy_nest_lock()
starpu_omp_set_nest_lock()
starpu_omp_unset_nest_lock()
starpu_omp_test_nest_lock()

Data Fields

void ∗ internal opaque pointer for internal use

30.20.2.3 struct starpu_omp_parallel_region_attr

Set of attributes used for creating a new parallel region.

See also

starpu_omp_parallel_region()

Data Fields

struct starpu_codelet cl starpu_codelet (Codelet And Tasks) to use for the parallel region
implicit tasks. The codelet must provide a CPU implementation
function.

starpu_data_handle_t ∗ handles Array of zero or more starpu_data_handle_t data handle to be
passed to the parallel region implicit tasks.

void ∗ cl_arg Optional pointer to an inline argument to be passed to the region
implicit tasks.

size_t cl_arg_size Size of the optional inline argument to be passed to the region
implicit tasks, or 0 if unused.

unsigned cl_arg_free Boolean indicating whether the optional inline argument should be
automatically freed (true), or not (false).

int if_clause Boolean indicating whether the if clause of the corresponding
pragma omp parallel is true or false.

int num_threads Integer indicating the requested number of threads in the team of
the newly created parallel region, or 0 to let the runtime choose the
number of threads alone. This attribute may be ignored by the
runtime system if the requested number of threads is higher than
the number of threads that the runtime can create.

30.20.2.4 struct starpu_omp_task_region_attr

Set of attributes used for creating a new task region.

See also

starpu_omp_task_region()

Generated by Doxygen

356 Module Documentation a.k.a StarPU’s API

Data Fields

struct starpu_codelet cl starpu_codelet (Codelet And Tasks) to use for the task region
explicit task. The codelet must provide a CPU implementation
function or an accelerator implementation for offloaded target
regions.

starpu_data_handle_t ∗ handles Array of zero or more starpu_data_handle_t data handle to be
passed to the task region explicit tasks.

void ∗ cl_arg Optional pointer to an inline argument to be passed to the
region implicit tasks.

size_t cl_arg_size Size of the optional inline argument to be passed to the region
implicit tasks, or 0 if unused.

unsigned cl_arg_free Boolean indicating whether the optional inline argument
should be automatically freed (true), or not (false).

int priority

int if_clause Boolean indicating whether the if clause of the corresponding
pragma omp task is true or false.

int final_clause Boolean indicating whether the final clause of the
corresponding pragma omp task is true or false.

int untied_clause Boolean indicating whether the untied clause of the
corresponding pragma omp task is true or false.

int mergeable_clause Boolean indicating whether the mergeable clause of the
corresponding pragma omp task is true or false.

int is_loop taskloop attribute

int nogroup_clause

int collapse

int num_tasks
unsigned long long nb_iterations

unsigned long long grainsize

unsigned long long begin_i

unsigned long long end_i

unsigned long long chunk

30.20.3 Macro Definition Documentation

30.20.3.1 STARPU_OPENMP

#define STARPU_OPENMP

Defined when StarPU has been installed with OpenMP Runtime support. It should be used in your code to detect
the availability of the runtime support for OpenMP.

30.20.4 Enumeration Type Documentation

30.20.4.1 starpu_omp_sched_value

enum starpu_omp_sched_value

Set of constants for selecting the for loop iteration scheduling algorithm () as defined by the OpenMP specification.

Generated by Doxygen

30.20 OpenMP Runtime Support 357

See also

starpu_omp_for()
starpu_omp_for_inline_first()
starpu_omp_for_inline_next()
starpu_omp_for_alt()
starpu_omp_for_inline_first_alt()
starpu_omp_for_inline_next_alt()

Enumerator

starpu_omp_sched_undefined Undefined iteration scheduling algorithm.

starpu_omp_sched_static Static iteration scheduling algorithm.

starpu_omp_sched_dynamic Dynamic iteration scheduling algorithm.

starpu_omp_sched_guided Guided iteration scheduling algorithm.

starpu_omp_sched_auto Automatically choosen iteration scheduling algorithm.

starpu_omp_sched_runtime Choice of iteration scheduling algorithm deferred at runtime.

30.20.4.2 starpu_omp_proc_bind_value

enum starpu_omp_proc_bind_value

Set of constants for selecting the processor binding method, as defined in the OpenMP specification.

See also

starpu_omp_get_proc_bind()

Enumerator

starpu_omp_proc_bind_undefined Undefined processor binding method.

starpu_omp_proc_bind_false Team threads may be moved between places at any time.

starpu_omp_proc_bind_true Team threads may not be moved between places.

starpu_omp_proc_bind_master Assign every thread in the team to the same place as the master thread.

starpu_omp_proc_bind_close Assign every thread in the team to a place close to the parent thread.

starpu_omp_proc_bind_spread Assign team threads as a sparse distribution over the selected places.

30.20.5 Function Documentation

30.20.5.1 starpu_omp_init()

int starpu_omp_init (

void)

Initialize StarPU and its OpenMP Runtime support.

30.20.5.2 starpu_omp_shutdown()

void starpu_omp_shutdown (

void)

Shutdown StarPU and its OpenMP Runtime support.

Generated by Doxygen

358 Module Documentation a.k.a StarPU’s API

30.20.5.3 starpu_omp_parallel_region()

void starpu_omp_parallel_region (

const struct starpu_omp_parallel_region_attr ∗ attr)

Generate and launch an OpenMP parallel region and return after its completion. attr specifies the attributes for
the generated parallel region. If this function is called from inside another, generating, parallel region, the generated
parallel region is nested within the generating parallel region.
This function can be used to implement #pragma omp parallel.

30.20.5.4 starpu_omp_master()

void starpu_omp_master (

void(∗)(void ∗arg) f,

void ∗ arg)

Execute a function only on the master thread of the OpenMP parallel region it is called from. When called from a
thread that is not the master of the parallel region it is called from, this function does nothing. f is the function to be
called. arg is an argument passed to function f.
This function can be used to implement #pragma omp master.

30.20.5.5 starpu_omp_master_inline()

int starpu_omp_master_inline (

void)

Determine whether the calling thread is the master of the OpenMP parallel region it is called from or not.
This function can be used to implement #pragma omp master without code outlining.

Returns

!0 if called by the region's master thread.
0 if not called by the region's master thread.

30.20.5.6 starpu_omp_barrier()

void starpu_omp_barrier (

void)

Wait until each participating thread of the innermost OpenMP parallel region has reached the barrier and each
explicit OpenMP task bound to this region has completed its execution.
This function can be used to implement #pragma omp barrier.

30.20.5.7 starpu_omp_critical()

void starpu_omp_critical (

void(∗)(void ∗arg) f,

void ∗ arg,

const char ∗ name)

Wait until no other thread is executing within the context of the selected critical section, then proceeds to the
exclusive execution of a function within the critical section. f is the function to be executed in the critical section.
arg is an argument passed to function f. name is the name of the selected critical section. If name == NULL,
the selected critical section is the unique anonymous critical section.
This function can be used to implement #pragma omp critical.

30.20.5.8 starpu_omp_critical_inline_begin()

void starpu_omp_critical_inline_begin (

const char ∗ name)

Wait until execution can proceed exclusively within the context of the selected critical section. name is the name
of the selected critical section. If name == NULL, the selected critical section is the unique anonymous critical
section.
This function together with starpu_omp_critical_inline_end can be used to implement #pragma omp critical
without code outlining.

Generated by Doxygen

30.20 OpenMP Runtime Support 359

30.20.5.9 starpu_omp_critical_inline_end()

void starpu_omp_critical_inline_end (

const char ∗ name)

End the exclusive execution within the context of the selected critical section. name is the name of the selected
critical section. If name==NULL, the selected critical section is the unique anonymous critical section.
This function together with starpu_omp_critical_inline_begin can be used to implement #pragma omp
critical without code outlining.

30.20.5.10 starpu_omp_single()

void starpu_omp_single (

void(∗)(void ∗arg) f,

void ∗ arg,

int nowait)

Ensure that a single participating thread of the innermost OpenMP parallel region executes a function. f is the
function to be executed by a single thread. arg is an argument passed to function f. nowait is a flag indicating
whether an implicit barrier is requested after the single section (nowait==0) or not (nowait==!0).
This function can be used to implement #pragma omp single.

30.20.5.11 starpu_omp_single_inline()

int starpu_omp_single_inline (

void)

Decide whether the current thread is elected to run the following single section among the participating threads of
the innermost OpenMP parallel region.
This function can be used to implement #pragma omp single without code outlining.

Returns

!0 if the calling thread has won the election.
0 if the calling thread has lost the election.

30.20.5.12 starpu_omp_single_copyprivate()

void starpu_omp_single_copyprivate (

void(∗)(void ∗arg, void ∗data, unsigned long long data_size) f,

void ∗ arg,

void ∗ data,

unsigned long long data_size)

Execute f on a single task of the current parallel region task, and then broadcast the contents of the memory block
pointed by the copyprivate pointer data and of size data_size to the corresponding data pointed memory
blocks of all the other participating region tasks. This function can be used to implement #pragma omp single
with a copyprivate clause.

See also

starpu_omp_single_copyprivate_inline
starpu_omp_single_copyprivate_inline_begin
starpu_omp_single_copyprivate_inline_end

30.20.5.13 starpu_omp_single_copyprivate_inline_begin()

void∗ starpu_omp_single_copyprivate_inline_begin (

void ∗ data)

Elect one task among the tasks of the current parallel region task to execute the following single section, and then
broadcast the copyprivate pointer data to all the other participating region tasks. This function can be used to
implement #pragma omp single with a copyprivate clause without code outlining.

Generated by Doxygen

360 Module Documentation a.k.a StarPU’s API

See also

starpu_omp_single_copyprivate_inline
starpu_omp_single_copyprivate_inline_end

30.20.5.14 starpu_omp_single_copyprivate_inline_end()

void starpu_omp_single_copyprivate_inline_end (

void)

Complete the execution of a single section and return the broadcasted copyprivate pointer for tasks that lost the
election and NULL for the task that won the election. This function can be used to implement #pragma omp
single with a copyprivate clause without code outlining.

Returns

the copyprivate pointer for tasks that lost the election and therefore did not execute the code of the single
section.
NULL for the task that won the election and executed the code of the single section.

See also

starpu_omp_single_copyprivate_inline
starpu_omp_single_copyprivate_inline_begin

30.20.5.15 starpu_omp_for()

void starpu_omp_for (

void(∗)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg) f,

void ∗ arg,

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

int nowait)

Execute a parallel loop together with the other threads participating to the innermost parallel region. f is the
function to be executed iteratively. arg is an argument passed to function f. nb_iterations is the number
of iterations to be performed by the parallel loop. chunk is the number of consecutive iterations that should be
affected to the same thread when scheduling the loop workshares, it follows the semantics of the modifier
argument in OpenMP #pragma omp for specification. schedule is the scheduling mode according to the
OpenMP specification. ordered is a flag indicating whether the loop region may contain an ordered section
(ordered==!0) or not (ordered==0). nowait is a flag indicating whether an implicit barrier is requested after
the for section (nowait==0) or not (nowait==!0).
The function f will be called with arguments _first_i, the first iteration to perform, _nb_i, the number of
consecutive iterations to perform before returning, arg, the free arg argument.
This function can be used to implement #pragma omp for.

30.20.5.16 starpu_omp_for_inline_first()

int starpu_omp_for_inline_first (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _first_i,

unsigned long long ∗ _nb_i)

Decide whether the current thread should start to execute a parallel loop section. See starpu_omp_for for the
argument description.
This function together with starpu_omp_for_inline_next can be used to implement #pragma omp for without
code outlining.

Generated by Doxygen

30.20 OpenMP Runtime Support 361

Returns

!0 if the calling thread participates to the loop region and should execute a first chunk of iterations. In that
case, ∗_first_i will be set to the first iteration of the chunk to perform and ∗_nb_i will be set to the
number of iterations of the chunk to perform.
0 if the calling thread does not participate to the loop region because all the available iterations have been
affected to the other threads of the parallel region.

See also

starpu_omp_for

30.20.5.17 starpu_omp_for_inline_next()

int starpu_omp_for_inline_next (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _first_i,

unsigned long long ∗ _nb_i)

Decide whether the current thread should continue to execute a parallel loop section. See starpu_omp_for for the
argument description.
This function together with starpu_omp_for_inline_first can be used to implement #pragma omp for without
code outlining.

Returns

!0 if the calling thread should execute a next chunk of iterations. In that case, ∗_first_i will be set to
the first iteration of the chunk to perform and ∗_nb_i will be set to the number of iterations of the chunk to
perform.
0 if the calling thread does not participate anymore to the loop region because all the available iterations have
been affected to the other threads of the parallel region.

See also

starpu_omp_for

30.20.5.18 starpu_omp_for_alt()

void starpu_omp_for_alt (

void(∗)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg) f,

void ∗ arg,

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

int nowait)

Alternative implementation of a parallel loop. Differ from starpu_omp_for in the expected arguments of the loop
function f.
The function f will be called with arguments _begin_i, the first iteration to perform, _end_i, the first iteration
not to perform before returning, arg, the free arg argument.
This function can be used to implement #pragma omp for.

See also

starpu_omp_for

Generated by Doxygen

362 Module Documentation a.k.a StarPU’s API

30.20.5.19 starpu_omp_for_inline_first_alt()

int starpu_omp_for_inline_first_alt (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _begin_i,

unsigned long long ∗ _end_i)

Inline version of the alternative implementation of a parallel loop.
This function together with starpu_omp_for_inline_next_alt can be used to implement #pragma omp for with-
out code outlining.

See also

starpu_omp_for
starpu_omp_for_alt
starpu_omp_for_inline_first

30.20.5.20 starpu_omp_for_inline_next_alt()

int starpu_omp_for_inline_next_alt (

unsigned long long nb_iterations,

unsigned long long chunk,

int schedule,

int ordered,

unsigned long long ∗ _begin_i,

unsigned long long ∗ _end_i)

Inline version of the alternative implementation of a parallel loop.
This function together with starpu_omp_for_inline_first_alt can be used to implement #pragma omp for without
code outlining.

See also

starpu_omp_for
starpu_omp_for_alt
starpu_omp_for_inline_next

30.20.5.21 starpu_omp_ordered()

void starpu_omp_ordered (

void(∗)(void ∗arg) f,

void ∗ arg)

Ensure that a function is sequentially executed once for each iteration in order within a parallel loop, by the thread
that own the iteration. f is the function to be executed by the thread that own the current iteration. arg is an
argument passed to function f.
This function can be used to implement #pragma omp ordered.

30.20.5.22 starpu_omp_ordered_inline_begin()

void starpu_omp_ordered_inline_begin (

void)

Wait until all the iterations of a parallel loop below the iteration owned by the current thread have been executed.
This function together with starpu_omp_ordered_inline_end can be used to implement #pragma omp ordered
without code code outlining.

Generated by Doxygen

30.20 OpenMP Runtime Support 363

30.20.5.23 starpu_omp_ordered_inline_end()

void starpu_omp_ordered_inline_end (

void)

Notify that the ordered section for the current iteration has been completed.
This function together with starpu_omp_ordered_inline_begin can be used to implement #pragma omp
ordered without code code outlining.

30.20.5.24 starpu_omp_sections()

void starpu_omp_sections (

unsigned long long nb_sections,

void(∗∗)(void ∗arg) section_f,

void ∗∗ section_arg,

int nowait)

Ensure that each function of a given array of functions is executed by one and only one thread. nb_sections
is the number of functions in the array section_f. section_f is the array of functions to be executed as
sections. section_arg is an array of arguments to be passed to the corresponding function. nowait is a
flag indicating whether an implicit barrier is requested after the execution of all the sections (nowait==0) or not
(nowait==!0).
This function can be used to implement #pragma omp sections and #pragma omp section.

30.20.5.25 starpu_omp_sections_combined()

void starpu_omp_sections_combined (

unsigned long long nb_sections,

void(∗)(unsigned long long section_num, void ∗arg) section_f,

void ∗ section_arg,

int nowait)

Alternative implementation of sections. Differ from starpu_omp_sections in that all the sections are combined within
a single function in this version. section_f is the function implementing the combined sections.
The function section_f will be called with arguments section_num, the section number to be executed, arg,
the entry of section_arg corresponding to this section.
This function can be used to implement #pragma omp sections and #pragma omp section.

See also

starpu_omp_sections

30.20.5.26 starpu_omp_task_region()

void starpu_omp_task_region (

const struct starpu_omp_task_region_attr ∗ attr)

Generate an explicit child task. The execution of the generated task is asynchronous with respect to the calling
code unless specified otherwise. attr specifies the attributes for the generated task region.
This function can be used to implement #pragma omp task.

30.20.5.27 starpu_omp_taskwait()

void starpu_omp_taskwait (

void)

Wait for the completion of the tasks generated by the current task. This function does not wait for the descendants
of the tasks generated by the current task.
This function can be used to implement #pragma omp taskwait.

30.20.5.28 starpu_omp_taskgroup()

void starpu_omp_taskgroup (

void(∗)(void ∗arg) f,

void ∗ arg)

Generated by Doxygen

364 Module Documentation a.k.a StarPU’s API

Launch a function and wait for the completion of every descendant task generated during the execution of the
function.
This function can be used to implement #pragma omp taskgroup.

See also

starpu_omp_taskgroup_inline_begin
starpu_omp_taskgroup_inline_end

30.20.5.29 starpu_omp_taskgroup_inline_begin()

void starpu_omp_taskgroup_inline_begin (

void)

Launch a function and gets ready to wait for the completion of every descendant task generated during the dynamic
scope of the taskgroup.
This function can be used to implement #pragma omp taskgroup without code outlining.

See also

starpu_omp_taskgroup
starpu_omp_taskgroup_inline_end

30.20.5.30 starpu_omp_taskgroup_inline_end()

void starpu_omp_taskgroup_inline_end (

void)

Wait for the completion of every descendant task generated during the dynamic scope of the taskgroup.
This function can be used to implement #pragma omp taskgroup without code outlining.

See also

starpu_omp_taskgroup
starpu_omp_taskgroup_inline_begin

30.20.5.31 starpu_omp_set_num_threads()

void starpu_omp_set_num_threads (

int threads)

Set ICVS nthreads_var for the parallel regions to be created with the current region.
Note: The StarPU OpenMP runtime support currently ignores this setting for nested parallel regions.

See also

starpu_omp_get_num_threads
starpu_omp_get_thread_num
starpu_omp_get_max_threads
starpu_omp_get_num_procs

30.20.5.32 starpu_omp_get_num_threads()

int starpu_omp_get_num_threads ()

Return the number of threads of the current region.

Returns

the number of threads of the current region.

Generated by Doxygen

30.20 OpenMP Runtime Support 365

See also

starpu_omp_set_num_threads
starpu_omp_get_thread_num
starpu_omp_get_max_threads
starpu_omp_get_num_procs

30.20.5.33 starpu_omp_get_thread_num()

int starpu_omp_get_thread_num ()

Return the rank of the current thread among the threads of the current region.

Returns

the rank of the current thread in the current region.

See also

starpu_omp_set_num_threads
starpu_omp_get_num_threads
starpu_omp_get_max_threads
starpu_omp_get_num_procs

30.20.5.34 starpu_omp_get_max_threads()

int starpu_omp_get_max_threads ()

Return the maximum number of threads that can be used to create a region from the current region.

Returns

the maximum number of threads that can be used to create a region from the current region.

See also

starpu_omp_set_num_threads
starpu_omp_get_num_threads
starpu_omp_get_thread_num
starpu_omp_get_num_procs

30.20.5.35 starpu_omp_get_num_procs()

int starpu_omp_get_num_procs (

void)

Return the number of StarPU CPU workers.

Returns

the number of StarPU CPU workers.

See also

starpu_omp_set_num_threads
starpu_omp_get_num_threads
starpu_omp_get_thread_num
starpu_omp_get_max_threads

Generated by Doxygen

366 Module Documentation a.k.a StarPU’s API

30.20.5.36 starpu_omp_in_parallel()

int starpu_omp_in_parallel (

void)

Return whether it is called from the scope of a parallel region or not.

Returns

!0 if called from a parallel region scope.
0 otherwise.

30.20.5.37 starpu_omp_set_dynamic()

void starpu_omp_set_dynamic (

int dynamic_threads)

Enable (1) or disable (0) dynamically adjusting the number of parallel threads.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_dynamic

30.20.5.38 starpu_omp_get_dynamic()

int starpu_omp_get_dynamic (

void)

Return the state of dynamic thread number adjustment.

Returns

!0 if dynamic thread number adjustment is enabled.
0 otherwise.

See also

starpu_omp_set_dynamic

30.20.5.39 starpu_omp_set_nested()

void starpu_omp_set_nested (

int nested)

Enable (1) or disable (0) nested parallel regions.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_nested
starpu_omp_get_max_active_levels
starpu_omp_set_max_active_levels
starpu_omp_get_level
starpu_omp_get_active_level

Generated by Doxygen

30.20 OpenMP Runtime Support 367

30.20.5.40 starpu_omp_get_nested()

int starpu_omp_get_nested (

void)

Return whether nested parallel sections are enabled or not.

Returns

!0 if nested parallel sections are enabled.
0 otherwise.

See also

starpu_omp_set_nested
starpu_omp_get_max_active_levels
starpu_omp_set_max_active_levels
starpu_omp_get_level
starpu_omp_get_active_level

30.20.5.41 starpu_omp_get_cancellation()

int starpu_omp_get_cancellation (

void)

Return the state of the cancel ICVS var.

30.20.5.42 starpu_omp_set_schedule()

void starpu_omp_set_schedule (

enum starpu_omp_sched_value kind,

int modifier)

Set the default scheduling kind for upcoming loops within the current parallel section. kind is the scheduler kind,
modifier complements the scheduler kind with informations such as the chunk size, in accordance with the
OpenMP specification.

See also

starpu_omp_get_schedule

30.20.5.43 starpu_omp_get_schedule()

void starpu_omp_get_schedule (

enum starpu_omp_sched_value ∗ kind,

int ∗ modifier)

Return the current selected default loop scheduler.

Returns

the kind and the modifier of the current default loop scheduler.

See also

starpu_omp_set_schedule

Generated by Doxygen

368 Module Documentation a.k.a StarPU’s API

30.20.5.44 starpu_omp_get_thread_limit()

int starpu_omp_get_thread_limit (

void)

Return the number of StarPU CPU workers.
Returns

the number of StarPU CPU workers.

30.20.5.45 starpu_omp_set_max_active_levels()

void starpu_omp_set_max_active_levels (

int max_levels)

Set the maximum number of allowed active parallel section levels.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function and assume max_←↩
levels equals 1 instead.

See also

starpu_omp_set_nested
starpu_omp_get_nested
starpu_omp_get_max_active_levels
starpu_omp_get_level
starpu_omp_get_active_level

30.20.5.46 starpu_omp_get_max_active_levels()

int starpu_omp_get_max_active_levels (

void)

Return the current maximum number of allowed active parallel section levels

Returns

the current maximum number of allowed active parallel section levels.

See also

starpu_omp_set_nested
starpu_omp_get_nested
starpu_omp_set_max_active_levels
starpu_omp_get_level
starpu_omp_get_active_level

30.20.5.47 starpu_omp_get_level()

int starpu_omp_get_level (

void)

Return the nesting level of the current parallel section.

Returns

the nesting level of the current parallel section.

See also

starpu_omp_set_nested
starpu_omp_get_nested
starpu_omp_get_max_active_levels
starpu_omp_set_max_active_levels
starpu_omp_get_active_level

Generated by Doxygen

30.20 OpenMP Runtime Support 369

30.20.5.48 starpu_omp_get_ancestor_thread_num()

int starpu_omp_get_ancestor_thread_num (

int level)

Return the number of the ancestor of the current parallel section.

Returns

the number of the ancestor of the current parallel section.

30.20.5.49 starpu_omp_get_team_size()

int starpu_omp_get_team_size (

int level)

Return the size of the team of the current parallel section.

Returns

the size of the team of the current parallel section.

30.20.5.50 starpu_omp_get_active_level()

int starpu_omp_get_active_level (

void)

Return the nestinglevel of the current innermost active parallel section.

Returns

the nestinglevel of the current innermost active parallel section.

See also

starpu_omp_set_nested
starpu_omp_get_nested
starpu_omp_get_max_active_levels
starpu_omp_set_max_active_levels
starpu_omp_get_level

30.20.5.51 starpu_omp_in_final()

int starpu_omp_in_final (

void)

Check whether the current task is final or not.

Returns

!0 if called from a final task.
0 otherwise.

30.20.5.52 starpu_omp_get_proc_bind()

enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (

void)

Return the proc_bind setting of the current parallel region.

Returns

the proc_bind setting of the current parallel region.

Generated by Doxygen

370 Module Documentation a.k.a StarPU’s API

30.20.5.53 starpu_omp_set_default_device()

void starpu_omp_set_default_device (

int device_num)

Set the number of the device to use as default.
Note: The StarPU OpenMP runtime support currently ignores the argument of this function.

See also

starpu_omp_get_default_device
starpu_omp_is_initial_device

30.20.5.54 starpu_omp_get_default_device()

int starpu_omp_get_default_device (

void)

Return the number of the device used as default.

Returns

the number of the device used as default.

See also

starpu_omp_set_default_device
starpu_omp_is_initial_device

30.20.5.55 starpu_omp_get_num_devices()

int starpu_omp_get_num_devices (

void)

Return the number of the devices.

Returns

the number of the devices.

30.20.5.56 starpu_omp_get_num_teams()

int starpu_omp_get_num_teams (

void)

Return the number of teams in the current teams region.

Returns

the number of teams in the current teams region.

See also

starpu_omp_get_num_teams

30.20.5.57 starpu_omp_get_team_num()

int starpu_omp_get_team_num (

void)

Return the team number of the calling thread.

Generated by Doxygen

30.20 OpenMP Runtime Support 371

Returns

the team number of the calling thread.

See also

starpu_omp_get_num_teams

30.20.5.58 starpu_omp_is_initial_device()

int starpu_omp_is_initial_device (

void)

Check whether the current device is the initial device or not.

30.20.5.59 starpu_omp_get_max_task_priority()

int starpu_omp_get_max_task_priority (

void)

Return the maximum value that can be specified in the priority clause.

Returns

!0 if called from the host device.
0 otherwise.

See also

starpu_omp_set_default_device
starpu_omp_get_default_device

30.20.5.60 starpu_omp_init_lock()

void starpu_omp_init_lock (

starpu_omp_lock_t ∗ lock)

Initialize an opaque lock object.

See also

starpu_omp_destroy_lock
starpu_omp_set_lock
starpu_omp_unset_lock
starpu_omp_test_lock

30.20.5.61 starpu_omp_destroy_lock()

void starpu_omp_destroy_lock (

starpu_omp_lock_t ∗ lock)

Destroy an opaque lock object.

See also

starpu_omp_init_lock
starpu_omp_set_lock
starpu_omp_unset_lock
starpu_omp_test_lock

Generated by Doxygen

372 Module Documentation a.k.a StarPU’s API

30.20.5.62 starpu_omp_set_lock()

void starpu_omp_set_lock (

starpu_omp_lock_t ∗ lock)

Lock an opaque lock object. If the lock is already locked, the function will block until it succeeds in exclusively
acquiring the lock.

See also

starpu_omp_init_lock
starpu_omp_destroy_lock
starpu_omp_unset_lock
starpu_omp_test_lock

30.20.5.63 starpu_omp_unset_lock()

void starpu_omp_unset_lock (

starpu_omp_lock_t ∗ lock)

Unlock a previously locked lock object. The behaviour of this function is unspecified if it is called on an unlocked
lock object.

See also

starpu_omp_init_lock
starpu_omp_destroy_lock
starpu_omp_set_lock
starpu_omp_test_lock

30.20.5.64 starpu_omp_test_lock()

int starpu_omp_test_lock (

starpu_omp_lock_t ∗ lock)

Unblockingly attempt to lock a lock object and return whether it succeeded or not.

Returns

!0 if the function succeeded in acquiring the lock.
0 if the lock was already locked.

See also

starpu_omp_init_lock
starpu_omp_destroy_lock
starpu_omp_set_lock
starpu_omp_unset_lock

30.20.5.65 starpu_omp_init_nest_lock()

void starpu_omp_init_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Initialize an opaque lock object supporting nested locking operations.

See also

starpu_omp_destroy_nest_lock
starpu_omp_set_nest_lock
starpu_omp_unset_nest_lock
starpu_omp_test_nest_lock

Generated by Doxygen

30.20 OpenMP Runtime Support 373

30.20.5.66 starpu_omp_destroy_nest_lock()

void starpu_omp_destroy_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Destroy an opaque lock object supporting nested locking operations.

See also

starpu_omp_init_nest_lock
starpu_omp_set_nest_lock
starpu_omp_unset_nest_lock
starpu_omp_test_nest_lock

30.20.5.67 starpu_omp_set_nest_lock()

void starpu_omp_set_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Lock an opaque lock object supporting nested locking operations. If the lock is already locked by another task, the
function will block until it succeeds in exclusively acquiring the lock. If the lock is already taken by the current task,
the function will increase the nested locking level of the lock object.

See also

starpu_omp_init_nest_lock
starpu_omp_destroy_nest_lock
starpu_omp_unset_nest_lock
starpu_omp_test_nest_lock

30.20.5.68 starpu_omp_unset_nest_lock()

void starpu_omp_unset_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Unlock a previously locked lock object supporting nested locking operations. If the lock has been locked multiple
times in nested fashion, the nested locking level is decreased and the lock remains locked. Otherwise, if the lock
has only been locked once, it becomes unlocked. The behaviour of this function is unspecified if it is called on an
unlocked lock object. The behaviour of this function is unspecified if it is called from a different task than the one
that locked the lock object.

See also

starpu_omp_init_nest_lock
starpu_omp_destroy_nest_lock
starpu_omp_set_nest_lock
starpu_omp_test_nest_lock

30.20.5.69 starpu_omp_test_nest_lock()

int starpu_omp_test_nest_lock (

starpu_omp_nest_lock_t ∗ lock)

Unblocking attempt to lock an opaque lock object supporting nested locking operations and returns whether it
succeeded or not. If the lock is already locked by another task, the function will return without having acquired the
lock. If the lock is already taken by the current task, the function will increase the nested locking level of the lock
object.

Returns

!0 if the function succeeded in acquiring the lock.
0 if the lock was already locked.

Generated by Doxygen

374 Module Documentation a.k.a StarPU’s API

See also

starpu_omp_init_nest_lock
starpu_omp_destroy_nest_lock
starpu_omp_set_nest_lock
starpu_omp_unset_nest_lock

30.20.5.70 starpu_omp_atomic_fallback_inline_begin()

void starpu_omp_atomic_fallback_inline_begin (

void)

Implement the entry point of a fallback global atomic region. Block until it succeeds in acquiring exclusive access to
the global atomic region.

See also

starpu_omp_atomic_fallback_inline_end

30.20.5.71 starpu_omp_atomic_fallback_inline_end()

void starpu_omp_atomic_fallback_inline_end (

void)

Implement the exit point of a fallback global atomic region. Release the exclusive access to the global atomic region.

See also

starpu_omp_atomic_fallback_inline_begin

30.20.5.72 starpu_omp_get_wtime()

double starpu_omp_get_wtime (

void)

Return the elapsed wallclock time in seconds.

Returns

the elapsed wallclock time in seconds.

See also

starpu_omp_get_wtick

30.20.5.73 starpu_omp_get_wtick()

double starpu_omp_get_wtick (

void)

Return the precision of the time used by starpu_omp_get_wtime().

Returns

the precision of the time used by starpu_omp_get_wtime().

See also

starpu_omp_get_wtime

Generated by Doxygen

30.20 OpenMP Runtime Support 375

30.20.5.74 starpu_omp_vector_annotate()

void starpu_omp_vector_annotate (

starpu_data_handle_t handle,

uint32_t slice_base)

Enable setting additional vector metadata needed by the OpenMP Runtime Support.
handle is vector data handle. slice_base is the base of an array slice, expressed in number of vector elements
from the array base.

See also

STARPU_VECTOR_GET_SLICE_BASE

Generated by Doxygen

376 Module Documentation a.k.a StarPU’s API

30.21 MIC Extensions

Macros

• #define STARPU_USE_MIC
• #define STARPU_MAXMICDEVS

Typedefs

• typedef void ∗ starpu_mic_func_symbol_t

Functions

• int starpu_mic_register_kernel (starpu_mic_func_symbol_t ∗symbol, const char ∗func_name)
• starpu_mic_kernel_t starpu_mic_get_kernel (starpu_mic_func_symbol_t symbol)

30.21.1 Detailed Description

30.21.2 Macro Definition Documentation

30.21.2.1 STARPU_USE_MIC

#define STARPU_USE_MIC

Defined when StarPU has been installed with MIC support. It should be used in your code to detect the availability
of MIC.

30.21.2.2 STARPU_MAXMICDEVS

#define STARPU_MAXMICDEVS

Define the maximum number of MIC devices that are supported by StarPU.

30.21.3 Typedef Documentation

30.21.3.1 starpu_mic_func_symbol_t

typedef void∗ starpu_mic_func_symbol_t

Type for MIC function symbols

30.21.4 Function Documentation

30.21.4.1 starpu_mic_register_kernel()

int starpu_mic_register_kernel (

starpu_mic_func_symbol_t ∗ symbol,

const char ∗ func_name)

Initiate a lookup on each MIC device to find the address of the function named func_name, store it in the global
array kernels and return the index in the array through symbol.

30.21.4.2 starpu_mic_get_kernel()

starpu_mic_kernel_t starpu_mic_get_kernel (

starpu_mic_func_symbol_t symbol)

If successfull, return the pointer to the function defined by symbol on the device linked to the called device. This
can for instance be used in a starpu_mic_func_t implementation.

Generated by Doxygen

30.22 Miscellaneous Helpers 377

30.22 Miscellaneous Helpers

Macros

• #define STARPU_MIN(a, b)
• #define STARPU_MAX(a, b)
• #define STARPU_POISON_PTR

Functions

• char ∗ starpu_getenv (const char ∗str)
• int starpu_get_env_string_var_default (const char ∗str, const char ∗strings[], int defvalue)
• int starpu_get_env_size_default (const char ∗str, int defval)
• static __starpu_inline int starpu_get_env_number (const char ∗str)
• static __starpu_inline int starpu_get_env_number_default (const char ∗str, int defval)
• static __starpu_inline float starpu_get_env_float_default (const char ∗str, float defval)
• void starpu_execute_on_each_worker (void(∗func)(void ∗), void ∗arg, uint32_t where)
• void starpu_execute_on_each_worker_ex (void(∗func)(void ∗), void ∗arg, uint32_t where, const char ∗name)
• void starpu_execute_on_specific_workers (void(∗func)(void ∗), void ∗arg, unsigned num_workers, unsigned
∗workers, const char ∗name)

• double starpu_timing_now (void)
• int starpu_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asynchronous,

void(∗callback_func)(void ∗), void ∗callback_arg)
• void starpu_display_bindings (void)
• int starpu_get_pu_os_index (unsigned logical_index)
• hwloc_topology_t starpu_get_hwloc_topology (void)

Variables

• int _starpu_silent

30.22.1 Detailed Description

30.22.2 Macro Definition Documentation

30.22.2.1 STARPU_MIN

#define STARPU_MIN(

a,

b)

Return the min of the two parameters.

30.22.2.2 STARPU_MAX

#define STARPU_MAX(

a,

b)

Return the max of the two parameters.

30.22.2.3 STARPU_POISON_PTR

#define STARPU_POISON_PTR

Define a value which can be used to mark pointers as invalid values.

30.22.3 Function Documentation

Generated by Doxygen

378 Module Documentation a.k.a StarPU’s API

30.22.3.1 starpu_get_env_string_var_default()

int starpu_get_env_string_var_default (

const char ∗ str,

const char ∗ strings[],

int defvalue)

If the environment variable str is defined and its value is contained in the array strings, return the array position.
Raise an error if the environment variable str is defined with a value not in strings Return defvalue if the
environment variable str is not defined.

30.22.3.2 starpu_get_env_size_default()

int starpu_get_env_size_default (

const char ∗ str,

int defval)

If the environment variable str is defined with a well-defined size value, return the value as a size in bytes.
Expected size qualifiers are b, B, k, K, m, M, g, G. The default qualifier is K. If the environment variable str is not
defined or is empty, return defval Raise an error if the value of the environment variable str is not well-defined.

30.22.3.3 starpu_get_env_number()

static __starpu_inline int starpu_get_env_number (

const char ∗ str) [static]

Return the integer value of the environment variable named str. Return 0 otherwise (the variable does not exist
or has a non-integer value).

30.22.3.4 starpu_execute_on_each_worker()

void starpu_execute_on_each_worker (

void(∗)(void ∗) func,

void ∗ arg,

uint32_t where)

Execute the given function func on a subset of workers. When calling this method, the offloaded function func
is executed by every StarPU worker that are eligible to execute the function. The argument arg is passed to
the offloaded function. The argument where specifies on which types of processing units the function should be
executed. Similarly to the field starpu_codelet::where, it is possible to specify that the function should be executed
on every CUDA device and every CPU by passing STARPU_CPU|STARPU_CUDA. This function blocks until func
has been executed on every appropriate processing units, and thus may not be called from a callback function for
instance.

30.22.3.5 starpu_execute_on_each_worker_ex()

void starpu_execute_on_each_worker_ex (

void(∗)(void ∗) func,

void ∗ arg,

uint32_t where,

const char ∗ name)

Same as starpu_execute_on_each_worker(), except that the task name is specified in the argument name.

30.22.3.6 starpu_execute_on_specific_workers()

void starpu_execute_on_specific_workers (

void(∗)(void ∗) func,

void ∗ arg,

unsigned num_workers,

unsigned ∗ workers,

const char ∗ name)

Call func(arg) on every worker in the workers array. num_workers indicates the number of workers in this
array. This function is synchronous, but the different workers may execute the function in parallel.

Generated by Doxygen

30.22 Miscellaneous Helpers 379

30.22.3.7 starpu_timing_now()

double starpu_timing_now (

void)

Return the current date in micro-seconds.

30.22.3.8 starpu_data_cpy()

int starpu_data_cpy (

starpu_data_handle_t dst_handle,

starpu_data_handle_t src_handle,

int asynchronous,

void(∗)(void ∗) callback_func,

void ∗ callback_arg)

Copy the content of src_handle into dst_handle. The parameter asynchronous indicates whether the
function should block or not. In the case of an asynchronous call, it is possible to synchronize with the termination
of this operation either by the means of implicit dependencies (if enabled) or by calling starpu_task_wait_for_all(). If
callback_func is not NULL, this callback function is executed after the handle has been copied, and it is given
the pointer callback_arg as argument.

30.22.3.9 starpu_display_bindings()

void starpu_display_bindings (

void)

Call hwloc-ps to display binding of each processus and thread running on the machine.
Use the environment variable STARPU_DISPLAY_BINDINGS to automatically call this function at the beginning of
the execution of StarPU.

30.22.3.10 starpu_get_pu_os_index()

int starpu_get_pu_os_index (

unsigned logical_index)

If hwloc is used, convert the given logical_index of a PU to the OS index of this PU. If hwloc is not used,
return logical_index.

30.22.3.11 starpu_get_hwloc_topology()

hwloc_topology_t starpu_get_hwloc_topology (

void)

Get the hwloc topology used by StarPU. One can use this pointer to get information about topology, but not to
change settings related to topology.

Generated by Doxygen

380 Module Documentation a.k.a StarPU’s API

30.23 FxT Support

Data Structures

• struct starpu_fxt_codelet_event
• struct starpu_fxt_options

Macros

• #define STARPU_FXT_MAX_FILES

Functions

• void starpu_fxt_options_init (struct starpu_fxt_options ∗options)
• void starpu_fxt_options_shutdown (struct starpu_fxt_options ∗options)
• void starpu_fxt_options_set_dir (struct starpu_fxt_options ∗options)
• void starpu_fxt_generate_trace (struct starpu_fxt_options ∗options)
• void starpu_fxt_autostart_profiling (int autostart)
• void starpu_fxt_start_profiling (void)
• void starpu_fxt_stop_profiling (void)
• void starpu_fxt_write_data_trace (char ∗filename_in)
• int starpu_fxt_is_enabled ()
• void starpu_fxt_trace_user_event (unsigned long code)
• void starpu_fxt_trace_user_event_string (const char ∗s)

30.23.1 Detailed Description

30.23.2 Data Structure Documentation

30.23.2.1 struct starpu_fxt_codelet_event

Data Fields

char symbol[256]

int workerid
char perfmodel_archname[256]

uint32_t hash
size_t size

float time

30.23.2.2 struct starpu_fxt_options

Data Fields

unsigned per_task_colour

unsigned no_events

unsigned no_counter

unsigned no_bus

unsigned no_flops

unsigned ninputfiles

unsigned no_smooth

unsigned no_acquire

unsigned memory_states

unsigned internal

Generated by Doxygen

30.23 FxT Support 381

Data Fields

unsigned label_deps

char ∗ filenames[STARPU_FXT_MAX_FILES]

char ∗ out_paje_path

char ∗ distrib_time_path

char ∗ activity_path

char ∗ dag_path

char ∗ tasks_path

char ∗ data_path

char ∗ anim_path

char ∗ states_path

char ∗ dir
char ∗ file_prefix In case we are going to gather

multiple traces (e.g in the case of
MPI processes), we may need to
prefix the name of the containers.

uint64_t file_offset In case we are going to gather
multiple traces (e.g in the case of
MPI processes), we may need to
prefix the name of the containers.

int file_rank In case we are going to gather
multiple traces (e.g in the case of
MPI processes), we may need to
prefix the name of the containers.

char worker_names[STARPU_NMAXWORKERS][256]Output parameters

struct starpu_perfmodel_arch worker_archtypes[STARPU_NMAXWORKERS]Output parameters

int nworkers Output parameters

struct starpu_fxt_codelet_event
∗∗

dumped_codelets In case we want to dump the list of
codelets to an external tool

long dumped_codelets_count In case we want to dump the list of
codelets to an external tool

30.23.3 Function Documentation

30.23.3.1 starpu_fxt_autostart_profiling()

void starpu_fxt_autostart_profiling (

int autostart)

Determine whether profiling should be started by starpu_init(), or only when starpu_fxt_start_profiling() is called.
autostart should be 1 to do so, or 0 to prevent it.

30.23.3.2 starpu_fxt_start_profiling()

void starpu_fxt_start_profiling (

void)

Start recording the trace. The trace is by default started from starpu_init() call, but can be paused by using starpu←↩
_fxt_stop_profiling(), in which case starpu_fxt_start_profiling() should be called to resume recording events.

30.23.3.3 starpu_fxt_stop_profiling()

void starpu_fxt_stop_profiling (

void)

Generated by Doxygen

382 Module Documentation a.k.a StarPU’s API

Stop recording the trace. The trace is by default stopped when calling starpu_shutdown(). starpu_fxt_stop_←↩
profiling() can however be used to stop it earlier. starpu_fxt_start_profiling() can then be called to start recording it
again, etc.

30.23.3.4 starpu_fxt_is_enabled()

int starpu_fxt_is_enabled ()

Wrapper to get value of env variable STARPU_FXT_TRACE

30.23.3.5 starpu_fxt_trace_user_event()

void starpu_fxt_trace_user_event (

unsigned long code)

Add an event in the execution trace if FxT is enabled.

30.23.3.6 starpu_fxt_trace_user_event_string()

void starpu_fxt_trace_user_event_string (

const char ∗ s)

Add a string event in the execution trace if FxT is enabled.

Generated by Doxygen

30.24 FFT Support 383

30.24 FFT Support

Functions

• void ∗ starpufft_malloc (size_t n)
• void starpufft_free (void ∗p)
• starpufft_plan starpufft_plan_dft_1d (int n, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_2d (int n, int m, int sign, unsigned flags)
• struct starpu_task ∗ starpufft_start (starpufft_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufft_start_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle←↩

_t out)
• int starpufft_execute (starpufft_plan p, void ∗in, void ∗out)
• int starpufft_execute_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• void starpufft_cleanup (starpufft_plan p)
• void starpufft_destroy_plan (starpufft_plan p)

30.24.1 Detailed Description

30.24.2 Function Documentation

30.24.2.1 starpufft_malloc()

void ∗ starpufft_malloc (

size_t n)

Allocate memory for n bytes. This is preferred over malloc(), since it allocates pinned memory, which allows
overlapped transfers.

30.24.2.2 starpufft_free()

void ∗ starpufft_free (

void ∗ p)

Release memory previously allocated.

30.24.2.3 starpufft_plan_dft_1d()

struct starpufft_plan ∗ starpufft_plan_dft_1d (

int n,

int sign,

unsigned flags)

Initialize a plan for 1D FFT of size n. sign can be STARPUFFT_FORWARD or STARPUFFT_INVERSE. flags
must be 0.

30.24.2.4 starpufft_plan_dft_2d()

struct starpufft_plan ∗ starpufft_plan_dft_2d (

int n,

int m,

int sign,

unsigned flags)

Initialize a plan for 2D FFT of size (n, m). sign can be STARPUFFT_FORWARD or STARPUFFT_INVERSE. flags
must be 0.

30.24.2.5 starpufft_start()

struct starpu_task ∗ starpufft_start (

starpufft_plan p,

Generated by Doxygen

384 Module Documentation a.k.a StarPU’s API

void ∗ in,

void ∗ out)

Start an FFT previously planned as p, using in and out as input and output. This only submits the task and does
not wait for it. The application should call starpufft_cleanup() to unregister the

30.24.2.6 starpufft_start_handle()

struct starpu_task ∗ starpufft_start_handle (

starpufft_plan p,

starpu_data_handle_t in,

starpu_data_handle_t out)

Start an FFT previously planned as p, using data handles in and out as input and output (assumed to be vectors
of elements of the expected types). This only submits the task and does not wait for it.

30.24.2.7 starpufft_execute()

void starpufft_execute (

starpufft_plan p,

void ∗ in,

void ∗ out)

Execute an FFT previously planned as p, using in and out as input and output. This submits and waits for the
task.

30.24.2.8 starpufft_execute_handle()

void starpufft_execute_handle (

starpufft_plan p,

starpu_data_handle_t in,

starpu_data_handle_t out)

Execute an FFT previously planned as p, using data handles in and out as input and output (assumed to be
vectors of elements of the expected types). This submits and waits for the task.

30.24.2.9 starpufft_cleanup()

void starpufft_cleanup (

starpufft_plan p)

Release data for plan p, in the starpufft_start() case.

30.24.2.10 starpufft_destroy_plan()

void starpufft_destroy_plan (

starpufft_plan p)

Destroy plan p, i.e. release all CPU (fftw) and GPU (cufft) resources.

Generated by Doxygen

30.25 MPI Support 385

30.25 MPI Support

Macros

• #define STARPU_USE_MPI_MASTER_SLAVE
• #define STARPU_USE_MPI
• #define STARPU_EXECUTE_ON_NODE
• #define STARPU_EXECUTE_ON_DATA
• #define STARPU_NODE_SELECTION_POLICY

Functions

• int starpu_mpi_pre_submit_hook_register (void(∗f)(struct starpu_task ∗))
• int starpu_mpi_pre_submit_hook_unregister ()

Initialisation

• int starpu_mpi_init_conf (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm, struct starpu_conf
∗conf)

• int starpu_mpi_init_comm (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm)
• int starpu_mpi_init (int ∗argc, char ∗∗∗argv, int initialize_mpi)
• int starpu_mpi_initialize (void)
• int starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)
• int starpu_mpi_shutdown (void)
• void starpu_mpi_comm_amounts_retrieve (size_t ∗comm_amounts)
• int starpu_mpi_comm_size (MPI_Comm comm, int ∗size)
• int starpu_mpi_comm_rank (MPI_Comm comm, int ∗rank)
• int starpu_mpi_world_rank (void)
• int starpu_mpi_world_size (void)
• int starpu_mpi_comm_get_attr (MPI_Comm comm, int keyval, void ∗attribute_val, int ∗flag)
• int starpu_mpi_get_communication_tag (void)
• void starpu_mpi_set_communication_tag (int tag)
• #define STARPU_MPI_TAG_UB

Communication

• typedef void ∗ starpu_mpi_req
• typedef int64_t starpu_mpi_tag_t
• typedef int(∗ starpu_mpi_datatype_allocate_func_t) (starpu_data_handle_t, MPI_Datatype ∗)
• typedef void(∗ starpu_mpi_datatype_free_func_t) (MPI_Datatype ∗)
• int starpu_mpi_isend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_isend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi←↩

_tag_t data_tag, int prio, MPI_Comm comm)
• int starpu_mpi_irecv (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int source, starpu_mpi_←↩

tag_t data_tag, MPI_Comm comm)
• int starpu_mpi_send (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, MPI_Comm

comm)
• int starpu_mpi_send_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm)
• int starpu_mpi_recv (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, MPI_Comm

comm, MPI_Status ∗status)
• int starpu_mpi_isend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_isend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

Generated by Doxygen

386 Module Documentation a.k.a StarPU’s API

• int starpu_mpi_irecv_detached (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag,
MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_irecv_detached_sequential_consistency (starpu_data_handle_t data_handle, int source,
starpu_mpi_tag_t data_tag, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg, int sequential_←↩
consistency)

• int starpu_mpi_issend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag←↩
_t data_tag, MPI_Comm comm)

• int starpu_mpi_issend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi←↩
_tag_t data_tag, int prio, MPI_Comm comm)

• int starpu_mpi_issend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,
MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_issend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩
_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_wait (starpu_mpi_req ∗req, MPI_Status ∗status)
• int starpu_mpi_test (starpu_mpi_req ∗req, int ∗flag, MPI_Status ∗status)
• int starpu_mpi_barrier (MPI_Comm comm)
• int starpu_mpi_wait_for_all (MPI_Comm comm)
• int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag←↩

_t data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_detached_unlock_tag_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi←↩

_tag_t data_tag, int prio, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t data_handle, int source, starpu_mpi_←↩

tag_t data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag_prio (unsigned array_size, starpu_data_handle_t ∗data←↩

_handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, int ∗prio, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_irecv_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗source, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_datatype_register (starpu_data_handle_t handle, starpu_mpi_datatype_allocate_func_←↩

t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_register (enum starpu_data_interface_id id, starpu_mpi_datatype_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_unregister (starpu_data_handle_t handle)
• int starpu_mpi_interface_datatype_unregister (enum starpu_data_interface_id id)

Communication Cache

• int starpu_mpi_cache_is_enabled ()
• int starpu_mpi_cache_set (int enabled)
• void starpu_mpi_cache_flush (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_cache_flush_all_data (MPI_Comm comm)
• int starpu_mpi_cached_receive (starpu_data_handle_t data_handle)
• int starpu_mpi_cached_receive_set (starpu_data_handle_t data)
• void starpu_mpi_cached_receive_clear (starpu_data_handle_t data)
• int starpu_mpi_cached_send (starpu_data_handle_t data_handle, int dest)
• int starpu_mpi_cached_send_set (starpu_data_handle_t data, int dest)
• void starpu_mpi_cached_send_clear (starpu_data_handle_t data)

MPI Insert Task

• void starpu_mpi_data_register_comm (starpu_data_handle_t data_handle, starpu_mpi_tag_t data_tag, int
rank, MPI_Comm comm)

• void starpu_mpi_data_set_tag (starpu_data_handle_t handle, starpu_mpi_tag_t data_tag)
• void starpu_mpi_data_set_rank_comm (starpu_data_handle_t handle, int rank, MPI_Comm comm)
• int starpu_mpi_data_get_rank (starpu_data_handle_t handle)

Generated by Doxygen

30.25 MPI Support 387

• starpu_mpi_tag_t starpu_mpi_data_get_tag (starpu_data_handle_t handle)
• int starpu_mpi_task_insert (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_insert_task (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_task_post_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• void starpu_mpi_get_data_on_node (MPI_Comm comm, starpu_data_handle_t data_handle, int node)
• void starpu_mpi_get_data_on_node_detached (MPI_Comm comm, starpu_data_handle_t data_handle, int

node, void(∗callback)(void ∗), void ∗arg)
• void starpu_mpi_get_data_on_all_nodes_detached (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_data_migrate (MPI_Comm comm, starpu_data_handle_t handle, int new_rank)
• #define STARPU_MPI_PER_NODE
• #define starpu_mpi_data_register(data_handle, data_tag, rank)
• #define starpu_data_set_tag
• #define starpu_mpi_data_set_rank(handle, rank)
• #define starpu_data_set_rank
• #define starpu_data_get_rank
• #define starpu_data_get_tag

Node Selection Policy

• typedef int(∗ starpu_mpi_select_node_policy_func_t) (int me, int nb_nodes, struct starpu_data_descr
∗descr, int nb_data)

• int starpu_mpi_node_selection_register_policy (starpu_mpi_select_node_policy_func_t policy_func)
• int starpu_mpi_node_selection_unregister_policy (int policy)
• int starpu_mpi_node_selection_get_current_policy ()
• int starpu_mpi_node_selection_set_current_policy (int policy)
• #define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY
• #define STARPU_MPI_NODE_SELECTION_MOST_R_DATA

Collective Operations

• void starpu_mpi_redux_data (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_redux_data_prio (MPI_Comm comm, starpu_data_handle_t data_handle, int prio)
• int starpu_mpi_scatter_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)
• int starpu_mpi_gather_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)

30.25.1 Detailed Description

30.25.2 Macro Definition Documentation

30.25.2.1 STARPU_USE_MPI_MASTER_SLAVE

#define STARPU_USE_MPI_MASTER_SLAVE

Defined when StarPU has been installed with MPI Master Slave support. It should be used in your code to detect
the availability of MPI Master Slave.

30.25.2.2 STARPU_USE_MPI

#define STARPU_USE_MPI

Defined when StarPU has been installed with MPI support. It should be used in your code to detect the availability
of MPI.

Generated by Doxygen

388 Module Documentation a.k.a StarPU’s API

30.25.2.3 STARPU_EXECUTE_ON_NODE

#define STARPU_EXECUTE_ON_NODE

Used when calling starpu_mpi_task_insert(), must be followed by a integer value which specified the node on which
to execute the codelet.

30.25.2.4 STARPU_EXECUTE_ON_DATA

#define STARPU_EXECUTE_ON_DATA

Used when calling starpu_mpi_task_insert(), must be followed by a data handle to specify that the node owning the
given data will execute the codelet.

30.25.2.5 STARPU_NODE_SELECTION_POLICY

#define STARPU_NODE_SELECTION_POLICY

Used when calling starpu_mpi_task_insert(), must be followed by a identifier to a node selection policy. This is
needed when several nodes own data in STARPU_W mode.

30.25.2.6 STARPU_MPI_TAG_UB

#define STARPU_MPI_TAG_UB

When given to the function starpu_mpi_comm_get_attr(), retrieve the value for the upper bound for tag value.

30.25.2.7 STARPU_MPI_PER_NODE

#define STARPU_MPI_PER_NODE

Can be used as rank when calling starpu_mpi_data_register() and alike, to specify that the data is per-node: each
node will have its own value. Tasks writing to such data will be replicated on all nodes (and all parameters then have
to be per-node). Tasks not writing to such data will just take the node-local value without any MPI communication.

30.25.2.8 starpu_mpi_data_register

#define starpu_mpi_data_register(

data_handle,

data_tag,

rank)

Register to MPI a StarPU data handle with the given tag, rank and the MPI communicator MPI_COMM_WORLD. It
also automatically clears the MPI communication cache when unregistering the data.

30.25.2.9 starpu_data_set_tag

#define starpu_data_set_tag

Symbol kept for backward compatibility. Call function starpu_mpi_data_set_tag()

30.25.2.10 starpu_mpi_data_set_rank

#define starpu_mpi_data_set_rank(

handle,

rank)

Register to MPI a StarPU data handle with the given rank and the MPI communicator MPI_COMM_WORLD. No tag
will be defined. It also automatically clears the MPI communication cache when unregistering the data.

30.25.2.11 starpu_data_set_rank

#define starpu_data_set_rank

Symbol kept for backward compatibility. Call function starpu_mpi_data_set_rank()

30.25.2.12 starpu_data_get_rank

#define starpu_data_get_rank

Symbol kept for backward compatibility. Call function starpu_mpi_data_get_rank()

Generated by Doxygen

30.25 MPI Support 389

30.25.2.13 starpu_data_get_tag

#define starpu_data_get_tag

Symbol kept for backward compatibility. Call function starpu_mpi_data_get_tag()

30.25.2.14 STARPU_MPI_NODE_SELECTION_CURRENT_POLICY

#define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY

Define the current policy

30.25.2.15 STARPU_MPI_NODE_SELECTION_MOST_R_DATA

#define STARPU_MPI_NODE_SELECTION_MOST_R_DATA

Define the policy in which the selected node is the one having the most data in STARPU_R mode

30.25.3 Typedef Documentation

30.25.3.1 starpu_mpi_req

typedef void∗ starpu_mpi_req

Opaque type for communication request

30.25.3.2 starpu_mpi_tag_t

typedef int64_t starpu_mpi_tag_t

Type of the message tag.

30.25.4 Function Documentation

30.25.4.1 starpu_mpi_init_conf()

int starpu_mpi_init_conf (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi,

MPI_Comm comm,

struct starpu_conf ∗ conf)

Initialize the StarPU library with the given conf, and initialize the StarPU-MPI library with the given MPI commu-
nicator comm. initialize_mpi indicates if MPI should be initialized or not by StarPU. StarPU-MPI takes the
opportunity to modify conf to either reserve a core for its MPI thread (by default), or execute MPI calls on the CPU
driver 0 between tasks.

30.25.4.2 starpu_mpi_init_comm()

int starpu_mpi_init_comm (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi,

MPI_Comm comm)

Same as starpu_mpi_init_conf(), except that this does not initialize the StarPU library. The caller thus has to call
starpu_init() before this, and it can not reserve a core for the MPI communications.

Generated by Doxygen

390 Module Documentation a.k.a StarPU’s API

30.25.4.3 starpu_mpi_init()

int starpu_mpi_init (

int ∗ argc,

char ∗∗∗ argv,

int initialize_mpi)

Call starpu_mpi_init_comm() with the MPI communicator MPI_COMM_WORLD.

30.25.4.4 starpu_mpi_initialize()

int starpu_mpi_initialize (

void)

Deprecated This function has been made deprecated. One should use instead the function starpu_mpi_init(). This
function does not call MPI_Init(), it should be called beforehand.

30.25.4.5 starpu_mpi_initialize_extended()

int starpu_mpi_initialize_extended (

int ∗ rank,

int ∗ world_size)

Deprecated This function has been made deprecated. One should use instead the function starpu_mpi_init(). MPI
will be initialized by starpumpi by calling MPI_Init_Thread(argc, argv, MPI_THREAD←↩
_SERIALIZED, ...).

30.25.4.6 starpu_mpi_shutdown()

int starpu_mpi_shutdown (

void)

Clean the starpumpi library. This must be called after calling any starpu_mpi functions and before the call to
starpu_shutdown(), if any. MPI_Finalize() will be called if StarPU-MPI has been initialized by starpu_mpi_←↩
init().

30.25.4.7 starpu_mpi_comm_amounts_retrieve()

void starpu_mpi_comm_amounts_retrieve (

size_t ∗ comm_amounts)

Retrieve the current amount of communications from the current node in the array comm_amounts which must
have a size greater or equal to the world size. Communications statistics must be enabled (see STARPU_COM←↩
M_STATS).

30.25.4.8 starpu_mpi_comm_size()

int starpu_mpi_comm_size (

MPI_Comm comm,

int ∗ size)

Return in size the size of the communicator comm

30.25.4.9 starpu_mpi_comm_rank()

int starpu_mpi_comm_rank (

MPI_Comm comm,

int ∗ rank)

Return in rank the rank of the calling process in the communicator comm

Generated by Doxygen

30.25 MPI Support 391

30.25.4.10 starpu_mpi_world_rank()

int starpu_mpi_world_rank (

void)

Return the rank of the calling process in the communicator MPI_COMM_WORLD

30.25.4.11 starpu_mpi_world_size()

int starpu_mpi_world_size (

void)

Return the size of the communicator MPI_COMM_WORLD

30.25.4.12 starpu_mpi_comm_get_attr()

int starpu_mpi_comm_get_attr (

MPI_Comm comm,

int keyval,

void ∗ attribute_val,

int ∗ flag)

Retrieve an attribute value by key, similarly to the MPI function MPI_comm_get_attr(), except that the value
is a pointer to int64_t instead of int. If an attribute is attached on comm to keyval, then the call returns flag
equal to 1, and the attribute value in attribute_val. Otherwise, flag is set to \0.

30.25.4.13 starpu_mpi_isend()

int starpu_mpi_isend (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. After the call, the pointer to the request req can be used to test or to wait for the
completion of the communication.

30.25.4.14 starpu_mpi_isend_prio()

int starpu_mpi_isend_prio (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_isend(), but take a priority prio.

30.25.4.15 starpu_mpi_irecv()

int starpu_mpi_irecv (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. After the call, the pointer to the request req can be used to test or to wait for the
completion of the communication.

Generated by Doxygen

392 Module Documentation a.k.a StarPU’s API

30.25.4.16 starpu_mpi_send()

int starpu_mpi_send (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Perform a standard-mode, blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm.

30.25.4.17 starpu_mpi_send_prio()

int starpu_mpi_send_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_send(), but take a priority prio.

30.25.4.18 starpu_mpi_recv()

int starpu_mpi_recv (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

MPI_Status ∗ status)

Perform a standard-mode, blocking receive in data_handle from the node source using the message tag
data_tag within the communicator comm. The value of status cannot be NULL, use the predefined value
MPI_STATUS_IGNORE to ignore the status.

30.25.4.19 starpu_mpi_isend_detached()

int starpu_mpi_isend_detached (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. On completion, the callback function is called with the argument arg. Similarly
to the pthread detached functionality, when a detached communication completes, its resources are automatically
released back to the system, there is no need to test or to wait for the completion of the request.

30.25.4.20 starpu_mpi_isend_detached_prio()

int starpu_mpi_isend_detached_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_mpi_isend_detached, but take a priority prio.

Generated by Doxygen

30.25 MPI Support 393

30.25.4.21 starpu_mpi_irecv_detached()

int starpu_mpi_irecv_detached (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, the callback function is called with the argument arg. Similarly to
the pthread detached functionality, when a detached communication completes, its resources are automatically
released back to the system, there is no need to test or to wait for the completion of the request.

30.25.4.22 starpu_mpi_irecv_detached_sequential_consistency()

int starpu_mpi_irecv_detached_sequential_consistency (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg,

int sequential_consistency)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, the callback function is called with the argument arg. The parameter
sequential_consistency allows to enable or disable the sequential consistency for data handle (sequen-
tial consistency will be enabled or disabled based on the value of the parameter sequential_consistency
and the value of the sequential consistency defined for data_handle). Similarly to the pthread detached func-
tionality, when a detached communication completes, its resources are automatically released back to the system,
there is no need to test or to wait for the completion of the request.

30.25.4.23 starpu_mpi_issend()

int starpu_mpi_issend (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm)

Perform a synchronous-mode, non-blocking send of data_handle to the node dest using the message tag
data_tag within the communicator comm.

30.25.4.24 starpu_mpi_issend_prio()

int starpu_mpi_issend_prio (

starpu_data_handle_t data_handle,

starpu_mpi_req ∗ req,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm)

Similar to starpu_mpi_issend(), but take a priority prio.

30.25.4.25 starpu_mpi_issend_detached()

int starpu_mpi_issend_detached (

starpu_data_handle_t data_handle,

int dest,

Generated by Doxygen

394 Module Documentation a.k.a StarPU’s API

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Perform a synchronous-mode, non-blocking send of data_handle to the node dest using the message tag
data_tag within the communicator comm. On completion, the callback function is called with the argument
arg. Similarly to the pthread detached functionality, when a detached communication completes, its resources are
automatically released back to the system, there is no need to test or to wait for the completion of the request.

30.25.4.26 starpu_mpi_issend_detached_prio()

int starpu_mpi_issend_detached_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

void(∗)(void ∗) callback,

void ∗ arg)

Similar to starpu_mpi_issend_detached(), but take a priority prio.

30.25.4.27 starpu_mpi_wait()

int starpu_mpi_wait (

starpu_mpi_req ∗ req,

MPI_Status ∗ status)

Return when the operation identified by request req is complete. The value of status cannot be NULL, use the
predefined value MPI_STATUS_IGNORE to ignore the status.

30.25.4.28 starpu_mpi_test()

int starpu_mpi_test (

starpu_mpi_req ∗ req,

int ∗ flag,

MPI_Status ∗ status)

If the operation identified by req is complete, set flag to 1. The status object is set to contain information on
the completed operation.

30.25.4.29 starpu_mpi_barrier()

int starpu_mpi_barrier (

MPI_Comm comm)

Block the caller until all group members of the communicator comm have called it.

30.25.4.30 starpu_mpi_wait_for_all()

int starpu_mpi_wait_for_all (

MPI_Comm comm)

Wait until all StarPU tasks and communications for the given communicator are completed.

30.25.4.31 starpu_mpi_isend_detached_unlock_tag()

int starpu_mpi_isend_detached_unlock_tag (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

starpu_tag_t tag)

Post a standard-mode, non blocking send of data_handle to the node dest using the message tag data_tag
within the communicator comm. On completion, tag is unlocked.

Generated by Doxygen

30.25 MPI Support 395

30.25.4.32 starpu_mpi_isend_detached_unlock_tag_prio()

int starpu_mpi_isend_detached_unlock_tag_prio (

starpu_data_handle_t data_handle,

int dest,

starpu_mpi_tag_t data_tag,

int prio,

MPI_Comm comm,

starpu_tag_t tag)

Similar to starpu_mpi_isend_detached_unlock_tag(), but take a priority prio.

30.25.4.33 starpu_mpi_irecv_detached_unlock_tag()

int starpu_mpi_irecv_detached_unlock_tag (

starpu_data_handle_t data_handle,

int source,

starpu_mpi_tag_t data_tag,

MPI_Comm comm,

starpu_tag_t tag)

Post a nonblocking receive in data_handle from the node source using the message tag data_tag within
the communicator comm. On completion, tag is unlocked.

30.25.4.34 starpu_mpi_isend_array_detached_unlock_tag()

int starpu_mpi_isend_array_detached_unlock_tag (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ dest,

starpu_mpi_tag_t ∗ data_tag,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Post array_size standard-mode, non blocking send. Each post sends the n-th data of the array data_handle
to the n-th node of the array dest using the n-th message tag of the array data_tag within the n-th communicator
of the array comm. On completion of the all the requests, tag is unlocked.

30.25.4.35 starpu_mpi_isend_array_detached_unlock_tag_prio()

int starpu_mpi_isend_array_detached_unlock_tag_prio (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ dest,

starpu_mpi_tag_t ∗ data_tag,

int ∗ prio,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Similar to starpu_mpi_isend_array_detached_unlock_tag(), but take a priority prio.

30.25.4.36 starpu_mpi_irecv_array_detached_unlock_tag()

int starpu_mpi_irecv_array_detached_unlock_tag (

unsigned array_size,

starpu_data_handle_t ∗ data_handle,

int ∗ source,

starpu_mpi_tag_t ∗ data_tag,

MPI_Comm ∗ comm,

starpu_tag_t tag)

Post array_size nonblocking receive. Each post receives in the n-th data of the array data_handle from the
n-th node of the array source using the n-th message tag of the array data_tag within the n-th communicator
of the array comm. On completion of the all the requests, tag is unlocked.

Generated by Doxygen

396 Module Documentation a.k.a StarPU’s API

30.25.4.37 starpu_mpi_datatype_register()

int starpu_mpi_datatype_register (

starpu_data_handle_t handle,

starpu_mpi_datatype_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given handle. Similar to starpu_mpi_interface_←↩
datatype_register(). It is important that the function is called before any communication can take place for a data
with the given handle. See Exchanging User Defined Data Interface for an example.

30.25.4.38 starpu_mpi_interface_datatype_register()

int starpu_mpi_interface_datatype_register (

enum starpu_data_interface_id id,

starpu_mpi_datatype_allocate_func_t allocate_datatype_func,

starpu_mpi_datatype_free_func_t free_datatype_func)

Register functions to create and free a MPI datatype for the given interface id. Similar to starpu_mpi_datatype←↩
_register(). It is important that the function is called before any communication can take place for a data with the
given handle. See Exchanging User Defined Data Interface for an example.

30.25.4.39 starpu_mpi_datatype_unregister()

int starpu_mpi_datatype_unregister (

starpu_data_handle_t handle)

Unregister the MPI datatype functions stored for the interface of the given handle.

30.25.4.40 starpu_mpi_interface_datatype_unregister()

int starpu_mpi_interface_datatype_unregister (

enum starpu_data_interface_id id)

Unregister the MPI datatype functions stored for the interface of the given interface id. Similar to starpu_mpi_←↩
datatype_unregister().

30.25.4.41 starpu_mpi_cache_is_enabled()

int starpu_mpi_cache_is_enabled ()

Return 1 if the communication cache is enabled, 0 otherwise

30.25.4.42 starpu_mpi_cache_set()

int starpu_mpi_cache_set (

int enabled)

If enabled is 1, enable the communication cache. Otherwise, clean the cache if it was enabled and disable it.

30.25.4.43 starpu_mpi_cache_flush()

void starpu_mpi_cache_flush (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Clear the send and receive communication cache for the data data_handle and invalidate the value. The
function has to be called at the same point of task graph submission by all the MPI nodes on which the handle was
registered. The function does nothing if the cache mechanism is disabled (see STARPU_MPI_CACHE).

30.25.4.44 starpu_mpi_cache_flush_all_data()

void starpu_mpi_cache_flush_all_data (

MPI_Comm comm)

Clear the send and receive communication cache for all data and invalidate their values. The function has to be
called at the same point of task graph submission by all the MPI nodes. The function does nothing if the cache
mechanism is disabled (see STARPU_MPI_CACHE).

Generated by Doxygen

30.25 MPI Support 397

30.25.4.45 starpu_mpi_cached_receive()

int starpu_mpi_cached_receive (

starpu_data_handle_t data_handle)

Test whether data_handle is cached for reception, i.e. the value was previously received from the owner node,
and not flushed since then.

30.25.4.46 starpu_mpi_cached_receive_set()

int starpu_mpi_cached_receive_set (

starpu_data_handle_t data)

If data is already available in the reception cache, return 1 If data is NOT available in the reception cache, add it
to the cache and return 0 Return 0 if the communication cache is not enabled

30.25.4.47 starpu_mpi_cached_receive_clear()

void starpu_mpi_cached_receive_clear (

starpu_data_handle_t data)

Remove data from the reception cache

30.25.4.48 starpu_mpi_cached_send()

int starpu_mpi_cached_send (

starpu_data_handle_t data_handle,

int dest)

Test whether data_handle is cached for emission to node dest, i.e. the value was previously sent to dest,
and not flushed since then.

30.25.4.49 starpu_mpi_cached_send_set()

int starpu_mpi_cached_send_set (

starpu_data_handle_t data,

int dest)

If data is already available in the emission cache for node dest, return 1 If data is NOT available in the emission
cache for node dest, add it to the cache and return 0 Return 0 if the communication cache is not enabled

30.25.4.50 starpu_mpi_cached_send_clear()

void starpu_mpi_cached_send_clear (

starpu_data_handle_t data)

Remove data from the emission cache

30.25.4.51 starpu_mpi_data_register_comm()

void starpu_mpi_data_register_comm (

starpu_data_handle_t data_handle,

starpu_mpi_tag_t data_tag,

int rank,

MPI_Comm comm)

Register to MPI a StarPU data handle with the given tag, rank and MPI communicator. It also automatically clears
the MPI communication cache when unregistering the data.

30.25.4.52 starpu_mpi_data_set_tag()

void starpu_mpi_data_set_tag (

starpu_data_handle_t handle,

starpu_mpi_tag_t data_tag)

Register to MPI a StarPU data handle with the given tag. No rank will be defined. It also automatically clears the
MPI communication cache when unregistering the data.

Generated by Doxygen

398 Module Documentation a.k.a StarPU’s API

30.25.4.53 starpu_mpi_data_set_rank_comm()

void starpu_mpi_data_set_rank_comm (

starpu_data_handle_t handle,

int rank,

MPI_Comm comm)

Register to MPI a StarPU data handle with the given rank and given communicator. No tag will be defined. It also
automatically clears the MPI communication cache when unregistering the data.

30.25.4.54 starpu_mpi_data_get_rank()

int starpu_mpi_data_get_rank (

starpu_data_handle_t handle)

Return the rank of the given data.

30.25.4.55 starpu_mpi_data_get_tag()

starpu_mpi_tag_t starpu_mpi_data_get_tag (

starpu_data_handle_t handle)

Return the tag of the given data.

30.25.4.56 starpu_mpi_task_insert()

int starpu_mpi_task_insert (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Create and submit a task corresponding to codelet with the following arguments. The argument list must be zero-
terminated. The arguments following the codelet are the same types as for the function starpu_task_insert(). Access
modes for data can also be set with STARPU_SSEND to specify the data has to be sent using a synchronous and
non-blocking mode (see starpu_mpi_issend()). The extra argument STARPU_EXECUTE_ON_NODE followed by
an integer allows to specify the MPI node to execute the codelet. It is also possible to specify that the node owning
a specific data will execute the codelet, by using STARPU_EXECUTE_ON_DATA followed by a data handle.
The internal algorithm is as follows:

1. Find out which MPI node is going to execute the codelet.

• If there is only one node owning data in STARPU_W mode, it will be selected;

• If there is several nodes owning data in STARPU_W mode, a node will be selected according to a given
node selection policy (see STARPU_NODE_SELECTION_POLICY or starpu_mpi_node_selection_←↩
set_current_policy())

• The argument STARPU_EXECUTE_ON_NODE followed by an integer can be used to specify the node;

• The argument STARPU_EXECUTE_ON_DATA followed by a data handle can be used to specify that
the node owing the given data will execute the codelet.

2. Send and receive data as requested. Nodes owning data which need to be read by the task are sending them
to the MPI node which will execute it. The latter receives them.

3. Execute the codelet. This is done by the MPI node selected in the 1st step of the algorithm.

4. If several MPI nodes own data to be written to, send written data back to their owners.

The algorithm also includes a communication cache mechanism that allows not to send data twice to the same MPI
node, unless the data has been modified. The cache can be disabled (see STARPU_MPI_CACHE).

30.25.4.57 starpu_mpi_insert_task()

int starpu_mpi_insert_task (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Call starpu_mpi_task_insert(). Symbol kept for backward compatibility.

Generated by Doxygen

30.25 MPI Support 399

30.25.4.58 starpu_mpi_task_build()

struct starpu_task∗ starpu_mpi_task_build (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

Create a task corresponding to codelet with the following given arguments. The argument list must be zero-
terminated. The function performs the first two steps of the function starpu_mpi_task_insert(), i.e. submitting the
MPI communications needed before the execution of the task, and the creation of the task on one node. Only the
MPI node selected in the first step of the algorithm will return a valid task structure which can then be submitted,
others will return NULL. The function starpu_mpi_task_post_build() MUST be called after that on all nodes, and
after the submission of the task on the node which creates it, with the SAME list of arguments.

30.25.4.59 starpu_mpi_task_post_build()

int starpu_mpi_task_post_build (

MPI_Comm comm,

struct starpu_codelet ∗ codelet,

...)

MUST be called after a call to starpu_mpi_task_build(), with the SAME list of arguments. Perform the fourth – last
– step of the algorithm described in starpu_mpi_task_insert().

30.25.4.60 starpu_mpi_get_data_on_node()

void starpu_mpi_get_data_on_node (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int node)

Transfer data data_handle to MPI node node, sending it from its owner if needed. At least the target node and
the owner have to call the function.

30.25.4.61 starpu_mpi_get_data_on_node_detached()

void starpu_mpi_get_data_on_node_detached (

MPI_Comm comm,

starpu_data_handle_t data_handle,

int node,

void(∗)(void ∗) callback,

void ∗ arg)

Transfer data data_handle to MPI node node, sending it from its owner if needed. At least the target node and
the owner have to call the function. On reception, the callback function is called with the argument arg.

30.25.4.62 starpu_mpi_get_data_on_all_nodes_detached()

void starpu_mpi_get_data_on_all_nodes_detached (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Transfer data data_handle to all MPI nodes, sending it from its owner if needed. All nodes have to call the
function.

30.25.4.63 starpu_mpi_data_migrate()

void starpu_mpi_data_migrate (

MPI_Comm comm,

starpu_data_handle_t handle,

int new_rank)

Submit migration of the data onto the new_rank MPI node. This means both submitting the transfer of the data
to node new_rank if it hasn't been submitted already, and setting the home node of the data to the new node.
Further data transfers submitted by starpu_mpi_task_insert() will be done from that new node. This function thus

Generated by Doxygen

400 Module Documentation a.k.a StarPU’s API

needs to be called on all nodes which have registered the data at the same point of tasks submissions. This also
flushes the cache for this data to avoid incoherencies.

30.25.4.64 starpu_mpi_node_selection_register_policy()

int starpu_mpi_node_selection_register_policy (

starpu_mpi_select_node_policy_func_t policy_func)

Register a new policy which can then be used when there is several nodes owning data in STARPU_W mode. Here
an example of function defining a node selection policy. The codelet will be executed on the node owing the first
data with a size bigger than 1M, or on the node 0 if no data fits the given size.

int my_node_selection_policy(int me, int nb_nodes, struct starpu_data_descr *descr, int
nb_data)

{
// me is the current MPI rank
// nb_nodes is the number of MPI nodes
// descr is the description of the data specified when calling starpu_mpi_task_insert
// nb_data is the number of data in descr
int i;
for(i= 0 ; i<nb_data ; i++)
{

starpu_data_handle_t data = descr[i].handle;
enum starpu_data_access_mode mode = descr[i].mode;
if (mode & STARPU_R)
{

int rank = starpu_data_get_rank(data);
size_t size = starpu_data_get_size(data);
if (size > 1024*1024) return rank;

}
}
return 0;
}

30.25.4.65 starpu_mpi_node_selection_unregister_policy()

int starpu_mpi_node_selection_unregister_policy (

int policy)

Unregister a previously registered policy.

30.25.4.66 starpu_mpi_node_selection_get_current_policy()

int starpu_mpi_node_selection_get_current_policy ()

Return the current policy used to select the node which will execute the codelet

30.25.4.67 starpu_mpi_node_selection_set_current_policy()

int starpu_mpi_node_selection_set_current_policy (

int policy)

Set the current policy used to select the node which will execute the codelet. The policy STARPU_MPI_NODE←↩
_SELECTION_MOST_R_DATA selects the node having the most data in STARPU_R mode so as to minimize the
amount of data to be transfered.

30.25.4.68 starpu_mpi_redux_data()

void starpu_mpi_redux_data (

MPI_Comm comm,

starpu_data_handle_t data_handle)

Perform a reduction on the given data handle. All nodes send the data to its owner node which will perform a
reduction.

30.25.4.69 starpu_mpi_redux_data_prio()

void starpu_mpi_redux_data_prio (

MPI_Comm comm,

Generated by Doxygen

30.25 MPI Support 401

starpu_data_handle_t data_handle,

int prio)

Similar to starpu_mpi_redux_data, but take a priority prio.

30.25.4.70 starpu_mpi_scatter_detached()

int starpu_mpi_scatter_detached (

starpu_data_handle_t ∗ data_handles,

int count,

int root,

MPI_Comm comm,

void(∗)(void ∗) scallback,

void ∗ sarg,

void(∗)(void ∗) rcallback,

void ∗ rarg)

Scatter data among processes of the communicator based on the ownership of the data. For each data of the array
data_handles, the process root sends the data to the process owning this data. Processes receiving data
must have valid data handles to receive them. On completion of the collective communication, the scallback
function is called with the argument sarg on the process root, the rcallback function is called with the
argument rarg on any other process.

30.25.4.71 starpu_mpi_gather_detached()

int starpu_mpi_gather_detached (

starpu_data_handle_t ∗ data_handles,

int count,

int root,

MPI_Comm comm,

void(∗)(void ∗) scallback,

void ∗ sarg,

void(∗)(void ∗) rcallback,

void ∗ rarg)

Gather data from the different processes of the communicator onto the process root. Each process owning data
handle in the array data_handles will send them to the process root. The process root must have valid data
handles to receive the data. On completion of the collective communication, the rcallback function is called
with the argument rarg on the process root, the scallback function is called with the argument sarg on any
other process.

Generated by Doxygen

402 Module Documentation a.k.a StarPU’s API

30.26 Task Bundles

Typedefs

• typedef struct _starpu_task_bundle ∗ starpu_task_bundle_t

Functions

• void starpu_task_bundle_create (starpu_task_bundle_t ∗bundle)
• int starpu_task_bundle_insert (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• int starpu_task_bundle_remove (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• void starpu_task_bundle_close (starpu_task_bundle_t bundle)
• double starpu_task_bundle_expected_length (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t bundle, unsigned
memory_node)

• double starpu_task_bundle_expected_energy (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

30.26.1 Detailed Description

30.26.2 Typedef Documentation

30.26.2.1 starpu_task_bundle_t

typedef struct _starpu_task_bundle∗ starpu_task_bundle_t

Opaque structure describing a list of tasks that should be scheduled on the same worker whenever it’s possible. It
must be considered as a hint given to the scheduler as there is no guarantee that they will be executed on the same
worker.

30.26.3 Function Documentation

30.26.3.1 starpu_task_bundle_create()

void starpu_task_bundle_create (

starpu_task_bundle_t ∗ bundle)

Factory function creating and initializing bundle, when the call returns, memory needed is allocated and bundle
is ready to use.

30.26.3.2 starpu_task_bundle_insert()

int starpu_task_bundle_insert (

starpu_task_bundle_t bundle,

struct starpu_task ∗ task)

Insert task in bundle. Until task is removed from bundle its expected length and data transfer time will be
considered along those of the other tasks of bundle. This function must not be called if bundle is already closed
and/or task is already submitted. On success, it returns 0. There are two cases of error : if bundle is already
closed it returns -EPERM, if task was already submitted it returns -EINVAL.

30.26.3.3 starpu_task_bundle_remove()

int starpu_task_bundle_remove (

starpu_task_bundle_t bundle,

struct starpu_task ∗ task)

Generated by Doxygen

30.26 Task Bundles 403

Remove task from bundle. Of course task must have been previously inserted in bundle. This function must
not be called if bundle is already closed and/or task is already submitted. Doing so would result in undefined
behaviour. On success, it returns 0. If bundle is already closed it returns -ENOENT.

30.26.3.4 starpu_task_bundle_close()

void starpu_task_bundle_close (

starpu_task_bundle_t bundle)

Inform the runtime that the user will not modify bundle anymore, it means no more inserting or removing task.
Thus the runtime can destroy it when possible.

30.26.3.5 starpu_task_bundle_expected_length()

double starpu_task_bundle_expected_length (

starpu_task_bundle_t bundle,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the expected duration of bundle in micro-seconds.

30.26.3.6 starpu_task_bundle_expected_data_transfer_time()

double starpu_task_bundle_expected_data_transfer_time (

starpu_task_bundle_t bundle,

unsigned memory_node)

Return the time (in micro-seconds) expected to transfer all data used within bundle.

30.26.3.7 starpu_task_bundle_expected_energy()

double starpu_task_bundle_expected_energy (

starpu_task_bundle_t bundle,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the expected energy consumption of bundle in J.

Generated by Doxygen

404 Module Documentation a.k.a StarPU’s API

30.27 Task Lists

Data Structures

• struct starpu_task_list

Functions

• void starpu_task_list_init (struct starpu_task_list ∗list)
• void starpu_task_list_push_front (struct starpu_task_list ∗list, struct starpu_task ∗task)
• void starpu_task_list_push_back (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_front (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_back (const struct starpu_task_list ∗list)
• int starpu_task_list_empty (const struct starpu_task_list ∗list)
• void starpu_task_list_erase (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_pop_front (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_pop_back (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_begin (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_end (const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNU←↩

SED)
• struct starpu_task ∗ starpu_task_list_next (const struct starpu_task ∗task)
• int starpu_task_list_ismember (const struct starpu_task_list ∗list, const struct starpu_task ∗look)
• void starpu_task_list_move (struct starpu_task_list ∗ldst, struct starpu_task_list ∗lsrc)

30.27.1 Detailed Description

30.27.2 Data Structure Documentation

30.27.2.1 struct starpu_task_list

Store a double-chained list of tasks

Data Fields

struct starpu_task ∗ head head of the list

struct starpu_task ∗ tail tail of the list

30.27.3 Function Documentation

30.27.3.1 starpu_task_list_init()

void starpu_task_list_init (

struct starpu_task_list ∗ list)

Initialize a list structure

30.27.3.2 starpu_task_list_push_front()

void starpu_task_list_push_front (

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Push task at the front of list

30.27.3.3 starpu_task_list_push_back()

void starpu_task_list_push_back (

Generated by Doxygen

30.27 Task Lists 405

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Push task at the back of list

30.27.3.4 starpu_task_list_front()

struct starpu_task∗ starpu_task_list_front (

const struct starpu_task_list ∗ list)

Get the front of list (without removing it)

30.27.3.5 starpu_task_list_back()

struct starpu_task∗ starpu_task_list_back (

const struct starpu_task_list ∗ list)

Get the back of list (without removing it)

30.27.3.6 starpu_task_list_empty()

int starpu_task_list_empty (

const struct starpu_task_list ∗ list)

Test if list is empty

30.27.3.7 starpu_task_list_erase()

void starpu_task_list_erase (

struct starpu_task_list ∗ list,

struct starpu_task ∗ task)

Remove task from list

30.27.3.8 starpu_task_list_pop_front()

struct starpu_task∗ starpu_task_list_pop_front (

struct starpu_task_list ∗ list)

Remove the element at the front of list

30.27.3.9 starpu_task_list_pop_back()

struct starpu_task∗ starpu_task_list_pop_back (

struct starpu_task_list ∗ list)

Remove the element at the back of list

30.27.3.10 starpu_task_list_begin()

struct starpu_task∗ starpu_task_list_begin (

const struct starpu_task_list ∗ list)

Get the first task of list.

30.27.3.11 starpu_task_list_end()

struct starpu_task∗ starpu_task_list_end (

const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNUSED)

Get the end of list.

30.27.3.12 starpu_task_list_next()

struct starpu_task∗ starpu_task_list_next (

const struct starpu_task ∗ task)

Get the next task of list. This is not erase-safe.

Generated by Doxygen

406 Module Documentation a.k.a StarPU’s API

30.27.3.13 starpu_task_list_ismember()

int starpu_task_list_ismember (

const struct starpu_task_list ∗ list,

const struct starpu_task ∗ look)

Test whether the given task look is contained in the list.

Generated by Doxygen

30.28 Parallel Tasks 407

30.28 Parallel Tasks

Functions

• unsigned starpu_combined_worker_get_count (void)

• unsigned starpu_worker_is_combined_worker (int id)

• int starpu_combined_worker_get_id (void)

• int starpu_combined_worker_get_size (void)

• int starpu_combined_worker_get_rank (void)

• int starpu_combined_worker_assign_workerid (int nworkers, int workerid_array[])

• int starpu_combined_worker_get_description (int workerid, int ∗worker_size, int ∗∗combined_workerid)

• int starpu_combined_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned
nimpl)

• void starpu_parallel_task_barrier_init (struct starpu_task ∗task, int workerid)

• void starpu_parallel_task_barrier_init_n (struct starpu_task ∗task, int worker_size)

30.28.1 Detailed Description

30.28.2 Function Documentation

30.28.2.1 starpu_combined_worker_get_count()

unsigned starpu_combined_worker_get_count (

void)

Return the number of different combined workers.

30.28.2.2 starpu_combined_worker_get_id()

int starpu_combined_worker_get_id (

void)

Return the identifier of the current combined worker.

30.28.2.3 starpu_combined_worker_get_size()

int starpu_combined_worker_get_size (

void)

Return the size of the current combined worker, i.e. the total number of CPUS running the same task in the case
of STARPU_SPMD parallel tasks, or the total number of threads that the task is allowed to start in the case of
STARPU_FORKJOIN parallel tasks.

30.28.2.4 starpu_combined_worker_get_rank()

int starpu_combined_worker_get_rank (

void)

Return the rank of the current thread within the combined worker. Can only be used in STARPU_SPMD parallel
tasks, to know which part of the task to work on.

30.28.2.5 starpu_combined_worker_assign_workerid()

int starpu_combined_worker_assign_workerid (

int nworkers,

int workerid_array[])

Register a new combined worker and get its identifier

Generated by Doxygen

408 Module Documentation a.k.a StarPU’s API

30.28.2.6 starpu_combined_worker_get_description()

int starpu_combined_worker_get_description (

int workerid,

int ∗ worker_size,

int ∗∗ combined_workerid)

Get the description of a combined worker

30.28.2.7 starpu_combined_worker_can_execute_task()

int starpu_combined_worker_can_execute_task (

unsigned workerid,

struct starpu_task ∗ task,

unsigned nimpl)

Variant of starpu_worker_can_execute_task() compatible with combined workers

30.28.2.8 starpu_parallel_task_barrier_init()

void starpu_parallel_task_barrier_init (

struct starpu_task ∗ task,

int workerid)

Initialise the barrier for the parallel task, and dispatch the task between the different workers of the given combined
worker.

30.28.2.9 starpu_parallel_task_barrier_init_n()

void starpu_parallel_task_barrier_init_n (

struct starpu_task ∗ task,

int worker_size)

Initialise the barrier for the parallel task, to be pushed to worker_size workers (without having to explicit a given
combined worker).

Generated by Doxygen

30.29 Running Drivers 409

30.29 Running Drivers

Data Structures

• struct starpu_driver
• union starpu_driver.id

Functions

• int starpu_driver_run (struct starpu_driver ∗d)
• void starpu_drivers_request_termination (void)
• int starpu_driver_init (struct starpu_driver ∗d)
• int starpu_driver_run_once (struct starpu_driver ∗d)
• int starpu_driver_deinit (struct starpu_driver ∗d)

30.29.1 Detailed Description

30.29.2 Data Structure Documentation

30.29.2.1 struct starpu_driver

structure for a driver

Data Fields

enum starpu_worker_archtype type Type of the driver. Only STARPU_CPU_WORKER,
STARPU_CUDA_WORKER and STARPU_OPENCL_WORKER are
currently supported.

union starpu_driver id Identifier of the driver.

30.29.2.2 union starpu_driver.id

Identifier of the driver.

Data Fields

unsigned cpu_id

unsigned cuda_id

cl_device_id opencl_id

30.29.3 Function Documentation

30.29.3.1 starpu_driver_run()

int starpu_driver_run (

struct starpu_driver ∗ d)

Initialize the given driver, run it until it receives a request to terminate, deinitialize it and return 0 on success. Return
-EINVAL if starpu_driver::type is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_←↩
WORKER or STARPU_OPENCL_WORKER).
This is the same as using the following functions: calling starpu_driver_init(), then calling starpu_driver_run_once()
in a loop, and finally starpu_driver_deinit().

Generated by Doxygen

410 Module Documentation a.k.a StarPU’s API

30.29.3.2 starpu_drivers_request_termination()

void starpu_drivers_request_termination (

void)

Notify all running drivers that they should terminate.

30.29.3.3 starpu_driver_init()

int starpu_driver_init (

struct starpu_driver ∗ d)

Initialize the given driver. Return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_←↩
archtype.

30.29.3.4 starpu_driver_run_once()

int starpu_driver_run_once (

struct starpu_driver ∗ d)

Run the driver once, then return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_←↩
archtype.

30.29.3.5 starpu_driver_deinit()

int starpu_driver_deinit (

struct starpu_driver ∗ d)

Deinitialize the given driver. Return 0 on success, -EINVAL if starpu_driver::type is not a valid starpu_worker_←↩
archtype.

Generated by Doxygen

30.30 Expert Mode 411

30.30 Expert Mode

Functions

• void starpu_wake_all_blocked_workers (void)
• int starpu_progression_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_progression_hook_deregister (int hook_id)
• int starpu_idle_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)
• void starpu_idle_hook_deregister (int hook_id)

30.30.1 Detailed Description

30.30.2 Function Documentation

30.30.2.1 starpu_wake_all_blocked_workers()

void starpu_wake_all_blocked_workers (

void)

Wake all the workers, so they can inspect data requests and task submissions again.

30.30.2.2 starpu_progression_hook_register()

int starpu_progression_hook_register (

unsigned(∗)(void ∗arg) func,

void ∗ arg)

Register a progression hook, to be called when workers are idle.

30.30.2.3 starpu_progression_hook_deregister()

void starpu_progression_hook_deregister (

int hook_id)

Unregister a given progression hook.

Generated by Doxygen

412 Module Documentation a.k.a StarPU’s API

30.31 Scheduling Contexts

StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the
other hand grouping tasks in bundles that will be executed by a single specified worker. In contrast when we group
workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to
the context. Scheduling contexts can be created, deleted and modified dynamically.

Scheduling Contexts Basic API

• void(∗)(unsigned) starpu_sched_ctx_get_sched_policy_init (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_create (int ∗workerids_ctx, int nworkers_ctx, const char ∗sched_ctx_name,...)
• unsigned starpu_sched_ctx_create_inside_interval (const char ∗policy_name, const char ∗sched_ctx_name,

int min_ncpus, int max_ncpus, int min_ngpus, int max_ngpus, unsigned allow_overlap)
• void starpu_sched_ctx_register_close_callback (unsigned sched_ctx_id, void(∗close_callback)(unsigned

sched_ctx_id, void ∗args), void ∗args)
• void starpu_sched_ctx_add_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx_id)
• void starpu_sched_ctx_remove_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx←↩

_id)
• void starpu_sched_ctx_display_workers (unsigned sched_ctx_id, FILE ∗f)
• void starpu_sched_ctx_delete (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_inheritor (unsigned sched_ctx_id, unsigned inheritor)
• unsigned starpu_sched_ctx_get_inheritor (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_hierarchy_level (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_context (unsigned ∗sched_ctx_id)
• unsigned starpu_sched_ctx_get_context (void)
• void starpu_sched_ctx_stop_task_submission (void)
• void starpu_sched_ctx_finished_submit (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_workers_list (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_workers_list_raw (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_nworkers (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_nshared_workers (unsigned sched_ctx_id, unsigned sched_ctx_id2)
• unsigned starpu_sched_ctx_contains_worker (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_contains_type_of_worker (enum starpu_worker_archtype arch, unsigned

sched_ctx_id)
• unsigned starpu_sched_ctx_worker_get_id (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_ctx_for_task (struct starpu_task ∗task)
• unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (int workerid)
• void ∗ starpu_sched_ctx_get_user_data (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_user_data (unsigned sched_ctx_id, void ∗user_data)
• void starpu_sched_ctx_set_policy_data (unsigned sched_ctx_id, void ∗policy_data)
• void ∗ starpu_sched_ctx_get_policy_data (unsigned sched_ctx_id)
• struct starpu_sched_policy ∗ starpu_sched_ctx_get_sched_policy (unsigned sched_ctx_id)
• void ∗ starpu_sched_ctx_exec_parallel_code (void ∗(∗func)(void ∗), void ∗param, unsigned sched_ctx_id)
• int starpu_sched_ctx_get_nready_tasks (unsigned sched_ctx_id)
• double starpu_sched_ctx_get_nready_flops (unsigned sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_increment (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_decrement (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_reset (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_increment_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_decrement_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_reset_all (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_ctx_set_priority (int ∗workers, int nworkers, unsigned sched_ctx_id, unsigned priority)
• unsigned starpu_sched_ctx_get_priority (int worker, unsigned sched_ctx_id)
• void starpu_sched_ctx_get_available_cpuids (unsigned sched_ctx_id, int ∗∗cpuids, int ∗ncpuids)

Generated by Doxygen

30.31 Scheduling Contexts 413

• void starpu_sched_ctx_bind_current_thread_to_cpuid (unsigned cpuid)
• int starpu_sched_ctx_book_workers_for_task (unsigned sched_ctx_id, int ∗workerids, int nworkers)
• void starpu_sched_ctx_unbook_workers_for_task (unsigned sched_ctx_id, int master)
• unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_master_get_context (int masterid)
• void starpu_sched_ctx_revert_task_counters_ctx_locked (unsigned sched_ctx_id, double flops)
• void starpu_sched_ctx_move_task_to_ctx_locked (struct starpu_task ∗task, unsigned sched_ctx, un-

signed with_repush)
• int starpu_sched_ctx_get_worker_rank (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_has_starpu_scheduler (unsigned sched_ctx_id, unsigned ∗awake_workers)
• int starpu_sched_ctx_get_stream_worker (unsigned sub_ctx)
• int starpu_sched_ctx_get_nsms (unsigned sched_ctx)
• void starpu_sched_ctx_get_sms_interval (int stream_workerid, int ∗start, int ∗end)
• #define STARPU_SCHED_CTX_POLICY_NAME
• #define STARPU_SCHED_CTX_POLICY_STRUCT
• #define STARPU_SCHED_CTX_POLICY_MIN_PRIO
• #define STARPU_SCHED_CTX_POLICY_MAX_PRIO
• #define STARPU_SCHED_CTX_HIERARCHY_LEVEL
• #define STARPU_SCHED_CTX_NESTED
• #define STARPU_SCHED_CTX_AWAKE_WORKERS
• #define STARPU_SCHED_CTX_POLICY_INIT
• #define STARPU_SCHED_CTX_USER_DATA
• #define STARPU_SCHED_CTX_CUDA_NSMS
• #define STARPU_SCHED_CTX_SUB_CTXS

Scheduling Context Priorities

• int starpu_sched_ctx_get_min_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_get_max_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_set_min_priority (unsigned sched_ctx_id, int min_prio)
• int starpu_sched_ctx_set_max_priority (unsigned sched_ctx_id, int max_prio)
• int starpu_sched_ctx_min_priority_is_set (unsigned sched_ctx_id)
• int starpu_sched_ctx_max_priority_is_set (unsigned sched_ctx_id)
• #define STARPU_MIN_PRIO
• #define STARPU_MAX_PRIO
• #define STARPU_DEFAULT_PRIO

Scheduling Context Worker Collection

• struct starpu_worker_collection ∗ starpu_sched_ctx_create_worker_collection (unsigned sched_ctx_id,
enum starpu_worker_collection_type type) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_ctx_delete_worker_collection (unsigned sched_ctx_id)
• struct starpu_worker_collection ∗ starpu_sched_ctx_get_worker_collection (unsigned sched_ctx_id)

30.31.1 Detailed Description

StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the
other hand grouping tasks in bundles that will be executed by a single specified worker. In contrast when we group
workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to
the context. Scheduling contexts can be created, deleted and modified dynamically.

30.31.2 Macro Definition Documentation

Generated by Doxygen

414 Module Documentation a.k.a StarPU’s API

30.31.2.1 STARPU_SCHED_CTX_POLICY_NAME

#define STARPU_SCHED_CTX_POLICY_NAME

Used when calling starpu_sched_ctx_create() to specify a name for a scheduling policy

30.31.2.2 STARPU_SCHED_CTX_POLICY_STRUCT

#define STARPU_SCHED_CTX_POLICY_STRUCT

Used when calling starpu_sched_ctx_create() to specify a pointer to a scheduling policy

30.31.2.3 STARPU_SCHED_CTX_POLICY_MIN_PRIO

#define STARPU_SCHED_CTX_POLICY_MIN_PRIO

Used when calling starpu_sched_ctx_create() to specify a minimum scheduler priority value.

30.31.2.4 STARPU_SCHED_CTX_POLICY_MAX_PRIO

#define STARPU_SCHED_CTX_POLICY_MAX_PRIO

Used when calling starpu_sched_ctx_create() to specify a maximum scheduler priority value.

30.31.2.5 STARPU_SCHED_CTX_AWAKE_WORKERS

#define STARPU_SCHED_CTX_AWAKE_WORKERS

Used when calling starpu_sched_ctx_create() to specify ???

30.31.2.6 STARPU_SCHED_CTX_POLICY_INIT

#define STARPU_SCHED_CTX_POLICY_INIT

Used when calling starpu_sched_ctx_create() to specify a function pointer allowing to initialize the scheduling policy.

30.31.2.7 STARPU_SCHED_CTX_USER_DATA

#define STARPU_SCHED_CTX_USER_DATA

Used when calling starpu_sched_ctx_create() to specify a pointer to some user data related to the context being
created.

30.31.2.8 STARPU_SCHED_CTX_CUDA_NSMS

#define STARPU_SCHED_CTX_CUDA_NSMS

Used when calling starpu_sched_ctx_create() in order to create a context on the NVIDIA GPU to specify the number
of SMs the context should have

30.31.2.9 STARPU_SCHED_CTX_SUB_CTXS

#define STARPU_SCHED_CTX_SUB_CTXS

Used when calling starpu_sched_ctx_create() to specify a list of sub contexts of the current context.

30.31.2.10 STARPU_MIN_PRIO

#define STARPU_MIN_PRIO

Provided for legacy reasons.

30.31.2.11 STARPU_MAX_PRIO

#define STARPU_MAX_PRIO

Provided for legacy reasons.

Generated by Doxygen

30.31 Scheduling Contexts 415

30.31.2.12 STARPU_DEFAULT_PRIO

#define STARPU_DEFAULT_PRIO

By convention, the default priority level should be 0 so that we can statically allocate tasks with a default priority.

30.31.3 Function Documentation

30.31.3.1 starpu_sched_ctx_create()

unsigned starpu_sched_ctx_create (

int ∗ workerids_ctx,

int nworkers_ctx,

const char ∗ sched_ctx_name,

...)

Create a scheduling context with the given parameters (see below) and assign the workers in workerids_ctx
to execute the tasks submitted to it. The return value represents the identifier of the context that has just been
created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at
most STARPU_NMAX_SCHED_CTXS.
The arguments following the name of the scheduling context can be of the following types:

• STARPU_SCHED_CTX_POLICY_NAME, followed by the name of a predefined scheduling policy. Use an
empty string to create the context with the default scheduling policy.

• STARPU_SCHED_CTX_POLICY_STRUCT, followed by a pointer to a custom scheduling policy (struct
starpu_sched_policy ∗)

• STARPU_SCHED_CTX_POLICY_MIN_PRIO, followed by a integer representing the minimum priority value
to be defined for the scheduling policy.

• STARPU_SCHED_CTX_POLICY_MAX_PRIO, followed by a integer representing the maximum priority value
to be defined for the scheduling policy.

• STARPU_SCHED_CTX_POLICY_INIT, followed by a function pointer (ie. void init_sched(void)) allowing to
initialize the scheduling policy.

• STARPU_SCHED_CTX_USER_DATA, followed by a pointer to a custom user data structure, to be retrieved
by starpu_sched_ctx_get_user_data().

30.31.3.2 starpu_sched_ctx_create_inside_interval()

unsigned starpu_sched_ctx_create_inside_interval (

const char ∗ policy_name,

const char ∗ sched_ctx_name,

int min_ncpus,

int max_ncpus,

int min_ngpus,

int max_ngpus,

unsigned allow_overlap)

Create a context indicating an approximate interval of resources

30.31.3.3 starpu_sched_ctx_register_close_callback()

void starpu_sched_ctx_register_close_callback (

unsigned sched_ctx_id,

void(∗)(unsigned sched_ctx_id, void ∗args) close_callback,

void ∗ args)

Execute the callback whenever the last task of the context finished executing, it is called with the parameters
sched_ctx and any other parameter needed by the application (packed in args)

Generated by Doxygen

416 Module Documentation a.k.a StarPU’s API

30.31.3.4 starpu_sched_ctx_add_workers()

void starpu_sched_ctx_add_workers (

int ∗ workerids_ctx,

unsigned nworkers_ctx,

unsigned sched_ctx_id)

Add dynamically the workers in workerids_ctx to the context sched_ctx_id. The last argument cannot be
greater than STARPU_NMAX_SCHED_CTXS.

30.31.3.5 starpu_sched_ctx_remove_workers()

void starpu_sched_ctx_remove_workers (

int ∗ workerids_ctx,

unsigned nworkers_ctx,

unsigned sched_ctx_id)

Remove the workers in workerids_ctx from the context sched_ctx_id. The last argument cannot be
greater than STARPU_NMAX_SCHED_CTXS.

30.31.3.6 starpu_sched_ctx_display_workers()

void starpu_sched_ctx_display_workers (

unsigned sched_ctx_id,

FILE ∗ f)

Print on the file f the worker names belonging to the context sched_ctx_id

30.31.3.7 starpu_sched_ctx_delete()

void starpu_sched_ctx_delete (

unsigned sched_ctx_id)

Delete scheduling context sched_ctx_id and transfer remaining workers to the inheritor scheduling context.

30.31.3.8 starpu_sched_ctx_set_inheritor()

void starpu_sched_ctx_set_inheritor (

unsigned sched_ctx_id,

unsigned inheritor)

Indicate that the context inheritor will inherit the resources of the context sched_ctx_id when sched_←↩
ctx_id will be deleted.

30.31.3.9 starpu_sched_ctx_set_context()

void starpu_sched_ctx_set_context (

unsigned ∗ sched_ctx_id)

Set the scheduling context the subsequent tasks will be submitted to

30.31.3.10 starpu_sched_ctx_get_context()

unsigned starpu_sched_ctx_get_context (

void)

Return the scheduling context the tasks are currently submitted to, or STARPU_NMAX_SCHED_CTXS if no default
context has been defined by calling the function starpu_sched_ctx_set_context().

30.31.3.11 starpu_sched_ctx_stop_task_submission()

void starpu_sched_ctx_stop_task_submission (

void)

Stop submitting tasks from the empty context list until the next time the context has time to check the empty context
list

Generated by Doxygen

30.31 Scheduling Contexts 417

30.31.3.12 starpu_sched_ctx_finished_submit()

void starpu_sched_ctx_finished_submit (

unsigned sched_ctx_id)

Indicate starpu that the application finished submitting to this context in order to move the workers to the inheritor
as soon as possible.

30.31.3.13 starpu_sched_ctx_get_workers_list()

unsigned starpu_sched_ctx_get_workers_list (

unsigned sched_ctx_id,

int ∗∗ workerids)

Return the list of workers in the array workerids, the return value is the number of workers. The user should free
the workerids table after finishing using it (it is allocated inside the function with the proper size)

30.31.3.14 starpu_sched_ctx_get_workers_list_raw()

unsigned starpu_sched_ctx_get_workers_list_raw (

unsigned sched_ctx_id,

int ∗∗ workerids)

Return the list of workers in the array workerids, the return value is the number of workers. This list is provided
in raw order, i.e. not sorted by tree or list order, and the user should not free the workerids table. This function
is thus much less costly than starpu_sched_ctx_get_workers_list().

30.31.3.15 starpu_sched_ctx_get_nworkers()

unsigned starpu_sched_ctx_get_nworkers (

unsigned sched_ctx_id)

Return the number of workers managed by the specified context (Usually needed to verify if it manages any workers
or if it should be blocked)

30.31.3.16 starpu_sched_ctx_get_nshared_workers()

unsigned starpu_sched_ctx_get_nshared_workers (

unsigned sched_ctx_id,

unsigned sched_ctx_id2)

Return the number of workers shared by two contexts.

30.31.3.17 starpu_sched_ctx_contains_worker()

unsigned starpu_sched_ctx_contains_worker (

int workerid,

unsigned sched_ctx_id)

Return 1 if the worker belongs to the context and 0 otherwise

30.31.3.18 starpu_sched_ctx_worker_get_id()

unsigned starpu_sched_ctx_worker_get_id (

unsigned sched_ctx_id)

Return the workerid if the worker belongs to the context and -1 otherwise. If the thread calling this function is not a
worker the function returns -1 as it calls the function starpu_worker_get_id().

30.31.3.19 starpu_sched_ctx_overlapping_ctxs_on_worker()

unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (

int workerid)

Check if a worker is shared between several contexts

Generated by Doxygen

418 Module Documentation a.k.a StarPU’s API

30.31.3.20 starpu_sched_ctx_get_user_data()

void∗ starpu_sched_ctx_get_user_data (

unsigned sched_ctx_id)

Return the user data pointer associated to the scheduling context.

30.31.3.21 starpu_sched_ctx_set_policy_data()

void starpu_sched_ctx_set_policy_data (

unsigned sched_ctx_id,

void ∗ policy_data)

Allocate the scheduling policy data (private information of the scheduler like queues, variables, additional condition
variables) the context

30.31.3.22 starpu_sched_ctx_get_policy_data()

void∗ starpu_sched_ctx_get_policy_data (

unsigned sched_ctx_id)

Return the scheduling policy data (private information of the scheduler) of the contexts previously assigned to.

30.31.3.23 starpu_sched_ctx_exec_parallel_code()

void∗ starpu_sched_ctx_exec_parallel_code (

void ∗(∗)(void ∗) func,

void ∗ param,

unsigned sched_ctx_id)

Execute any parallel code on the workers of the sched_ctx (workers are blocked)

30.31.3.24 starpu_sched_ctx_worker_is_master_for_child_ctx()

unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (

int workerid,

unsigned sched_ctx_id)

Return the first context (child of sched_ctx_id) where the workerid is master

30.31.3.25 starpu_sched_ctx_master_get_context()

unsigned starpu_sched_ctx_master_get_context (

int masterid)

Return the context id of masterid if it master of a context. If not, return STARPU_NMAX_SCHED_CTXS.

30.31.3.26 starpu_sched_ctx_get_min_priority()

int starpu_sched_ctx_get_min_priority (

unsigned sched_ctx_id)

Return the current minimum priority level supported by the scheduling policy of the given scheduler context.

30.31.3.27 starpu_sched_ctx_get_max_priority()

int starpu_sched_ctx_get_max_priority (

unsigned sched_ctx_id)

Return the current maximum priority level supported by the scheduling policy of the given scheduler context.

30.31.3.28 starpu_sched_ctx_set_min_priority()

int starpu_sched_ctx_set_min_priority (

unsigned sched_ctx_id,

int min_prio)

Define the minimum task priority level supported by the scheduling policy of the given scheduler context. The default
minimum priority level is the same as the default priority level which is 0 by convention. The application may access

Generated by Doxygen

30.31 Scheduling Contexts 419

that value by calling the function starpu_sched_ctx_get_min_priority(). This function should only be called from the
initialization method of the scheduling policy, and should not be used directly from the application.

30.31.3.29 starpu_sched_ctx_set_max_priority()

int starpu_sched_ctx_set_max_priority (

unsigned sched_ctx_id,

int max_prio)

Define the maximum priority level supported by the scheduling policy of the given scheduler context. The default
maximum priority level is 1. The application may access that value by calling the starpu_sched_ctx_get_max_←↩
priority() function. This function should only be called from the initialization method of the scheduling policy, and
should not be used directly from the application.

30.31.3.30 starpu_sched_ctx_create_worker_collection()

struct starpu_worker_collection∗ starpu_sched_ctx_create_worker_collection (

unsigned sched_ctx_id,

enum starpu_worker_collection_type type)

Create a worker collection of the type indicated by the last parameter for the context specified through the first
parameter.

30.31.3.31 starpu_sched_ctx_delete_worker_collection()

void starpu_sched_ctx_delete_worker_collection (

unsigned sched_ctx_id)

Delete the worker collection of the specified scheduling context

30.31.3.32 starpu_sched_ctx_get_worker_collection()

struct starpu_worker_collection∗ starpu_sched_ctx_get_worker_collection (

unsigned sched_ctx_id)

Return the worker collection managed by the indicated context

Generated by Doxygen

420 Module Documentation a.k.a StarPU’s API

30.32 Scheduling Policy

TODO. While StarPU comes with a variety of scheduling policies (see Task Scheduling Policies), it may sometimes
be desirable to implement custom policies to address specific problems. The API described below allows users to
write their own scheduling policy.

Data Structures

• struct starpu_sched_policy

Macros

• #define STARPU_NMAX_SCHED_CTXS
• #define STARPU_MAXIMPLEMENTATIONS

Typedefs

• typedef void(∗ starpu_notify_ready_soon_func) (void ∗data, struct starpu_task ∗task, double delay)

Functions

• struct starpu_sched_policy ∗∗ starpu_sched_get_predefined_policies ()
• void starpu_worker_get_sched_condition (int workerid, starpu_pthread_mutex_t ∗∗sched_mutex, starpu_←↩

pthread_cond_t ∗∗sched_cond)
• unsigned long starpu_task_get_job_id (struct starpu_task ∗task)
• int starpu_sched_get_min_priority (void)
• int starpu_sched_get_max_priority (void)
• int starpu_sched_set_min_priority (int min_prio)
• int starpu_sched_set_max_priority (int max_prio)
• int starpu_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• int starpu_worker_can_execute_task_impl (unsigned workerid, struct starpu_task ∗task, unsigned ∗impl_←↩

mask)
• int starpu_worker_can_execute_task_first_impl (unsigned workerid, struct starpu_task ∗task, unsigned
∗nimpl)

• int starpu_push_local_task (int workerid, struct starpu_task ∗task, int back)
• int starpu_push_task_end (struct starpu_task ∗task)
• int starpu_get_prefetch_flag (void)
• int starpu_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_idle_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_idle_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• int starpu_idle_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_idle_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• uint32_t starpu_task_footprint (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct starpu_←↩

perfmodel_arch ∗arch, unsigned nimpl)
• uint32_t starpu_task_data_footprint (struct starpu_task ∗task)
• double starpu_task_expected_length (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_worker_get_relative_speedup (struct starpu_perfmodel_arch ∗perf_arch)
• double starpu_task_expected_data_transfer_time (unsigned memory_node, struct starpu_task ∗task)
• double starpu_task_expected_data_transfer_time_for (struct starpu_task ∗task, unsigned worker)
• double starpu_data_expected_transfer_time (starpu_data_handle_t handle, unsigned memory_node, enum

starpu_data_access_mode mode)

Generated by Doxygen

30.32 Scheduling Policy 421

• double starpu_task_expected_energy (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-
signed nimpl)

• double starpu_task_expected_conversion_time (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• void starpu_task_notify_ready_soon_register (starpu_notify_ready_soon_func f, void ∗data)
• void starpu_sched_ctx_worker_shares_tasks_lists (int workerid, int sched_ctx_id)
• void starpu_sched_task_break (struct starpu_task ∗task)

Worker operations

• int starpu_wake_worker_relax (int workerid)
• int starpu_wake_worker_no_relax (int workerid)
• int starpu_wake_worker_locked (int workerid)
• int starpu_wake_worker_relax_light (int workerid)

30.32.1 Detailed Description

TODO. While StarPU comes with a variety of scheduling policies (see Task Scheduling Policies), it may sometimes
be desirable to implement custom policies to address specific problems. The API described below allows users to
write their own scheduling policy.

30.32.2 Data Structure Documentation

30.32.2.1 struct starpu_sched_policy

Contain all the methods that implement a scheduling policy. An application may specify which scheduling strategy
in the field starpu_conf::sched_policy passed to the function starpu_init().
For each task going through the scheduler, the following methods get called in the given order:

• starpu_sched_policy::submit_hook when the task is submitted

• starpu_sched_policy::push_task when the task becomes ready. The scheduler is here given the task

• starpu_sched_policy::pop_task when the worker is idle. The scheduler here gives back the task to the core.
It must not access this task any more

• starpu_sched_policy::pre_exec_hook right before the worker actually starts the task computation (after trans-
ferring any missing data).

• starpu_sched_policy::post_exec_hook right after the worker actually completes the task computation.

For each task not going through the scheduler (because starpu_task::execute_on_a_specific_worker was set),
these get called:

• starpu_sched_policy::submit_hook when the task is submitted

• starpu_sched_policy::push_task_notify when the task becomes ready. This is just a notification, the scheduler
does not have to do anything about the task.

• starpu_sched_policy::pre_exec_hook right before the worker actually starts the task computation (after trans-
ferring any missing data).

• starpu_sched_policy::post_exec_hook right after the worker actually completes the task computation.

Data Fields

• void(∗ init_sched)(unsigned sched_ctx_id)
• void(∗ deinit_sched)(unsigned sched_ctx_id)
• int(∗ push_task)(struct starpu_task ∗)
• double(∗ simulate_push_task)(struct starpu_task ∗)
• void(∗ push_task_notify)(struct starpu_task ∗, int workerid, int perf_workerid, unsigned sched_ctx_id)

Generated by Doxygen

422 Module Documentation a.k.a StarPU’s API

• struct starpu_task ∗(∗ pop_task)(unsigned sched_ctx_id)

• struct starpu_task ∗(∗ pop_every_task)(unsigned sched_ctx_id)

• void(∗ submit_hook)(struct starpu_task ∗task)

• void(∗ pre_exec_hook)(struct starpu_task ∗, unsigned sched_ctx_id)

• void(∗ post_exec_hook)(struct starpu_task ∗, unsigned sched_ctx_id)

• void(∗ do_schedule)(unsigned sched_ctx_id)

• void(∗ add_workers)(unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)

• void(∗ remove_workers)(unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)

• const char ∗ policy_name

• const char ∗ policy_description

• enum starpu_worker_collection_type worker_type

30.32.2.1.1 Field Documentation

30.32.2.1.1.1 init_sched

void(∗ starpu_sched_policy::init_sched) (unsigned sched_ctx_id)

Initialize the scheduling policy, called before any other method.

30.32.2.1.1.2 deinit_sched

void(∗ starpu_sched_policy::deinit_sched) (unsigned sched_ctx_id)

Cleanup the scheduling policy

30.32.2.1.1.3 push_task

int(∗ starpu_sched_policy::push_task) (struct starpu_task ∗)
Insert a task into the scheduler, called when the task becomes ready for execution. This must call starpu_push_←↩
task_end() once it has effectively pushed the task to a queue (to note the time when this was done in the task), but
before releasing mutexes (so that the task hasn't been already taken by a worker).

30.32.2.1.1.4 push_task_notify

void(∗ starpu_sched_policy::push_task_notify) (struct starpu_task ∗, int workerid, int perf_←↩

workerid, unsigned sched_ctx_id)

Notify the scheduler that a task was pushed on a given worker. This method is called when a task that was explicitly
assigned to a worker becomes ready and is about to be executed by the worker. This method therefore permits to
keep the state of the scheduler coherent even when StarPU bypasses the scheduling strategy.

30.32.2.1.1.5 pop_task

struct starpu_task∗(∗ starpu_sched_policy::pop_task) (unsigned sched_ctx_id)

Get a task from the scheduler. If this method returns NULL, the worker will start sleeping. If later on some task
are pushed for this worker, starpu_wake_worker() must be called to wake the worker so it can call the pop_task()
method again. The mutex associated to the worker is already taken when this method is called. This method
may release it (e.g. for scalability reasons when doing work stealing), but it must acquire it again before taking
the decision whether to return a task or NULL, so the atomicity of deciding to return NULL and making the worker
actually sleep is preserved. Otherwise in simgrid or blocking driver mode the worker might start sleeping while a
task has just been pushed for it. If this method is defined as NULL, the worker will only execute tasks from its local
queue. In this case, the push_task method should use the starpu_push_local_task method to assign tasks to the
different workers.

30.32.2.1.1.6 pop_every_task

struct starpu_task∗(∗ starpu_sched_policy::pop_every_task) (unsigned sched_ctx_id)

Remove all available tasks from the scheduler (tasks are chained by the means of the field starpu_task::prev and
starpu_task::next). The mutex associated to the worker is already taken when this method is called. This is currently
not used and can be discarded.

30.32.2.1.1.7 submit_hook

void(∗ starpu_sched_policy::submit_hook) (struct starpu_task ∗task)
Optional field. This method is called when a task is submitted.

Generated by Doxygen

30.32 Scheduling Policy 423

30.32.2.1.1.8 pre_exec_hook

void(∗ starpu_sched_policy::pre_exec_hook) (struct starpu_task ∗, unsigned sched_ctx_id)

Optional field. This method is called every time a task is starting.

30.32.2.1.1.9 post_exec_hook

void(∗ starpu_sched_policy::post_exec_hook) (struct starpu_task ∗, unsigned sched_ctx_id)

Optional field. This method is called every time a task has been executed.

30.32.2.1.1.10 do_schedule

void(∗ starpu_sched_policy::do_schedule) (unsigned sched_ctx_id)

Optional field. This method is called when it is a good time to start scheduling tasks. This is notably called when
the application calls starpu_task_wait_for_all() or starpu_do_schedule() explicitly.

30.32.2.1.1.11 add_workers

void(∗ starpu_sched_policy::add_workers) (unsigned sched_ctx_id, int ∗workerids, unsigned

nworkers)

Initialize scheduling structures corresponding to each worker used by the policy.

30.32.2.1.1.12 remove_workers

void(∗ starpu_sched_policy::remove_workers) (unsigned sched_ctx_id, int ∗workerids, unsigned

nworkers)

Deinitialize scheduling structures corresponding to each worker used by the policy.

30.32.2.1.1.13 policy_name

const char∗ starpu_sched_policy::policy_name

Optional field. Name of the policy.

30.32.2.1.1.14 policy_description

const char∗ starpu_sched_policy::policy_description

Optional field. Human readable description of the policy.

30.32.3 Macro Definition Documentation

30.32.3.1 STARPU_NMAX_SCHED_CTXS

#define STARPU_NMAX_SCHED_CTXS

Define the maximum number of scheduling contexts managed by StarPU. The default value can be modified at
configure by using the option --enable-max-sched-ctxs.

30.32.3.2 STARPU_MAXIMPLEMENTATIONS

#define STARPU_MAXIMPLEMENTATIONS

Define the maximum number of implementations per architecture. The default value can be modified at configure
by using the option --enable-maximplementations.

30.32.4 Function Documentation

30.32.4.1 starpu_sched_get_predefined_policies()

struct starpu_sched_policy∗∗ starpu_sched_get_predefined_policies ()

Return an NULL-terminated array of all the predefined scheduling policies.

30.32.4.2 starpu_worker_get_sched_condition()

void starpu_worker_get_sched_condition (

int workerid,

Generated by Doxygen

424 Module Documentation a.k.a StarPU’s API

starpu_pthread_mutex_t ∗∗ sched_mutex,

starpu_pthread_cond_t ∗∗ sched_cond)

When there is no available task for a worker, StarPU blocks this worker on a condition variable. This function
specifies which condition variable (and the associated mutex) should be used to block (and to wake up) a worker.
Note that multiple workers may use the same condition variable. For instance, in the case of a scheduling strategy
with a single task queue, the same condition variable would be used to block and wake up all workers.

30.32.4.3 starpu_sched_get_min_priority()

int starpu_sched_get_min_priority (

void)

TODO: check if this is correct Return the current minimum priority level supported by the scheduling policy

30.32.4.4 starpu_sched_get_max_priority()

int starpu_sched_get_max_priority (

void)

TODO: check if this is correct Return the current maximum priority level supported by the scheduling policy

30.32.4.5 starpu_sched_set_min_priority()

int starpu_sched_set_min_priority (

int min_prio)

TODO: check if this is correct Define the minimum task priority level supported by the scheduling policy. The default
minimum priority level is the same as the default priority level which is 0 by convention. The application may access
that value by calling the function starpu_sched_get_min_priority(). This function should only be called from the
initialization method of the scheduling policy, and should not be used directly from the application.

30.32.4.6 starpu_sched_set_max_priority()

int starpu_sched_set_max_priority (

int max_prio)

TODO: check if this is correct Define the maximum priority level supported by the scheduling policy. The default
maximum priority level is 1. The application may access that value by calling the function starpu_sched_get_max←↩
_priority(). This function should only be called from the initialization method of the scheduling policy, and should not
be used directly from the application.

30.32.4.7 starpu_worker_can_execute_task()

int starpu_worker_can_execute_task (

unsigned workerid,

struct starpu_task ∗ task,

unsigned nimpl)

Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a
task to a worker, otherwise the task may fail to execute.

30.32.4.8 starpu_worker_can_execute_task_impl()

int starpu_worker_can_execute_task_impl (

unsigned workerid,

struct starpu_task ∗ task,

unsigned ∗ impl_mask)

Check if the worker specified by workerid can execute the codelet and return which implementation numbers can
be used. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute. This
should be preferred rather than calling starpu_worker_can_execute_task() for each and every implementation. It
can also be used with impl_mask == NULL to check for at least one implementation without determining which.

Generated by Doxygen

30.32 Scheduling Policy 425

30.32.4.9 starpu_worker_can_execute_task_first_impl()

int starpu_worker_can_execute_task_first_impl (

unsigned workerid,

struct starpu_task ∗ task,

unsigned ∗ nimpl)

Check if the worker specified by workerid can execute the codelet and return the first implementation which can be
used. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute. This
should be preferred rather than calling starpu_worker_can_execute_task() for each and every implementation. It
can also be used with impl_mask == NULL to check for at least one implementation without determining which.

30.32.4.10 starpu_push_local_task()

int starpu_push_local_task (

int workerid,

struct starpu_task ∗ task,

int back)

The scheduling policy may put tasks directly into a worker’s local queue so that it is not always necessary to create
its own queue when the local queue is sufficient. If back is not 0, task is put at the back of the queue where the
worker will pop tasks first. Setting back to 0 therefore ensures a FIFO ordering.

30.32.4.11 starpu_push_task_end()

int starpu_push_task_end (

struct starpu_task ∗ task)

Must be called by a scheduler to notify that the given task has just been pushed.

30.32.4.12 starpu_get_prefetch_flag()

int starpu_get_prefetch_flag (

void)

Whether STARPU_PREFETCH was set

30.32.4.13 starpu_prefetch_task_input_on_node_prio()

int starpu_prefetch_task_input_on_node_prio (

struct starpu_task ∗ task,

unsigned node,

int prio)

Prefetch data for a given p task on a given p node with a given priority

30.32.4.14 starpu_prefetch_task_input_on_node()

int starpu_prefetch_task_input_on_node (

struct starpu_task ∗ task,

unsigned node)

Prefetch data for a given p task on a given p node

30.32.4.15 starpu_idle_prefetch_task_input_on_node_prio()

int starpu_idle_prefetch_task_input_on_node_prio (

struct starpu_task ∗ task,

unsigned node,

int prio)

Prefetch data for a given p task on a given p node when the bus is idle with a given priority

Generated by Doxygen

426 Module Documentation a.k.a StarPU’s API

30.32.4.16 starpu_idle_prefetch_task_input_on_node()

int starpu_idle_prefetch_task_input_on_node (

struct starpu_task ∗ task,

unsigned node)

Prefetch data for a given p task on a given p node when the bus is idle

30.32.4.17 starpu_prefetch_task_input_for_prio()

int starpu_prefetch_task_input_for_prio (

struct starpu_task ∗ task,

unsigned worker,

int prio)

Prefetch data for a given p task on a given p worker with a given priority

30.32.4.18 starpu_prefetch_task_input_for()

int starpu_prefetch_task_input_for (

struct starpu_task ∗ task,

unsigned worker)

Prefetch data for a given p task on a given p worker

30.32.4.19 starpu_idle_prefetch_task_input_for_prio()

int starpu_idle_prefetch_task_input_for_prio (

struct starpu_task ∗ task,

unsigned worker,

int prio)

Prefetch data for a given p task on a given p worker when the bus is idle with a given priority

30.32.4.20 starpu_idle_prefetch_task_input_for()

int starpu_idle_prefetch_task_input_for (

struct starpu_task ∗ task,

unsigned worker)

Prefetch data for a given p task on a given p worker when the bus is idle

30.32.4.21 starpu_task_footprint()

uint32_t starpu_task_footprint (

struct starpu_perfmodel ∗ model,

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return the footprint for a given task, taking into account user-provided perfmodel footprint or size_base functions.

30.32.4.22 starpu_task_data_footprint()

uint32_t starpu_task_data_footprint (

struct starpu_task ∗ task)

Return the raw footprint for the data of a given task (without taking into account user-provided functions).

30.32.4.23 starpu_task_expected_length()

double starpu_task_expected_length (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected task duration in micro-seconds.

Generated by Doxygen

30.32 Scheduling Policy 427

30.32.4.24 starpu_worker_get_relative_speedup()

double starpu_worker_get_relative_speedup (

struct starpu_perfmodel_arch ∗ perf_arch)

Return an estimated speedup factor relative to CPU speed

30.32.4.25 starpu_task_expected_data_transfer_time()

double starpu_task_expected_data_transfer_time (

unsigned memory_node,

struct starpu_task ∗ task)

Return expected data transfer time in micro-seconds for the given memory_node. Prefer using starpu_task_←↩
expected_data_transfer_time_for() which is more precise.

30.32.4.26 starpu_task_expected_data_transfer_time_for()

double starpu_task_expected_data_transfer_time_for (

struct starpu_task ∗ task,

unsigned worker)

Return expected data transfer time in micro-seconds for the given worker.

30.32.4.27 starpu_data_expected_transfer_time()

double starpu_data_expected_transfer_time (

starpu_data_handle_t handle,

unsigned memory_node,

enum starpu_data_access_mode mode)

Predict the transfer time (in micro-seconds) to move handle to a memory node

30.32.4.28 starpu_task_expected_energy()

double starpu_task_expected_energy (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected energy consumption in J

30.32.4.29 starpu_task_expected_conversion_time()

double starpu_task_expected_conversion_time (

struct starpu_task ∗ task,

struct starpu_perfmodel_arch ∗ arch,

unsigned nimpl)

Return expected conversion time in ms (multiformat interface only)

30.32.4.30 starpu_task_notify_ready_soon_register()

void starpu_task_notify_ready_soon_register (

starpu_notify_ready_soon_func f,

void ∗ data)

Register a callback to be called when it is determined when a task will be ready an estimated amount of time from
now, because its last dependency has just started and we know how long it will take.

30.32.4.31 starpu_sched_ctx_worker_shares_tasks_lists()

void starpu_sched_ctx_worker_shares_tasks_lists (

int workerid,

int sched_ctx_id)

The scheduling policies indicates if the worker may pop tasks from the list of other workers or if there is a central list
with task for all the workers

Generated by Doxygen

428 Module Documentation a.k.a StarPU’s API

30.32.4.32 starpu_wake_worker_relax()

int starpu_wake_worker_relax (

int workerid)

Wake up workerid while temporarily entering the current worker relax state if needed during the waiting process.
Return 1 if workerid has been woken up or its state_keep_awake flag has been set to 1, and 0 otherwise (if
workerid was not in the STATE_SLEEPING or in the STATE_SCHEDULING).

30.32.4.33 starpu_wake_worker_no_relax()

int starpu_wake_worker_no_relax (

int workerid)

Must be called to wake up a worker that is sleeping on the cond. Return 0 whenever the worker is not in a sleeping
state or has the state_keep_awake flag on.

30.32.4.34 starpu_wake_worker_locked()

int starpu_wake_worker_locked (

int workerid)

Version of starpu_wake_worker_no_relax() which assumes that the sched mutex is locked

30.32.4.35 starpu_wake_worker_relax_light()

int starpu_wake_worker_relax_light (

int workerid)

Light version of starpu_wake_worker_relax() which, when possible, speculatively set keep_awake on the target
worker without waiting for the worker to enter the relax state.

Generated by Doxygen

30.33 Tree 429

30.33 Tree

This section describes the tree facilities provided by StarPU.

Data Structures

• struct starpu_tree

Functions

• void starpu_tree_reset_visited (struct starpu_tree ∗tree, char ∗visited)
• void starpu_tree_prepare_children (unsigned arity, struct starpu_tree ∗father)
• void starpu_tree_insert (struct starpu_tree ∗tree, int id, int level, int is_pu, int arity, struct starpu_tree ∗father)
• struct starpu_tree ∗ starpu_tree_get (struct starpu_tree ∗tree, int id)
• struct starpu_tree ∗ starpu_tree_get_neighbour (struct starpu_tree ∗tree, struct starpu_tree ∗node, char
∗visited, char ∗present)

• void starpu_tree_free (struct starpu_tree ∗tree)

30.33.1 Detailed Description

This section describes the tree facilities provided by StarPU.

30.33.2 Data Structure Documentation

30.33.2.1 struct starpu_tree

Data Fields

struct starpu_tree ∗ nodes

struct starpu_tree ∗ father

int arity

int id
int level
int is_pu

Generated by Doxygen

430 Module Documentation a.k.a StarPU’s API

30.34 Scheduling Context Hypervisor - Building a new resizing policy

Data Structures

• struct sc_hypervisor_policy
• struct sc_hypervisor_resize_ack
• struct types_of_workers
• struct sc_hypervisor_policy_task_pool

Macros

• #define HYPERVISOR_REDIM_SAMPLE
• #define HYPERVISOR_START_REDIM_SAMPLE
• #define SC_NOTHING
• #define SC_IDLE
• #define SC_SPEED

Functions

• void sc_hypervisor_policy_add_task_to_pool (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t foot-
print, struct sc_hypervisor_policy_task_pool ∗∗task_pools, size_t data_size)

• void sc_hypervisor_policy_remove_task_from_pool (struct starpu_task ∗task, uint32_t footprint, struct sc_←↩
hypervisor_policy_task_pool ∗∗task_pools)

• struct sc_hypervisor_policy_task_pool ∗ sc_hypervisor_policy_clone_task_pool (struct sc_hypervisor_←↩
policy_task_pool ∗tp)

• void sc_hypervisor_get_tasks_times (int nw, int nt, double times[nw][nt], int ∗workers, unsigned size_ctxs,
struct sc_hypervisor_policy_task_pool ∗task_pools)

• unsigned sc_hypervisor_find_lowest_prio_sched_ctx (unsigned req_sched_ctx, int nworkers_to_move)
• int ∗ sc_hypervisor_get_idlest_workers (unsigned sched_ctx, int ∗nworkers, enum starpu_worker_archtype

arch)
• int ∗ sc_hypervisor_get_idlest_workers_in_list (int ∗start, int ∗workers, int nall_workers, int ∗nworkers, enum

starpu_worker_archtype arch)
• int sc_hypervisor_get_movable_nworkers (struct sc_hypervisor_policy_config ∗config, unsigned sched_ctx,

enum starpu_worker_archtype arch)
• int sc_hypervisor_compute_nworkers_to_move (unsigned req_sched_ctx)
• unsigned sc_hypervisor_policy_resize (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, unsigned

force_resize, unsigned now)
• unsigned sc_hypervisor_policy_resize_to_unknown_receiver (unsigned sender_sched_ctx, unsigned now)
• double sc_hypervisor_get_ctx_speed (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_slowest_ctx_exec_time (void)
• double sc_hypervisor_get_fastest_ctx_exec_time (void)
• double sc_hypervisor_get_speed_per_worker (struct sc_hypervisor_wrapper ∗sc_w, unsigned worker)
• double sc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_←↩

worker_archtype arch)
• double sc_hypervisor_get_ref_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum

starpu_worker_archtype arch)
• double sc_hypervisor_get_avg_speed (enum starpu_worker_archtype arch)
• void sc_hypervisor_check_if_consider_max (struct types_of_workers ∗tw)
• void sc_hypervisor_group_workers_by_type (struct types_of_workers ∗tw, int ∗total_nw)
• enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (unsigned w, struct types_of_workers ∗tw)
• unsigned sc_hypervisor_get_index_for_arch (enum starpu_worker_archtype arch, struct types_of_workers
∗tw)

• unsigned sc_hypervisor_criteria_fulfilled (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_idle (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,

int nworkers)

Generated by Doxygen

30.34 Scheduling Context Hypervisor - Building a new resizing policy 431

• unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (int level, int ∗workers_in, int nworkers_in,
unsigned father_sched_ctx_id, unsigned ∗∗sched_ctxs, int ∗nsched_ctxs)

• unsigned sc_hypervisor_get_resize_criteria ()
• struct types_of_workers ∗ sc_hypervisor_get_types_of_workers (int ∗workers, unsigned nworkers)

• void sc_hypervisor_set_config (unsigned sched_ctx, void ∗config)
• struct sc_hypervisor_policy_config ∗ sc_hypervisor_get_config (unsigned sched_ctx)
• void sc_hypervisor_ctl (unsigned sched_ctx,...)
• #define SC_HYPERVISOR_MAX_IDLE
• #define SC_HYPERVISOR_MIN_WORKING
• #define SC_HYPERVISOR_PRIORITY
• #define SC_HYPERVISOR_MIN_WORKERS
• #define SC_HYPERVISOR_MAX_WORKERS
• #define SC_HYPERVISOR_GRANULARITY
• #define SC_HYPERVISOR_FIXED_WORKERS
• #define SC_HYPERVISOR_MIN_TASKS
• #define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE
• #define SC_HYPERVISOR_TIME_TO_APPLY
• #define SC_HYPERVISOR_NULL
• #define SC_HYPERVISOR_ISPEED_W_SAMPLE
• #define SC_HYPERVISOR_ISPEED_CTX_SAMPLE
• #define SC_HYPERVISOR_TIME_SAMPLE
• #define MAX_IDLE_TIME
• #define MIN_WORKING_TIME

• struct sc_hypervisor_wrapper ∗ sc_hypervisor_get_wrapper (unsigned sched_ctx)
• unsigned ∗ sc_hypervisor_get_sched_ctxs ()
• int sc_hypervisor_get_nsched_ctxs ()
• double sc_hypervisor_get_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• int sc_hypervisor_get_nworkers_ctx (unsigned sched_ctx, enum starpu_worker_archtype arch)
• double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w,

enum starpu_worker_archtype arch)
• double sc_hypervisor_get_speed (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype arch)

30.34.1 Detailed Description

30.34.2 Data Structure Documentation

30.34.2.1 struct sc_hypervisor_policy

Methods to implement a hypervisor resizing policy.

Data Fields

• const char ∗ name
• unsigned custom
• void(∗ size_ctxs)(unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void(∗ resize_ctxs)(unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void(∗ handle_idle_cycle)(unsigned sched_ctx, int worker)
• void(∗ handle_pushed_task)(unsigned sched_ctx, int worker)
• void(∗ handle_poped_task)(unsigned sched_ctx, int worker, struct starpu_task ∗task, uint32_t footprint)
• void(∗ handle_idle_end)(unsigned sched_ctx, int worker)
• void(∗ handle_post_exec_hook)(unsigned sched_ctx, int task_tag)
• void(∗ handle_submitted_job)(struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint, size_t data←↩

_size)
• void(∗ end_ctx)(unsigned sched_ctx)
• void(∗ start_ctx)(unsigned sched_ctx)
• void(∗ init_worker)(int workerid, unsigned sched_ctx)

Generated by Doxygen

432 Module Documentation a.k.a StarPU’s API

30.34.2.1.1 Field Documentation

30.34.2.1.1.1 name

const char∗ sc_hypervisor_policy::name

Indicate the name of the policy, if there is not a custom policy, the policy corresponding to this name will be used by
the hypervisor

30.34.2.1.1.2 custom

unsigned sc_hypervisor_policy::custom

Indicate whether the policy is custom or not

30.34.2.1.1.3 size_ctxs

void(∗ sc_hypervisor_policy::size_ctxs) (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,
int nworkers)

Distribute workers to contexts even at the begining of the program

30.34.2.1.1.4 resize_ctxs

void(∗ sc_hypervisor_policy::resize_ctxs) (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,
int nworkers)

Require explicit resizing

30.34.2.1.1.5 handle_idle_cycle

void(∗ sc_hypervisor_policy::handle_idle_cycle) (unsigned sched_ctx, int worker)

Called whenever the indicated worker executes another idle cycle in sched_ctx

30.34.2.1.1.6 handle_pushed_task

void(∗ sc_hypervisor_policy::handle_pushed_task) (unsigned sched_ctx, int worker)

Called whenever a task is pushed on the worker’s queue corresponding to the context sched_ctx

30.34.2.1.1.7 handle_poped_task

void(∗ sc_hypervisor_policy::handle_poped_task) (unsigned sched_ctx, int worker, struct starpu←↩

_task ∗task, uint32_t footprint)

Called whenever a task is poped from the worker’s queue corresponding to the context sched_ctx

30.34.2.1.1.8 handle_idle_end

void(∗ sc_hypervisor_policy::handle_idle_end) (unsigned sched_ctx, int worker)

Called whenever a task is executed on the indicated worker and context after a long period of idle time

30.34.2.1.1.9 handle_post_exec_hook

void(∗ sc_hypervisor_policy::handle_post_exec_hook) (unsigned sched_ctx, int task_tag)

Called whenever a tag task has just been executed. The table of resize requests is provided as well as the tag

30.34.2.1.1.10 handle_submitted_job

void(∗ sc_hypervisor_policy::handle_submitted_job) (struct starpu_codelet ∗cl, unsigned sched←↩

_ctx, uint32_t footprint, size_t data_size)

the hypervisor takes a decision when a job was submitted in this ctx

30.34.2.1.1.11 end_ctx

void(∗ sc_hypervisor_policy::end_ctx) (unsigned sched_ctx)

the hypervisor takes a decision when a certain ctx was deleted

30.34.2.1.1.12 start_ctx

void(∗ sc_hypervisor_policy::start_ctx) (unsigned sched_ctx)

the hypervisor takes a decision when a certain ctx was registerd

30.34.2.1.1.13 init_worker

void(∗ sc_hypervisor_policy::init_worker) (int workerid, unsigned sched_ctx)

the hypervisor initializes values for the workers

Generated by Doxygen

30.34 Scheduling Context Hypervisor - Building a new resizing policy 433

30.34.2.2 struct sc_hypervisor_resize_ack

Structure to check if the workers moved to another context are actually taken into account in that context.

Data Fields

int receiver_sched_ctx The context receiving the new workers

int ∗ moved_workers List of workers required to be moved

int nmoved_workers Number of workers required to be moved

int ∗ acked_workers List of workers that actually got in the receiver ctx. If the value corresponding to
a worker is 1, this worker got moved in the new context.

30.34.2.3 struct types_of_workers

Data Fields

unsigned ncpus

unsigned ncuda

unsigned nw

30.34.2.4 struct sc_hypervisor_policy_task_pool

Task wrapper linked list

Data Fields

struct starpu_codelet ∗ cl Which codelet has been executed

uint32_t footprint Task footprint key

unsigned sched_ctx_id Context the task belongs to

unsigned long n Number of tasks of this kind

size_t data_size The quantity of data(in bytes) needed by the task to execute

struct
sc_hypervisor_policy_task_pool ∗ next Other task kinds

30.34.3 Macro Definition Documentation

30.34.3.1 SC_HYPERVISOR_MAX_IDLE

#define SC_HYPERVISOR_MAX_IDLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 3 arguments: an array of int for the
workerids to apply the condition, an int to indicate the size of the array, and a double value indicating the maximum
idle time allowed for a worker before the resizing process should be triggered

30.34.3.2 SC_HYPERVISOR_PRIORITY

#define SC_HYPERVISOR_PRIORITY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 3 arguments: an array of int for the
workerids to apply the condition, an int to indicate the size of the array, and an int value indicating the priority of the
workers previously mentioned. The workers with the smallest priority are moved the first.

Generated by Doxygen

434 Module Documentation a.k.a StarPU’s API

30.34.3.3 SC_HYPERVISOR_MIN_WORKERS

#define SC_HYPERVISOR_MIN_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the minimum
number of workers a context should have, underneath this limit the context cannot execute.

30.34.3.4 SC_HYPERVISOR_MAX_WORKERS

#define SC_HYPERVISOR_MAX_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the maxi-
mum number of workers a context should have, above this limit the context would not be able to scale

30.34.3.5 SC_HYPERVISOR_GRANULARITY

#define SC_HYPERVISOR_GRANULARITY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument(int) indicating the gran-
ularity of the resizing process (the number of workers should be moved from the context once it is resized) This
parameter is ignore for the Gflops rate based strategy (see Resizing Strategies), the number of workers that have
to be moved is calculated by the strategy.

30.34.3.6 SC_HYPERVISOR_FIXED_WORKERS

#define SC_HYPERVISOR_FIXED_WORKERS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 2 arguments: an array of int for the
workerids to apply the condition and an int to indicate the size of the array. These workers are not allowed to be
moved from the context.

30.34.3.7 SC_HYPERVISOR_MIN_TASKS

#define SC_HYPERVISOR_MIN_TASKS

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument (int) that indicated the
minimum number of tasks that have to be executed before the context could be resized. This parameter is ignored
for the Application Driven strategy (see Resizing Strategies) where the user indicates exactly when the resize should
be done.

30.34.3.8 SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE

#define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double value indicating
the maximum idle time allowed for workers that have just been moved from other contexts in the current context.

30.34.3.9 SC_HYPERVISOR_TIME_TO_APPLY

#define SC_HYPERVISOR_TIME_TO_APPLY

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument (int) indicating the tag an
executed task should have such that this configuration should be taken into account.

30.34.3.10 SC_HYPERVISOR_NULL

#define SC_HYPERVISOR_NULL

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument

30.34.3.11 SC_HYPERVISOR_ISPEED_W_SAMPLE

#define SC_HYPERVISOR_ISPEED_W_SAMPLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double, that indicates
the number of flops needed to be executed before computing the speed of a worker

Generated by Doxygen

30.34 Scheduling Context Hypervisor - Building a new resizing policy 435

30.34.3.12 SC_HYPERVISOR_ISPEED_CTX_SAMPLE

#define SC_HYPERVISOR_ISPEED_CTX_SAMPLE

This macro is used when calling sc_hypervisor_ctl() and must be followed by 1 argument, a double, that indicates
the number of flops needed to be executed before computing the speed of a context

30.34.4 Function Documentation

30.34.4.1 sc_hypervisor_get_wrapper()

struct sc_hypervisor_wrapper∗ sc_hypervisor_get_wrapper (

unsigned sched_ctx)

Return the wrapper of the given context

30.34.4.2 sc_hypervisor_get_sched_ctxs()

unsigned∗ sc_hypervisor_get_sched_ctxs ()

Get the list of registered contexts

30.34.4.3 sc_hypervisor_get_nsched_ctxs()

int sc_hypervisor_get_nsched_ctxs ()

Get the number of registered contexts

30.34.4.4 sc_hypervisor_get_elapsed_flops_per_sched_ctx()

double sc_hypervisor_get_elapsed_flops_per_sched_ctx (

struct sc_hypervisor_wrapper ∗ sc_w)

Get the number of flops executed by a context since last resizing (reset to 0 when a resizing is done)

30.34.4.5 sc_hypervisor_policy_add_task_to_pool()

void sc_hypervisor_policy_add_task_to_pool (

struct starpu_codelet ∗ cl,

unsigned sched_ctx,

uint32_t footprint,

struct sc_hypervisor_policy_task_pool ∗∗ task_pools,

size_t data_size)

add task information to a task wrapper linked list

30.34.4.6 sc_hypervisor_policy_remove_task_from_pool()

void sc_hypervisor_policy_remove_task_from_pool (

struct starpu_task ∗ task,

uint32_t footprint,

struct sc_hypervisor_policy_task_pool ∗∗ task_pools)

remove task information from a task wrapper linked list

30.34.4.7 sc_hypervisor_policy_clone_task_pool()

struct sc_hypervisor_policy_task_pool∗ sc_hypervisor_policy_clone_task_pool (

struct sc_hypervisor_policy_task_pool ∗ tp)

clone a task wrapper linked list

Generated by Doxygen

436 Module Documentation a.k.a StarPU’s API

30.34.4.8 sc_hypervisor_get_tasks_times()

void sc_hypervisor_get_tasks_times (

int nw,

int nt,

double times[nw][nt],

int ∗ workers,

unsigned size_ctxs,

struct sc_hypervisor_policy_task_pool ∗ task_pools)

get the execution time of the submitted tasks out of starpu's calibration files

30.34.4.9 sc_hypervisor_find_lowest_prio_sched_ctx()

unsigned sc_hypervisor_find_lowest_prio_sched_ctx (

unsigned req_sched_ctx,

int nworkers_to_move)

find the context with the lowest priority in order to move some workers

30.34.4.10 sc_hypervisor_get_idlest_workers()

int∗ sc_hypervisor_get_idlest_workers (

unsigned sched_ctx,

int ∗ nworkers,

enum starpu_worker_archtype arch)

find the first most idle workers of a contex

30.34.4.11 sc_hypervisor_get_idlest_workers_in_list()

int∗ sc_hypervisor_get_idlest_workers_in_list (

int ∗ start,

int ∗ workers,

int nall_workers,

int ∗ nworkers,

enum starpu_worker_archtype arch)

find the first most idle workers in a list

30.34.4.12 sc_hypervisor_get_movable_nworkers()

int sc_hypervisor_get_movable_nworkers (

struct sc_hypervisor_policy_config ∗ config,

unsigned sched_ctx,

enum starpu_worker_archtype arch)

find workers that can be moved from a context (if the constraints of min, max, etc allow this)

30.34.4.13 sc_hypervisor_compute_nworkers_to_move()

int sc_hypervisor_compute_nworkers_to_move (

unsigned req_sched_ctx)

compute how many workers should be moved from this context

30.34.4.14 sc_hypervisor_policy_resize()

unsigned sc_hypervisor_policy_resize (

unsigned sender_sched_ctx,

unsigned receiver_sched_ctx,

unsigned force_resize,

unsigned now)

check the policy's constraints in order to resize

Generated by Doxygen

30.34 Scheduling Context Hypervisor - Building a new resizing policy 437

30.34.4.15 sc_hypervisor_policy_resize_to_unknown_receiver()

unsigned sc_hypervisor_policy_resize_to_unknown_receiver (

unsigned sender_sched_ctx,

unsigned now)

check the policy's constraints in order to resize and find a context willing the resources

30.34.4.16 sc_hypervisor_get_ctx_speed()

double sc_hypervisor_get_ctx_speed (

struct sc_hypervisor_wrapper ∗ sc_w)

compute the speed of a context

30.34.4.17 sc_hypervisor_get_slowest_ctx_exec_time()

double sc_hypervisor_get_slowest_ctx_exec_time (

void)

get the time of execution of the slowest context

30.34.4.18 sc_hypervisor_get_fastest_ctx_exec_time()

double sc_hypervisor_get_fastest_ctx_exec_time (

void)

get the time of execution of the fastest context

30.34.4.19 sc_hypervisor_get_speed_per_worker()

double sc_hypervisor_get_speed_per_worker (

struct sc_hypervisor_wrapper ∗ sc_w,

unsigned worker)

compute the speed of a workers in a context

30.34.4.20 sc_hypervisor_get_speed_per_worker_type()

double sc_hypervisor_get_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

compute the speed of a type of worker in a context

30.34.4.21 sc_hypervisor_get_ref_speed_per_worker_type()

double sc_hypervisor_get_ref_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

compute the speed of a type of worker in a context depending on its history

30.34.4.22 sc_hypervisor_get_avg_speed()

double sc_hypervisor_get_avg_speed (

enum starpu_worker_archtype arch)

compute the average speed of a type of worker in all ctxs from the begining of appl

30.34.4.23 sc_hypervisor_check_if_consider_max()

void sc_hypervisor_check_if_consider_max (

struct types_of_workers ∗ tw)

verify if we need to consider the max in the lp

Generated by Doxygen

438 Module Documentation a.k.a StarPU’s API

30.34.4.24 sc_hypervisor_group_workers_by_type()

void sc_hypervisor_group_workers_by_type (

struct types_of_workers ∗ tw,

int ∗ total_nw)

get the list of workers grouped by type

30.34.4.25 sc_hypervisor_get_arch_for_index()

enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (

unsigned w,

struct types_of_workers ∗ tw)

get what type of worker corresponds to a certain index of types of workers

30.34.4.26 sc_hypervisor_get_index_for_arch()

unsigned sc_hypervisor_get_index_for_arch (

enum starpu_worker_archtype arch,

struct types_of_workers ∗ tw)

get the index of types of workers corresponding to the type of workers indicated

30.34.4.27 sc_hypervisor_criteria_fulfilled()

unsigned sc_hypervisor_criteria_fulfilled (

unsigned sched_ctx,

int worker)

check if we trigger resizing or not

30.34.4.28 sc_hypervisor_check_idle()

unsigned sc_hypervisor_check_idle (

unsigned sched_ctx,

int worker)

check if worker was idle long enough

30.34.4.29 sc_hypervisor_check_speed_gap_btw_ctxs()

unsigned sc_hypervisor_check_speed_gap_btw_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

check if there is a speed gap btw ctxs

30.34.4.30 sc_hypervisor_check_speed_gap_btw_ctxs_on_level()

unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (

int level,

int ∗ workers_in,

int nworkers_in,

unsigned father_sched_ctx_id,

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs)

check if there is a speed gap btw ctxs on one level

30.34.4.31 sc_hypervisor_get_resize_criteria()

unsigned sc_hypervisor_get_resize_criteria ()

check what triggers resizing (idle, speed, etc.

Generated by Doxygen

30.34 Scheduling Context Hypervisor - Building a new resizing policy 439

30.34.4.32 sc_hypervisor_get_types_of_workers()

struct types_of_workers∗ sc_hypervisor_get_types_of_workers (

int ∗ workers,

unsigned nworkers)

load information concerning the type of workers into a types_of_workers struct

30.34.4.33 sc_hypervisor_set_config()

void sc_hypervisor_set_config (

unsigned sched_ctx,

void ∗ config)

Specify the configuration for a context

30.34.4.34 sc_hypervisor_get_config()

struct sc_hypervisor_policy_config∗ sc_hypervisor_get_config (

unsigned sched_ctx)

Return the configuration of a context

30.34.4.35 sc_hypervisor_ctl()

void sc_hypervisor_ctl (

unsigned sched_ctx,

...)

Specify different parameters for the configuration of a context. The list must be zero-terminated

30.34.4.36 sc_hypervisor_get_nworkers_ctx()

int sc_hypervisor_get_nworkers_ctx (

unsigned sched_ctx,

enum starpu_worker_archtype arch)

Get the number of workers of a certain architecture in a context

30.34.4.37 sc_hypervisor_get_total_elapsed_flops_per_sched_ctx()

double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (

struct sc_hypervisor_wrapper ∗ sc_w)

Get the number of flops executed by a context since the begining

30.34.4.38 sc_hypervisorsc_hypervisor_get_speed_per_worker_type()

double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

Compute an average value of the cpu/cuda speed

30.34.4.39 sc_hypervisor_get_speed()

double sc_hypervisor_get_speed (

struct sc_hypervisor_wrapper ∗ sc_w,

enum starpu_worker_archtype arch)

Compte the actual speed of all workers of a specific type of worker

Generated by Doxygen

440 Module Documentation a.k.a StarPU’s API

30.35 Scheduling Context Hypervisor - Regular usage

Functions

• void ∗ sc_hypervisor_init (struct sc_hypervisor_policy ∗policy)
• void sc_hypervisor_shutdown (void)
• void sc_hypervisor_register_ctx (unsigned sched_ctx, double total_flops)
• void sc_hypervisor_unregister_ctx (unsigned sched_ctx)
• void sc_hypervisor_post_resize_request (unsigned sched_ctx, int task_tag)
• void sc_hypervisor_resize_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_stop_resize (unsigned sched_ctx)
• void sc_hypervisor_start_resize (unsigned sched_ctx)
• const char ∗ sc_hypervisor_get_policy ()
• void sc_hypervisor_add_workers_to_sched_ctx (int ∗workers_to_add, unsigned nworkers_to_add, unsigned

sched_ctx)
• void sc_hypervisor_remove_workers_from_sched_ctx (int ∗workers_to_remove, unsigned nworkers_to_←↩

remove, unsigned sched_ctx, unsigned now)
• void sc_hypervisor_move_workers (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, int
∗workers_to_move, unsigned nworkers_to_move, unsigned now)

• void sc_hypervisor_size_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• unsigned sc_hypervisor_get_size_req (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, int ∗∗workers, int
∗nworkers)

• void sc_hypervisor_save_size_req (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_free_size_req (void)
• unsigned sc_hypervisor_can_resize (unsigned sched_ctx)
• void sc_hypervisor_set_type_of_task (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint,

size_t data_size)
• void sc_hypervisor_update_diff_total_flops (unsigned sched_ctx, double diff_total_flops)
• void sc_hypervisor_update_diff_elapsed_flops (unsigned sched_ctx, double diff_task_flops)
• void sc_hypervisor_update_resize_interval (unsigned ∗sched_ctxs, int nsched_ctxs, int max_nworkers)
• void sc_hypervisor_get_ctxs_on_level (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, unsigned hierarchy_level,

unsigned father_sched_ctx_id)
• unsigned sc_hypervisor_get_nhierarchy_levels (void)
• void sc_hypervisor_get_leaves (unsigned ∗sched_ctxs, int nsched_ctxs, unsigned ∗leaves, int ∗nleaves)
• double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (unsigned sched_ctx)
• void sc_hypervisor_print_overhead ()
• void sc_hypervisor_init_worker (int workerid, unsigned sched_ctx)

Variables

• starpu_pthread_mutex_t act_hypervisor_mutex

30.35.1 Detailed Description

There is a single hypervisor that is in charge of resizing contexts and the resizing strategy is chosen at the initial-
ization of the hypervisor. A single resize can be done at a time.
The Scheduling Context Hypervisor Plugin provides a series of performance counters to StarPU. By incrementing
them, StarPU can help the hypervisor in the resizing decision making process.
The function sc_hypervisor_init() initializes the hypervisor to use the strategy provided as parameter and creates
the performance counters (see starpu_sched_ctx_performance_counters). These performance counters represent
actually some callbacks that will be used by the contexts to notify the information needed by the hypervisor.
Scheduling Contexts that have to be resized by the hypervisor must be first registered to the hypervisor using the
function sc_hypervisor_register_ctx()
Note: The Hypervisor is actually a worker that takes this role once certain conditions trigger the resizing process
(there is no additional thread assigned to the hypervisor).

Generated by Doxygen

30.35 Scheduling Context Hypervisor - Regular usage 441

30.35.2 Function Documentation

30.35.2.1 sc_hypervisor_init()

void∗ sc_hypervisor_init (

struct sc_hypervisor_policy ∗ policy)

Start the hypervisor with the given policy

30.35.2.2 sc_hypervisor_shutdown()

void sc_hypervisor_shutdown (

void)

Shutdown the hypervisor. The hypervisor and all information concerning it is cleaned. There is no synchronization
between this function and starpu_shutdown(). Thus, this should be called after starpu_shutdown(), because the
performance counters will still need allocated callback functions.

30.35.2.3 sc_hypervisor_register_ctx()

void sc_hypervisor_register_ctx (

unsigned sched_ctx,

double total_flops)

Register the context to the hypervisor, and indicate the number of flops the context will execute (used for Gflops rate
based strategy)

30.35.2.4 sc_hypervisor_unregister_ctx()

void sc_hypervisor_unregister_ctx (

unsigned sched_ctx)

Unregister a context from the hypervisor, and so exclude the context from the resizing process

30.35.2.5 sc_hypervisor_post_resize_request()

void sc_hypervisor_post_resize_request (

unsigned sched_ctx,

int task_tag)

Require resizing the context sched_ctx whenever a task tagged with the id task_tag finished executing

30.35.2.6 sc_hypervisor_resize_ctxs()

void sc_hypervisor_resize_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Require reconsidering the distribution of ressources over the indicated scheduling contexts, i.e reevaluate the dis-
tribution of the resources and eventually resize if needed

30.35.2.7 sc_hypervisor_stop_resize()

void sc_hypervisor_stop_resize (

unsigned sched_ctx)

Do not allow the hypervisor to resize a context.

30.35.2.8 sc_hypervisor_start_resize()

void sc_hypervisor_start_resize (

unsigned sched_ctx)

Allow the hypervisor to resize a context if necessary.

Generated by Doxygen

442 Module Documentation a.k.a StarPU’s API

30.35.2.9 sc_hypervisor_get_policy()

const char∗ sc_hypervisor_get_policy ()

Return the name of the resizing policy used by the hypervisor

30.35.2.10 sc_hypervisor_add_workers_to_sched_ctx()

void sc_hypervisor_add_workers_to_sched_ctx (

int ∗ workers_to_add,

unsigned nworkers_to_add,

unsigned sched_ctx)

Ask the hypervisor to add workers to a sched_ctx

30.35.2.11 sc_hypervisor_remove_workers_from_sched_ctx()

void sc_hypervisor_remove_workers_from_sched_ctx (

int ∗ workers_to_remove,

unsigned nworkers_to_remove,

unsigned sched_ctx,

unsigned now)

Ask the hypervisor to remove workers from a sched_ctx

30.35.2.12 sc_hypervisor_move_workers()

void sc_hypervisor_move_workers (

unsigned sender_sched_ctx,

unsigned receiver_sched_ctx,

int ∗ workers_to_move,

unsigned nworkers_to_move,

unsigned now)

Ask the hypervisor to move workers from one context to another

30.35.2.13 sc_hypervisor_size_ctxs()

void sc_hypervisor_size_ctxs (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Ask the hypervisor to choose a distribution of workers in the required contexts

30.35.2.14 sc_hypervisor_get_size_req()

unsigned sc_hypervisor_get_size_req (

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs,

int ∗∗ workers,

int ∗ nworkers)

Check if there are pending demands of resizing

30.35.2.15 sc_hypervisor_save_size_req()

void sc_hypervisor_save_size_req (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int ∗ workers,

int nworkers)

Save a demand of resizing

Generated by Doxygen

30.35 Scheduling Context Hypervisor - Regular usage 443

30.35.2.16 sc_hypervisor_free_size_req()

void sc_hypervisor_free_size_req (

void)

Clear the list of pending demands of resizing

30.35.2.17 sc_hypervisor_can_resize()

unsigned sc_hypervisor_can_resize (

unsigned sched_ctx)

Check out if a context can be resized

30.35.2.18 sc_hypervisor_set_type_of_task()

void sc_hypervisor_set_type_of_task (

struct starpu_codelet ∗ cl,

unsigned sched_ctx,

uint32_t footprint,

size_t data_size)

Indicate the types of tasks a context will execute in order to better decide the sizing of ctxs

30.35.2.19 sc_hypervisor_update_diff_total_flops()

void sc_hypervisor_update_diff_total_flops (

unsigned sched_ctx,

double diff_total_flops)

Change dynamically the total number of flops of a context, move the deadline of the finishing time of the context

30.35.2.20 sc_hypervisor_update_diff_elapsed_flops()

void sc_hypervisor_update_diff_elapsed_flops (

unsigned sched_ctx,

double diff_task_flops)

Change dynamically the number of the elapsed flops in a context, modify the past in order to better compute the
speed

30.35.2.21 sc_hypervisor_update_resize_interval()

void sc_hypervisor_update_resize_interval (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

int max_nworkers)

Update the min and max workers needed by each context

30.35.2.22 sc_hypervisor_get_ctxs_on_level()

void sc_hypervisor_get_ctxs_on_level (

unsigned ∗∗ sched_ctxs,

int ∗ nsched_ctxs,

unsigned hierarchy_level,

unsigned father_sched_ctx_id)

Return a list of contexts that are on the same level in the hierarchy of contexts

30.35.2.23 sc_hypervisor_get_nhierarchy_levels()

unsigned sc_hypervisor_get_nhierarchy_levels (

void)

Returns the number of levels of ctxs registered to the hyp

Generated by Doxygen

444 Module Documentation a.k.a StarPU’s API

30.35.2.24 sc_hypervisor_get_leaves()

void sc_hypervisor_get_leaves (

unsigned ∗ sched_ctxs,

int nsched_ctxs,

unsigned ∗ leaves,

int ∗ nleaves)

Return the leaves ctxs from the list of ctxs

30.35.2.25 sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx()

double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (

unsigned sched_ctx)

Return the nready flops of all ctxs below in hierachy of sched_ctx

30.35.3 Variable Documentation

30.35.3.1 act_hypervisor_mutex

starpu_pthread_mutex_t act_hypervisor_mutex

synchronise the hypervisor when several workers try to update its information

Generated by Doxygen

30.36 Scheduling Context Hypervisor - Linear Programming 445

30.36 Scheduling Context Hypervisor - Linear Programming

Functions

• double sc_hypervisor_lp_get_nworkers_per_ctx (int nsched_ctxs, int ntypes_of_workers, double res[nsched←↩
_ctxs][ntypes_of_workers], int total_nw[ntypes_of_workers], struct types_of_workers ∗tw, unsigned ∗in_←↩
sched_ctxs)

• double sc_hypervisor_lp_get_tmax (int nw, int ∗workers)

• void sc_hypervisor_lp_round_double_to_int (int ns, int nw, double res[ns][nw], int res_rounded[ns][nw])

• void sc_hypervisor_lp_redistribute_resources_in_ctxs (int ns, int nw, int res_rounded[ns][nw], double
res[ns][nw], unsigned ∗sched_ctxs, struct types_of_workers ∗tw)

• void sc_hypervisor_lp_distribute_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, int res_←↩
rounded[ns][nw], double res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)

• void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, dou-
ble res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)

• void sc_hypervisor_lp_place_resources_in_ctx (int ns, int nw, double w_in_s[ns][nw], unsigned ∗sched_ctxs,
int ∗workers, unsigned do_size, struct types_of_workers ∗tw)

• void sc_hypervisor_lp_share_remaining_resources (int ns, unsigned ∗sched_ctxs, int nworkers, int ∗workers)

• double sc_hypervisor_lp_find_tmax (double t1, double t2)

• unsigned sc_hypervisor_lp_execute_dichotomy (int ns, int nw, double w_in_s[ns][nw], unsigned solve_lp_←↩
integer, void ∗specific_data, double tmin, double tmax, double smallest_tmax, double(∗lp_estimated_distrib←↩
_func)(int ns, int nw, double draft_w_in_s[ns][nw], unsigned is_integer, double tmax, void ∗specifc_data))

• double sc_hypervisor_lp_simulate_distrib_flops (int nsched_ctxs, int ntypes_of_workers, double speed[nsched←↩
_ctxs][ntypes_of_workers], double flops[nsched_ctxs], double res[nsched_ctxs][ntypes_of_workers], int
total_nw[ntypes_of_workers], unsigned sched_ctxs[nsched_ctxs], double vmax)

• double sc_hypervisor_lp_simulate_distrib_tasks (int ns, int nw, int nt, double w_in_s[ns][nw], double
tasks[nw][nt], double times[nw][nt], unsigned is_integer, double tmax, unsigned ∗in_sched_ctxs, struct
sc_hypervisor_policy_task_pool ∗tmp_task_pools)

• double sc_hypervisor_lp_simulate_distrib_flops_on_sample (int ns, int nw, double final_w_in_s[ns][nw], un-
signed is_integer, double tmax, double ∗∗speed, double flops[ns], double ∗∗final_flops_on_w)

30.36.1 Detailed Description

30.36.2 Function Documentation

30.36.2.1 sc_hypervisor_lp_get_nworkers_per_ctx()

double sc_hypervisor_lp_get_nworkers_per_ctx (

int nsched_ctxs,

int ntypes_of_workers,

double res[nsched_ctxs][ntypes_of_workers],

int total_nw[ntypes_of_workers],

struct types_of_workers ∗ tw,

unsigned ∗ in_sched_ctxs)

return tmax, and compute in table res the nr of workers needed by each context st the system ends up in the
smallest tma

30.36.2.2 sc_hypervisor_lp_get_tmax()

double sc_hypervisor_lp_get_tmax (

int nw,

int ∗ workers)

return tmax of the system

Generated by Doxygen

446 Module Documentation a.k.a StarPU’s API

30.36.2.3 sc_hypervisor_lp_round_double_to_int()

void sc_hypervisor_lp_round_double_to_int (

int ns,

int nw,

double res[ns][nw],

int res_rounded[ns][nw])

the linear programme determins a rational number of ressources for each ctx, we round them depending on the
type of ressource

30.36.2.4 sc_hypervisor_lp_redistribute_resources_in_ctxs()

void sc_hypervisor_lp_redistribute_resources_in_ctxs (

int ns,

int nw,

int res_rounded[ns][nw],

double res[ns][nw],

unsigned ∗ sched_ctxs,

struct types_of_workers ∗ tw)

redistribute the ressource in contexts by assigning the first x available ressources to each one

30.36.2.5 sc_hypervisor_lp_distribute_resources_in_ctxs()

void sc_hypervisor_lp_distribute_resources_in_ctxs (

unsigned ∗ sched_ctxs,

int ns,

int nw,

int res_rounded[ns][nw],

double res[ns][nw],

int ∗ workers,

int nworkers,

struct types_of_workers ∗ tw)

make the first distribution of ressource in contexts by assigning the first x available ressources to each one

30.36.2.6 sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs()

void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (

unsigned ∗ sched_ctxs,

int ns,

int nw,

double res[ns][nw],

int ∗ workers,

int nworkers,

struct types_of_workers ∗ tw)

make the first distribution of ressource in contexts by assigning the first x available ressources to each one, share
not integer no of workers

30.36.2.7 sc_hypervisor_lp_place_resources_in_ctx()

void sc_hypervisor_lp_place_resources_in_ctx (

int ns,

int nw,

double w_in_s[ns][nw],

unsigned ∗ sched_ctxs,

int ∗ workers,

unsigned do_size,

struct types_of_workers ∗ tw)

place resources in contexts dependig on whether they already have workers or not

Generated by Doxygen

30.36 Scheduling Context Hypervisor - Linear Programming 447

30.36.2.8 sc_hypervisor_lp_share_remaining_resources()

void sc_hypervisor_lp_share_remaining_resources (

int ns,

unsigned ∗ sched_ctxs,

int nworkers,

int ∗ workers)

not used resources are shared between all contexts

30.36.2.9 sc_hypervisor_lp_find_tmax()

double sc_hypervisor_lp_find_tmax (

double t1,

double t2)

dichotomy btw t1 & t2

30.36.2.10 sc_hypervisor_lp_execute_dichotomy()

unsigned sc_hypervisor_lp_execute_dichotomy (

int ns,

int nw,

double w_in_s[ns][nw],

unsigned solve_lp_integer,

void ∗ specific_data,

double tmin,

double tmax,

double smallest_tmax,

double(∗)(int ns, int nw, double draft_w_in_s[ns][nw], unsigned is_integer, double

tmax, void ∗specifc_data) lp_estimated_distrib_func)

execute the lp trough dichotomy

30.36.2.11 sc_hypervisor_lp_simulate_distrib_flops()

double sc_hypervisor_lp_simulate_distrib_flops (

int nsched_ctxs,

int ntypes_of_workers,

double speed[nsched_ctxs][ntypes_of_workers],

double flops[nsched_ctxs],

double res[nsched_ctxs][ntypes_of_workers],

int total_nw[ntypes_of_workers],

unsigned sched_ctxs[nsched_ctxs],

double vmax)

linear program that returns 1/tmax, and computes in table res the nr of workers needed by each context st the
system ends up in the smallest tmax

30.36.2.12 sc_hypervisor_lp_simulate_distrib_tasks()

double sc_hypervisor_lp_simulate_distrib_tasks (

int ns,

int nw,

int nt,

double w_in_s[ns][nw],

double tasks[nw][nt],

double times[nw][nt],

unsigned is_integer,

double tmax,

unsigned ∗ in_sched_ctxs,

struct sc_hypervisor_policy_task_pool ∗ tmp_task_pools)

linear program that simulates a distribution of tasks that minimises the execution time of the tasks in the pool

Generated by Doxygen

448 Module Documentation a.k.a StarPU’s API

30.36.2.13 sc_hypervisor_lp_simulate_distrib_flops_on_sample()

double sc_hypervisor_lp_simulate_distrib_flops_on_sample (

int ns,

int nw,

double final_w_in_s[ns][nw],

unsigned is_integer,

double tmax,

double ∗∗ speed,

double flops[ns],

double ∗∗ final_flops_on_w)

linear program that simulates a distribution of flops over the workers on particular sample of the execution of the
application such that the entire sample would finish in a minimum amount of time

Generated by Doxygen

30.37 Modularized Scheduler Interface 449

30.37 Modularized Scheduler Interface

Data Structures

• struct starpu_sched_component
• struct starpu_sched_tree
• struct starpu_sched_component_fifo_data
• struct starpu_sched_component_prio_data
• struct starpu_sched_component_mct_data
• struct starpu_sched_component_heteroprio_data
• struct starpu_sched_component_perfmodel_select_data
• struct starpu_sched_component_specs

Macros

• #define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(component)
• #define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(component)
• #define STARPU_COMPONENT_MUTEX_LOCK(m)
• #define STARPU_COMPONENT_MUTEX_TRYLOCK(m)
• #define STARPU_COMPONENT_MUTEX_UNLOCK(m)

Enumerations

• enum starpu_sched_component_properties { STARPU_SCHED_COMPONENT_HOMOGENEOUS, STA←↩
RPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE }

Functions

• void starpu_initialize_prio_center_policy (unsigned sched_ctx_id)

Scheduling Tree API

• struct starpu_sched_tree ∗ starpu_sched_tree_create (unsigned sched_ctx_id) STARPU_ATTRIBUTE_M←↩
ALLOC

• void starpu_sched_tree_destroy (struct starpu_sched_tree ∗tree)
• void starpu_sched_tree_deinitialize (unsigned sched_ctx_id)
• struct starpu_sched_tree ∗ starpu_sched_tree_get (unsigned sched_ctx_id)
• void starpu_sched_tree_update_workers (struct starpu_sched_tree ∗t)
• void starpu_sched_tree_update_workers_in_ctx (struct starpu_sched_tree ∗t)
• int starpu_sched_tree_push_task (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_tree_pop_task (unsigned sched_ctx)
• int starpu_sched_component_push_task (struct starpu_sched_component ∗from, struct starpu_sched_←↩

component ∗to, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_component_pull_task (struct starpu_sched_component ∗from, struct

starpu_sched_component ∗to)
• struct starpu_task ∗ starpu_sched_component_pump_to (struct starpu_sched_component ∗component,

struct starpu_sched_component ∗to, int ∗success)
• struct starpu_task ∗ starpu_sched_component_pump_downstream (struct starpu_sched_component
∗component, int ∗success)

• int starpu_sched_component_send_can_push_to_parents (struct starpu_sched_component ∗component)
• void starpu_sched_tree_add_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_remove_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_component_connect (struct starpu_sched_component ∗parent, struct starpu_sched_←↩

component ∗child)

Generated by Doxygen

450 Module Documentation a.k.a StarPU’s API

Generic Scheduling Component API

• typedef struct starpu_sched_component ∗(∗ starpu_sched_component_create_t) (struct starpu_sched←↩
_tree ∗tree, void ∗data)

• struct starpu_sched_component ∗ starpu_sched_component_create (struct starpu_sched_tree ∗tree, const
char ∗name) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_destroy (struct starpu_sched_component ∗component)
• void starpu_sched_component_destroy_rec (struct starpu_sched_component ∗component)
• void starpu_sched_component_add_child (struct starpu_sched_component ∗component, struct starpu←↩

_sched_component ∗child)
• int starpu_sched_component_can_execute_task (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• int STARPU_WARN_UNUSED_RESULT starpu_sched_component_execute_preds (struct starpu_sched←↩

_component ∗component, struct starpu_task ∗task, double ∗length)
• double starpu_sched_component_transfer_length (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• void starpu_sched_component_prefetch_on_node (struct starpu_sched_component ∗component, struct

starpu_task ∗task)

Worker Component API

• struct starpu_sched_component ∗ starpu_sched_component_worker_get (unsigned sched_ctx, int workerid)
• struct starpu_sched_component ∗ starpu_sched_component_worker_new (unsigned sched_ctx, int work-

erid)
• struct starpu_sched_component ∗ starpu_sched_component_parallel_worker_create (struct starpu_sched←↩

_tree ∗tree, unsigned nworkers, unsigned ∗workers)
• int starpu_sched_component_worker_get_workerid (struct starpu_sched_component ∗worker_component)
• int starpu_sched_component_is_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_simple_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_combined_worker (struct starpu_sched_component ∗component)
• void starpu_sched_component_worker_pre_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_component_worker_post_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)

Flow-control Fifo Component API

• struct starpu_task ∗ starpu_sched_component_parents_pull_task (struct starpu_sched_component
∗component, struct starpu_sched_component ∗to)

• int starpu_sched_component_can_push (struct starpu_sched_component ∗component, struct starpu_←↩
sched_component ∗to)

• int starpu_sched_component_can_pull (struct starpu_sched_component ∗component)
• int starpu_sched_component_can_pull_all (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_load (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min_add (struct starpu_sched_component ∗component,

double exp_len)
• double starpu_sched_component_estimated_end_average (struct starpu_sched_component ∗component)
• struct starpu_sched_component ∗ starpu_sched_component_fifo_create (struct starpu_sched_tree ∗tree,

struct starpu_sched_component_fifo_data ∗fifo_data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_fifo (struct starpu_sched_component ∗component)

Flow-control Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_prio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_prio_data ∗prio_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_prio (struct starpu_sched_component ∗component)

Generated by Doxygen

30.37 Modularized Scheduler Interface 451

Resource-mapping Work-Stealing Component API

• struct starpu_sched_component ∗ starpu_sched_component_work_stealing_create (struct starpu_sched_←↩
tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_work_stealing (struct starpu_sched_component ∗component)

• int starpu_sched_tree_work_stealing_push_task (struct starpu_task ∗task)

Resource-mapping Random Component API

• struct starpu_sched_component ∗ starpu_sched_component_random_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_random (struct starpu_sched_component ∗)

Resource-mapping Eager Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager (struct starpu_sched_component ∗)

Resource-mapping Eager Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_prio_create (struct starpu_sched←↩
_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_prio (struct starpu_sched_component ∗)

Resource-mapping Eager-Calibration Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_calibration_create (struct starpu←↩
_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_calibration (struct starpu_sched_component ∗)

Resource-mapping MCT Component API

• struct starpu_sched_component ∗ starpu_sched_component_mct_create (struct starpu_sched_tree ∗tree,
struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_mct (struct starpu_sched_component ∗component)

Resource-mapping Heft Component API

• struct starpu_sched_component ∗ starpu_sched_component_heft_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heft (struct starpu_sched_component ∗component)

Resource-mapping Heteroprio Component API

• struct starpu_sched_component ∗ starpu_sched_component_heteroprio_create (struct starpu_sched←↩
_tree ∗tree, struct starpu_sched_component_heteroprio_data ∗params) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heteroprio (struct starpu_sched_component ∗component)

Special-purpose Best_Implementation Component API

• struct starpu_sched_component ∗ starpu_sched_component_best_implementation_create (struct starpu_←↩
sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

Generated by Doxygen

452 Module Documentation a.k.a StarPU’s API

Special-purpose Perfmodel_Select Component API

• struct starpu_sched_component ∗ starpu_sched_component_perfmodel_select_create (struct starpu←↩
_sched_tree ∗tree, struct starpu_sched_component_perfmodel_select_data ∗perfmodel_select_data) ST←↩
ARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_perfmodel_select (struct starpu_sched_component ∗component)

Staged pull Component API

• struct starpu_sched_component ∗ starpu_sched_component_stage_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_stage (struct starpu_sched_component ∗component)

User-choice push Component API

• struct starpu_sched_component ∗ starpu_sched_component_userchoice_create (struct starpu_sched←↩
_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_userchoice (struct starpu_sched_component ∗component)

Recipe Component API

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_create
(void) STARPU_ATTRIBUTE_MALLOC

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_←↩
create_singleton (struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree,
void ∗arg), void ∗arg) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_composed_recipe_add (struct starpu_sched_component_composed_recipe
∗recipe, struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree, void ∗arg),
void ∗arg)

• void starpu_sched_component_composed_recipe_destroy (struct starpu_sched_component_composed_←↩
recipe ∗)

• struct starpu_sched_component ∗ starpu_sched_component_composed_component_create (struct starpu←↩
_sched_tree ∗tree, struct starpu_sched_component_composed_recipe ∗recipe) STARPU_ATTRIBUTE_M←↩
ALLOC

• struct starpu_sched_tree ∗ starpu_sched_component_make_scheduler (unsigned sched_ctx_id, struct
starpu_sched_component_specs s)

Basic API

• void starpu_sched_component_initialize_simple_scheduler (starpu_sched_component_create_t create_←↩
decision_component, void ∗data, unsigned flags, unsigned sched_ctx_id)

• void starpu_sched_component_initialize_simple_schedulers (unsigned sched_ctx_id, unsigned ndeci-
sions,...)

• #define STARPU_SCHED_SIMPLE_DECIDE_MASK
• #define STARPU_SCHED_SIMPLE_DECIDE_WORKERS
• #define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
• #define STARPU_SCHED_SIMPLE_DECIDE_ARCHS
• #define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
• #define STARPU_SCHED_SIMPLE_PERFMODEL
• #define STARPU_SCHED_SIMPLE_IMPL
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
• #define STARPU_SCHED_SIMPLE_WS_BELOW
• #define STARPU_SCHED_SIMPLE_COMBINED_WORKERS
• #define STARPU_SCHED_SIMPLE_PRE_DECISION

Generated by Doxygen

30.37 Modularized Scheduler Interface 453

30.37.1 Detailed Description

30.37.2 Data Structure Documentation

30.37.2.1 struct starpu_sched_component

Structure for a scheduler module. A scheduler is a tree-like structure of them, some parts of scheduler can be
shared by several contexes to perform some local optimisations, so, for all components, a list of parent is de-
fined by sched_ctx_id. They embed there specialised method in a pseudo object-style, so calls are like
component->push_task(component,task)

Data Fields

• struct starpu_sched_tree ∗ tree
• struct starpu_bitmap ∗ workers
• struct starpu_bitmap ∗ workers_in_ctx
• void ∗ data
• char ∗ name
• unsigned nchildren
• struct starpu_sched_component ∗∗ children
• unsigned nparents
• struct starpu_sched_component ∗∗ parents
• void(∗ add_child)(struct starpu_sched_component ∗component, struct starpu_sched_component ∗child)
• void(∗ remove_child)(struct starpu_sched_component ∗component, struct starpu_sched_component ∗child)
• void(∗ add_parent)(struct starpu_sched_component ∗component, struct starpu_sched_component
∗parent)

• void(∗ remove_parent)(struct starpu_sched_component ∗component, struct starpu_sched_component
∗parent)

• int(∗ push_task)(struct starpu_sched_component ∗, struct starpu_task ∗)
• struct starpu_task ∗(∗ pull_task)(struct starpu_sched_component ∗from, struct starpu_sched_component
∗to)

• int(∗ can_push)(struct starpu_sched_component ∗from, struct starpu_sched_component ∗to)
• int(∗ can_pull)(struct starpu_sched_component ∗component)
• int(∗ notify)(struct starpu_sched_component ∗component, int message_ID, void ∗arg)
• double(∗ estimated_load)(struct starpu_sched_component ∗component)
• double(∗ estimated_end)(struct starpu_sched_component ∗component)
• void(∗ deinit_data)(struct starpu_sched_component ∗component)
• void(∗ notify_change_workers)(struct starpu_sched_component ∗component)
• int properties
• hwloc_obj_t obj

30.37.2.1.1 Field Documentation

30.37.2.1.1.1 tree

struct starpu_sched_tree∗ starpu_sched_component::tree

The tree containing the component

30.37.2.1.1.2 workers

struct starpu_bitmap∗ starpu_sched_component::workers

set of underlying workers

30.37.2.1.1.3 workers_in_ctx

struct starpu_bitmap∗ starpu_sched_component::workers_in_ctx

subset of starpu_sched_component::workers that is currently available in the context The push method should take
this value into account, it is set with: component->workers UNION tree->workers UNION component->child[i]-
>workers_in_ctx iff exist x such as component->children[i]->parents[x] == component

Generated by Doxygen

454 Module Documentation a.k.a StarPU’s API

30.37.2.1.1.4 data

void∗ starpu_sched_component::data

private data

30.37.2.1.1.5 nchildren

unsigned starpu_sched_component::nchildren

number of compoments's children

30.37.2.1.1.6 children

struct starpu_sched_component∗∗ starpu_sched_component::children

vector of component's children

30.37.2.1.1.7 nparents

unsigned starpu_sched_component::nparents

number of component's parents

30.37.2.1.1.8 parents

struct starpu_sched_component∗∗ starpu_sched_component::parents

vector of component's parents

30.37.2.1.1.9 add_child

void(∗ starpu_sched_component::add_child) (struct starpu_sched_component ∗component, struct

starpu_sched_component ∗child)
add a child to component

30.37.2.1.1.10 remove_child

void(∗ starpu_sched_component::remove_child) (struct starpu_sched_component ∗component, struct

starpu_sched_component ∗child)
remove a child from component

30.37.2.1.1.11 push_task

int(∗ starpu_sched_component::push_task) (struct starpu_sched_component ∗, struct starpu_task

∗)
push a task in the scheduler module. this function is called to push a task on component subtree, this can either
perform a recursive call on a child or store the task in the component, then it will be returned by a further pull_task
call. the caller must ensure that component is able to execute task. This method must either return 0 if it the task
was properly stored or passed over to a child component, or return a value different from 0 if the task could not be
consumed (e.g. the queue is full).

30.37.2.1.1.12 pull_task

struct starpu_task∗(∗ starpu_sched_component::pull_task) (struct starpu_sched_component ∗from,
struct starpu_sched_component ∗to)
pop a task from the scheduler module. this function is called by workers to get a task from their parents. this function
should first return a locally stored task or perform a recursive call on the parents. the task returned by this function
should be executable by the caller

30.37.2.1.1.13 can_push

int(∗ starpu_sched_component::can_push) (struct starpu_sched_component ∗from, struct starpu_←↩

sched_component ∗to)
This function is called by a component which implements a queue, allowing it to signify to its parents that an empty
slot is available in its queue. This should return 1 if some tasks could be pushed The basic implementation of this
function is a recursive call to its parents, the user has to specify a personally-made function to catch those calls.

30.37.2.1.1.14 can_pull

int(∗ starpu_sched_component::can_pull) (struct starpu_sched_component ∗component)
This function allow a component to wake up a worker. It is currently called by component which implements a
queue, to signify to its children that a task have been pushed in its local queue, and is available to be popped by
a worker, for example. This should return 1 if some some container or worker could (or will) pull some tasks. The
basic implementation of this function is a recursive call to its children, until at least one worker have been woken up.

Generated by Doxygen

30.37 Modularized Scheduler Interface 455

30.37.2.1.1.15 estimated_load

double(∗ starpu_sched_component::estimated_load) (struct starpu_sched_component ∗component)
heuristic to compute load of scheduler module. Basically the number of tasks divided by the sum of relatives
speedup of workers available in context. estimated_load(component) = sum(estimated_load(component_children))
+ nb_local_tasks / average(relative_speedup(underlying_worker))

30.37.2.1.1.16 estimated_end

double(∗ starpu_sched_component::estimated_end) (struct starpu_sched_component ∗component)
return the time when a worker will enter in starvation. This function is relevant only if the task->predicted member
has been set.

30.37.2.1.1.17 deinit_data

void(∗ starpu_sched_component::deinit_data) (struct starpu_sched_component ∗component)
called by starpu_sched_component_destroy. Should free data allocated during creation

30.37.2.1.1.18 notify_change_workers

void(∗ starpu_sched_component::notify_change_workers) (struct starpu_sched_component ∗component)
this function is called for each component when workers are added or removed from a context

30.37.2.1.1.19 obj

hwloc_obj_t starpu_sched_component::obj

the hwloc object associated to scheduler module. points to the part of topology that is binded to this component,
eg: a numa node for a ws component that would balance load between underlying sockets

30.37.2.2 struct starpu_sched_tree

The actual scheduler

Data Fields

struct starpu_sched_component ∗ root entry module of the scheduler

struct starpu_bitmap ∗ workers set of workers available in this context, this value is used
to mask workers in modules

unsigned sched_ctx_id context id of the scheduler

starpu_pthread_mutex_t lock lock used to protect the scheduler, it is taken in read
mode pushing a task and in write mode for adding or
removing workers

30.37.2.3 struct starpu_sched_component_fifo_data

Data Fields

unsigned ntasks_threshold

double exp_len_threshold

int ready

30.37.2.4 struct starpu_sched_component_prio_data

Data Fields

unsigned ntasks_threshold

double exp_len_threshold

int ready

Generated by Doxygen

456 Module Documentation a.k.a StarPU’s API

30.37.2.5 struct starpu_sched_component_mct_data

Data Fields

double alpha

double beta
double _gamma

double idle_power

30.37.2.6 struct starpu_sched_component_heteroprio_data

Data Fields

struct
starpu_sched_component_mct_data ∗ mct

unsigned batch

30.37.2.7 struct starpu_sched_component_perfmodel_select_data

Data Fields

struct starpu_sched_component ∗ calibrator_component

struct starpu_sched_component ∗ no_perfmodel_component

struct starpu_sched_component ∗ perfmodel_component

30.37.2.8 struct starpu_sched_component_specs

Define how build a scheduler according to topology. Each level (except for hwloc_machine_composed_sched_←↩
component) can be NULL, then the level is just skipped. Bugs everywhere, do not rely on.

Data Fields

• struct starpu_sched_component_composed_recipe ∗ hwloc_machine_composed_sched_component

• struct starpu_sched_component_composed_recipe ∗ hwloc_component_composed_sched_component

• struct starpu_sched_component_composed_recipe ∗ hwloc_socket_composed_sched_component

• struct starpu_sched_component_composed_recipe ∗ hwloc_cache_composed_sched_component

• struct starpu_sched_component_composed_recipe ∗(∗ worker_composed_sched_component)(enum
starpu_worker_archtype archtype)

• int mix_heterogeneous_workers

30.37.2.8.1 Field Documentation

30.37.2.8.1.1 hwloc_machine_composed_sched_component

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_specs::hwloc_machine_←↩

composed_sched_component

the composed component to put on the top of the scheduler this member must not be NULL as it is the root of the
topology

30.37.2.8.1.2 hwloc_component_composed_sched_component

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_specs::hwloc_component_←↩

composed_sched_component

the composed component to put for each memory component

Generated by Doxygen

30.37 Modularized Scheduler Interface 457

30.37.2.8.1.3 hwloc_socket_composed_sched_component

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_specs::hwloc_socket_←↩

composed_sched_component

the composed component to put for each socket

30.37.2.8.1.4 hwloc_cache_composed_sched_component

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_specs::hwloc_cache_←↩

composed_sched_component

the composed component to put for each cache

30.37.2.8.1.5 worker_composed_sched_component

struct starpu_sched_component_composed_recipe∗(∗ starpu_sched_component_specs::worker_composed←↩

_sched_component) (enum starpu_worker_archtype archtype)

a function that return a starpu_sched_component_composed_recipe to put on top of a worker of type archtype.
NULL is a valid return value, then no component will be added on top

30.37.2.8.1.6 mix_heterogeneous_workers

int starpu_sched_component_specs::mix_heterogeneous_workers

this flag is a dirty hack because of the poor expressivity of this interface. As example, if you want to build a heft
component with a fifo component per numa component, and you also have GPUs, if this flag is set, GPUs will share
those fifos. If this flag is not set, a new fifo will be built for each of them (if they have the same starpu_perf_arch and
the same numa component it will be shared. it indicates if heterogenous workers should be brothers or cousins, as
example, if a gpu and a cpu should share or not there numa node

30.37.3 Macro Definition Documentation

30.37.3.1 STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS

#define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(

component)

indicate if component is homogeneous

30.37.3.2 STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE

#define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(

component)

indicate if all workers have the same memory component

30.37.3.3 STARPU_SCHED_SIMPLE_DECIDE_WORKERS

#define STARPU_SCHED_SIMPLE_DECIDE_WORKERS

Request to create downstream queues per worker, i.e. the scheduling decision-making component will choose
exactly which workers tasks should got to.

30.37.3.4 STARPU_SCHED_SIMPLE_DECIDE_MEMNODES

#define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES

Request to create downstream queues per memory nodes, i.e. the scheduling decision-making component will
choose which memory node tasks will go to.

30.37.3.5 STARPU_SCHED_SIMPLE_DECIDE_ARCHS

#define STARPU_SCHED_SIMPLE_DECIDE_ARCHS

Request to create downstream queues per computation arch, i.e. the scheduling decision-making component will
choose whether tasks go to CPUs, or CUDA, or OpenCL, etc.

Generated by Doxygen

458 Module Documentation a.k.a StarPU’s API

30.37.3.6 STARPU_SCHED_SIMPLE_DECIDE_ALWAYS

#define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS

Request to create the scheduling decision-making component even if there is only one available choice. This is
useful for instance when the decision-making component will store tasks itself (and not use STARPU_SCHED_S←↩
IMPLE_FIFO_ABOVE) to decide in which order tasks should be passed below.

30.37.3.7 STARPU_SCHED_SIMPLE_PERFMODEL

#define STARPU_SCHED_SIMPLE_PERFMODEL

Request to add a perfmodel selector above the scheduling decision-making component. That way, only tasks with
a calibrated performance model will be given to the component, other tasks will go to an eager branch that will
distributed tasks so that their performance models will get calibrated. In other words, this is needed when using a
component which needs performance models for tasks.

30.37.3.8 STARPU_SCHED_SIMPLE_IMPL

#define STARPU_SCHED_SIMPLE_IMPL

Request that a component be added just above workers, that chooses the best task implementation.

30.37.3.9 STARPU_SCHED_SIMPLE_FIFO_ABOVE

#define STARPU_SCHED_SIMPLE_FIFO_ABOVE

Request to create a fifo above the scheduling decision-making component, otherwise tasks will be pushed directly
to the component.
This is useful to store tasks if there is a fifo below which limits the number of tasks to be scheduld in advance. The
scheduling decision-making component can also store tasks itself, in which case this flag is not useful.

30.37.3.10 STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO

#define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO

Request that the fifo above be sorted by priorities

30.37.3.11 STARPU_SCHED_SIMPLE_FIFOS_BELOW

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW

Request to create fifos below the scheduling decision-making component, otherwise tasks will be pulled directly
from workers.
This is useful to be able to schedule a (tunable) small number of tasks in advance only.

30.37.3.12 STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO

Request that the fifos below be sorted by priorities

30.37.3.13 STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY

#define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY

Request that the fifos below be pulled rather ready tasks

30.37.3.14 STARPU_SCHED_SIMPLE_WS_BELOW

#define STARPU_SCHED_SIMPLE_WS_BELOW

Request that work between workers using the same fifo below be distributed using a work stealing component.

30.37.3.15 STARPU_SCHED_SIMPLE_COMBINED_WORKERS

#define STARPU_SCHED_SIMPLE_COMBINED_WORKERS

Request to not only choose between simple workers, but also choose between combined workers.

Generated by Doxygen

30.37 Modularized Scheduler Interface 459

30.37.3.16 STARPU_SCHED_SIMPLE_PRE_DECISION

#define STARPU_SCHED_SIMPLE_PRE_DECISION

Request to prepend a component before the decision component. This should be used alone and followed by the
component creation function pointer and its data.

30.37.4 Enumeration Type Documentation

30.37.4.1 starpu_sched_component_properties

enum starpu_sched_component_properties

flags for starpu_sched_component::properties

Enumerator

STARPU_SCHED_COMPONENT_HOMOGENEOUS
indicate that all workers have the same
starpu_worker_archtype

STARPU_SCHED_COMPONENT_SINGLE_MEM←↩
ORY_NODE

indicate that all workers have the same memory
component

30.37.5 Function Documentation

30.37.5.1 starpu_sched_tree_create()

struct starpu_sched_tree∗ starpu_sched_tree_create (

unsigned sched_ctx_id)

create a empty initialized starpu_sched_tree

30.37.5.2 starpu_sched_tree_destroy()

void starpu_sched_tree_destroy (

struct starpu_sched_tree ∗ tree)

destroy tree and free all non shared component in it.

30.37.5.3 starpu_sched_tree_deinitialize()

void starpu_sched_tree_deinitialize (

unsigned sched_ctx_id)

calls starpu_sched_tree_destroy, ready for use for starpu_sched_policy::deinit_sched field.

30.37.5.4 starpu_sched_tree_update_workers()

void starpu_sched_tree_update_workers (

struct starpu_sched_tree ∗ t)

recursively set all starpu_sched_component::workers, do not take into account shared parts (except workers).

30.37.5.5 starpu_sched_tree_update_workers_in_ctx()

void starpu_sched_tree_update_workers_in_ctx (

struct starpu_sched_tree ∗ t)

recursively set all starpu_sched_component::workers_in_ctx, do not take into account shared parts (except workers)

Generated by Doxygen

460 Module Documentation a.k.a StarPU’s API

30.37.5.6 starpu_sched_tree_push_task()

int starpu_sched_tree_push_task (

struct starpu_task ∗ task)

compatibility with starpu_sched_policy interface

30.37.5.7 starpu_sched_tree_pop_task()

struct starpu_task∗ starpu_sched_tree_pop_task (

unsigned sched_ctx)

compatibility with starpu_sched_policy interface

30.37.5.8 starpu_sched_component_push_task()

int starpu_sched_component_push_task (

struct starpu_sched_component ∗ from,

struct starpu_sched_component ∗ to,

struct starpu_task ∗ task)

Push a task to a component. This is a helper for component->push_task(component, task) plus
tracing.

30.37.5.9 starpu_sched_component_pull_task()

struct starpu_task∗ starpu_sched_component_pull_task (

struct starpu_sched_component ∗ from,

struct starpu_sched_component ∗ to)

Pull a task from a component. This is a helper for component->pull_task(component) plus tracing.

30.37.5.10 starpu_sched_tree_add_workers()

void starpu_sched_tree_add_workers (

unsigned sched_ctx_id,

int ∗ workerids,

unsigned nworkers)

compatibility with starpu_sched_policy interface

30.37.5.11 starpu_sched_tree_remove_workers()

void starpu_sched_tree_remove_workers (

unsigned sched_ctx_id,

int ∗ workerids,

unsigned nworkers)

compatibility with starpu_sched_policy interface

30.37.5.12 starpu_sched_component_connect()

void starpu_sched_component_connect (

struct starpu_sched_component ∗ parent,

struct starpu_sched_component ∗ child)

Attach component child to parent parent. Some component may accept only one child, others accept several
(e.g. MCT)

30.37.5.13 starpu_sched_component_create()

struct starpu_sched_component∗ starpu_sched_component_create (

struct starpu_sched_tree ∗ tree,

const char ∗ name)

allocate and initialize component field with defaults values : .pop_task make recursive call on father .estimated←↩
_load compute relative speedup and tasks in sub tree .estimated_end return the minimum of recursive call on

Generated by Doxygen

30.37 Modularized Scheduler Interface 461

children .add_child is starpu_sched_component_add_child .remove_child is starpu_sched_component_remove_←↩
child .notify_change_workers does nothing .deinit_data does nothing

30.37.5.14 starpu_sched_component_destroy()

void starpu_sched_component_destroy (

struct starpu_sched_component ∗ component)

free data allocated by starpu_sched_component_create and call component->deinit_data(component) set to NULL
the member starpu_sched_component::fathers[sched_ctx_id] of all child if its equal to component

30.37.5.15 starpu_sched_component_destroy_rec()

void starpu_sched_component_destroy_rec (

struct starpu_sched_component ∗ component)

recursively destroy non shared parts of a component 's tree

30.37.5.16 starpu_sched_component_can_execute_task()

int starpu_sched_component_can_execute_task (

struct starpu_sched_component ∗ component,

struct starpu_task ∗ task)

return true iff component can execute task, this function take into account the workers available in the scheduling
context

30.37.5.17 starpu_sched_component_execute_preds()

int STARPU_WARN_UNUSED_RESULT starpu_sched_component_execute_preds (

struct starpu_sched_component ∗ component,

struct starpu_task ∗ task,

double ∗ length)

return a non NULL value if component can execute task. write the execution prediction length for the best
implementation of the best worker available and write this at length address. this result is more relevant if
starpu_sched_component::is_homogeneous is non NULL. if a worker need to be calibrated for an implementation,
nan is set to length.

30.37.5.18 starpu_sched_component_transfer_length()

double starpu_sched_component_transfer_length (

struct starpu_sched_component ∗ component,

struct starpu_task ∗ task)

return the average time to transfer task data to underlying component workers.

30.37.5.19 starpu_sched_component_worker_get()

struct starpu_sched_component∗ starpu_sched_component_worker_get (

unsigned sched_ctx,

int workerid)

return the struct starpu_sched_component corresponding to workerid. Undefined if workerid is not a valid
workerid

30.37.5.20 starpu_sched_component_parallel_worker_create()

struct starpu_sched_component∗ starpu_sched_component_parallel_worker_create (

struct starpu_sched_tree ∗ tree,

unsigned nworkers,

unsigned ∗ workers)

Create a combined worker that pushes tasks in parallel to workers workers (size nworkers).

Generated by Doxygen

462 Module Documentation a.k.a StarPU’s API

30.37.5.21 starpu_sched_component_worker_get_workerid()

int starpu_sched_component_worker_get_workerid (

struct starpu_sched_component ∗ worker_component)

return the workerid of worker_component, undefined if starpu_sched_component_is_worker(worker_←↩
component) == 0

30.37.5.22 starpu_sched_component_is_worker()

int starpu_sched_component_is_worker (

struct starpu_sched_component ∗ component)

return true iff component is a worker component

30.37.5.23 starpu_sched_component_is_simple_worker()

int starpu_sched_component_is_simple_worker (

struct starpu_sched_component ∗ component)

return true iff component is a simple worker component

30.37.5.24 starpu_sched_component_is_combined_worker()

int starpu_sched_component_is_combined_worker (

struct starpu_sched_component ∗ component)

return true iff component is a combined worker component

30.37.5.25 starpu_sched_component_worker_pre_exec_hook()

void starpu_sched_component_worker_pre_exec_hook (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

compatibility with starpu_sched_policy interface update predictions for workers

30.37.5.26 starpu_sched_component_worker_post_exec_hook()

void starpu_sched_component_worker_post_exec_hook (

struct starpu_task ∗ task,

unsigned sched_ctx_id)

compatibility with starpu_sched_policy interface

30.37.5.27 starpu_sched_component_parents_pull_task()

struct starpu_task∗ starpu_sched_component_parents_pull_task (

struct starpu_sched_component ∗ component,

struct starpu_sched_component ∗ to)

default function for the pull component method, just call pull of parents until one of them returns a task

30.37.5.28 starpu_sched_component_can_push()

int starpu_sched_component_can_push (

struct starpu_sched_component ∗ component,

struct starpu_sched_component ∗ to)

default function for the can_push component method, just call can_push of parents until one of them returns non-
zero

30.37.5.29 starpu_sched_component_can_pull()

int starpu_sched_component_can_pull (

struct starpu_sched_component ∗ component)

default function for the can_pull component method, just call can_pull of children until one of them returns non-zero

Generated by Doxygen

30.37 Modularized Scheduler Interface 463

30.37.5.30 starpu_sched_component_can_pull_all()

int starpu_sched_component_can_pull_all (

struct starpu_sched_component ∗ component)

function for the can_pull component method, call can_pull of all children

30.37.5.31 starpu_sched_component_estimated_load()

double starpu_sched_component_estimated_load (

struct starpu_sched_component ∗ component)

default function for the estimated_load component method, just sum up the loads of the children of the component.

30.37.5.32 starpu_sched_component_estimated_end_min()

double starpu_sched_component_estimated_end_min (

struct starpu_sched_component ∗ component)

function that can be used for the estimated_end component method, compute the minimum completion time of the
children.

30.37.5.33 starpu_sched_component_estimated_end_min_add()

double starpu_sched_component_estimated_end_min_add (

struct starpu_sched_component ∗ component,

double exp_len)

function that can be used for the estimated_end component method, compute the minimum completion time of the
children, and add to it an estimation of how existing queued work, plus the exp_len work, can be completed. This is
typically used instead of starpu_sched_component_estimated_end_min when the component contains a queue of
tasks, which thus needs to be added to the estimations.

30.37.5.34 starpu_sched_component_estimated_end_average()

double starpu_sched_component_estimated_end_average (

struct starpu_sched_component ∗ component)

default function for the estimated_end component method, compute the average completion time of the children.

30.37.5.35 starpu_sched_component_fifo_create()

struct starpu_sched_component∗ starpu_sched_component_fifo_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_fifo_data ∗ fifo_data)

Return a struct starpu_sched_component with a fifo. A stable sort is performed according to tasks priorities. A
push_task call on this component does not perform recursive calls, underlying components will have to call pop←↩
_task to get it. starpu_sched_component::estimated_end function compute the estimated length by dividing the
sequential length by the number of underlying workers.

30.37.5.36 starpu_sched_component_is_fifo()

int starpu_sched_component_is_fifo (

struct starpu_sched_component ∗ component)

return true iff component is a fifo component

30.37.5.37 starpu_sched_component_work_stealing_create()

struct starpu_sched_component∗ starpu_sched_component_work_stealing_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

return a component that perform a work stealing scheduling. Tasks are pushed in a round robin way. estimated_end
return the average of expected length of fifos, starting at the average of the expected_end of his children. When a
worker have to steal a task, it steal a task in a round robin way, and get the last pushed task of the higher priority.

Generated by Doxygen

464 Module Documentation a.k.a StarPU’s API

30.37.5.38 starpu_sched_component_is_work_stealing()

int starpu_sched_component_is_work_stealing (

struct starpu_sched_component ∗ component)

return true iff component is a work stealing component

30.37.5.39 starpu_sched_tree_work_stealing_push_task()

int starpu_sched_tree_work_stealing_push_task (

struct starpu_task ∗ task)

undefined if there is no work stealing component in the scheduler. If any, task is pushed in a default way if the
caller is the application, and in the caller's fifo if its a worker.

30.37.5.40 starpu_sched_component_random_create()

struct starpu_sched_component∗ starpu_sched_component_random_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

create a component that perform a random scheduling

30.37.5.41 starpu_sched_component_is_random()

int starpu_sched_component_is_random (

struct starpu_sched_component ∗)

return true iff component is a random component

30.37.5.42 starpu_sched_component_mct_create()

struct starpu_sched_component∗ starpu_sched_component_mct_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_mct_data ∗ mct_data)

create a component with mct_data paremeters. the mct component doesnt do anything but pushing tasks on no←↩
_perf_model_component and calibrating_component

30.37.5.43 starpu_sched_component_best_implementation_create()

struct starpu_sched_component∗ starpu_sched_component_best_implementation_create (

struct starpu_sched_tree ∗ tree,

void ∗ arg)

Select the implementation that offer the shortest computation length for the first worker that can execute the task.
Or an implementation that need to be calibrated. Also set starpu_task::predicted and starpu_task::predicted_←↩
transfer for memory component of the first suitable workerid. If starpu_sched_component::push method is called
and starpu_sched_component::nchild > 1 the result is undefined.

30.37.5.44 starpu_sched_component_composed_recipe_create()

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_composed_recipe_create (

void)

return an empty recipe for a composed component, it should not be used without modification

30.37.5.45 starpu_sched_component_composed_recipe_create_singleton()

struct starpu_sched_component_composed_recipe∗ starpu_sched_component_composed_recipe_create_←↩

singleton (

struct starpu_sched_component ∗(∗)(struct starpu_sched_tree ∗tree, void ∗arg)
create_component,

void ∗ arg)

return a recipe to build a composed component with a create_component

Generated by Doxygen

30.37 Modularized Scheduler Interface 465

30.37.5.46 starpu_sched_component_composed_recipe_add()

void starpu_sched_component_composed_recipe_add (

struct starpu_sched_component_composed_recipe ∗ recipe,

struct starpu_sched_component ∗(∗)(struct starpu_sched_tree ∗tree, void ∗arg)
create_component,

void ∗ arg)

add create_component under all previous components in recipe

30.37.5.47 starpu_sched_component_composed_recipe_destroy()

void starpu_sched_component_composed_recipe_destroy (

struct starpu_sched_component_composed_recipe ∗)

destroy composed_sched_component, this should be done after starpu_sched_component_composed_←↩
component_create was called

30.37.5.48 starpu_sched_component_composed_component_create()

struct starpu_sched_component∗ starpu_sched_component_composed_component_create (

struct starpu_sched_tree ∗ tree,

struct starpu_sched_component_composed_recipe ∗ recipe)

create a component that behave as all component of recipe where linked. Except that you cant use starpu_←↩
sched_component_is_foo function if recipe contain a single create_foo arg_foo pair, create_foo(arg_foo) is returned
instead of a composed component

30.37.5.49 starpu_sched_component_make_scheduler()

struct starpu_sched_tree∗ starpu_sched_component_make_scheduler (

unsigned sched_ctx_id,

struct starpu_sched_component_specs s)

build a scheduler for sched_ctx_id according to s and the hwloc topology of the machine.

30.37.5.50 starpu_sched_component_initialize_simple_scheduler()

void starpu_sched_component_initialize_simple_scheduler (

starpu_sched_component_create_t create_decision_component,

void ∗ data,

unsigned flags,

unsigned sched_ctx_id)

Create a simple modular scheduler tree around a scheduling decision-making component component. The details
of what should be built around component is described by flags. The different STARPU_SCHED_SIMPL_D←↩
ECIDE_∗ flags are mutually exclusive. data is passed to the create_decision_component function when
creating the decision component.

30.37.5.51 starpu_sched_component_initialize_simple_schedulers()

void starpu_sched_component_initialize_simple_schedulers (

unsigned sched_ctx_id,

unsigned ndecisions,

...)

Create a simple modular scheduler tree around several scheduling decision-making components. The parameters
are similar to starpu_sched_component_initialize_simple_scheduler, but per scheduling decision, for instance:
starpu_sched_component_initialize_simple_schedulers(sched_ctx_id, 2, create1, data1, flags1, create2, data2,
flags2);
The different flags parameters must be coherent: same decision flags. They must not include the perfmodel flag
(not supported yet).

Generated by Doxygen

466 Module Documentation a.k.a StarPU’s API

30.38 Clustering Machine

Macros

• #define STARPU_CLUSTER_MIN_NB
• #define STARPU_CLUSTER_MAX_NB
• #define STARPU_CLUSTER_NB
• #define STARPU_CLUSTER_PREFERE_MIN
• #define STARPU_CLUSTER_KEEP_HOMOGENEOUS
• #define STARPU_CLUSTER_POLICY_NAME
• #define STARPU_CLUSTER_POLICY_STRUCT
• #define STARPU_CLUSTER_CREATE_FUNC
• #define STARPU_CLUSTER_CREATE_FUNC_ARG
• #define STARPU_CLUSTER_TYPE
• #define STARPU_CLUSTER_AWAKE_WORKERS
• #define STARPU_CLUSTER_PARTITION_ONE
• #define STARPU_CLUSTER_NEW
• #define STARPU_CLUSTER_NCORES
• #define starpu_intel_openmp_mkl_prologue

Enumerations

• enum starpu_cluster_types { STARPU_CLUSTER_OPENMP, STARPU_CLUSTER_INTEL_OPENMP_M←↩
KL, STARPU_CLUSTER_GNU_OPENMP_MKL }

Functions

• struct starpu_cluster_machine ∗ starpu_cluster_machine (hwloc_obj_type_t cluster_level,...)
• int starpu_uncluster_machine (struct starpu_cluster_machine ∗clusters)
• int starpu_cluster_print (struct starpu_cluster_machine ∗clusters)
• void starpu_openmp_prologue (void ∗)
• void starpu_gnu_openmp_mkl_prologue (void ∗)

30.38.1 Detailed Description

30.38.2 Macro Definition Documentation

30.38.2.1 STARPU_CLUSTER_MIN_NB

#define STARPU_CLUSTER_MIN_NB

Used when calling starpu_cluster_machine

30.38.2.2 STARPU_CLUSTER_MAX_NB

#define STARPU_CLUSTER_MAX_NB

Used when calling starpu_cluster_machine

30.38.2.3 STARPU_CLUSTER_NB

#define STARPU_CLUSTER_NB

Used when calling starpu_cluster_machine

30.38.2.4 STARPU_CLUSTER_PREFERE_MIN

#define STARPU_CLUSTER_PREFERE_MIN

Used when calling starpu_cluster_machine

Generated by Doxygen

30.38 Clustering Machine 467

30.38.2.5 STARPU_CLUSTER_KEEP_HOMOGENEOUS

#define STARPU_CLUSTER_KEEP_HOMOGENEOUS

Used when calling starpu_cluster_machine

30.38.2.6 STARPU_CLUSTER_POLICY_NAME

#define STARPU_CLUSTER_POLICY_NAME

Used when calling starpu_cluster_machine

30.38.2.7 STARPU_CLUSTER_POLICY_STRUCT

#define STARPU_CLUSTER_POLICY_STRUCT

Used when calling starpu_cluster_machine

30.38.2.8 STARPU_CLUSTER_CREATE_FUNC

#define STARPU_CLUSTER_CREATE_FUNC

Used when calling starpu_cluster_machine

30.38.2.9 STARPU_CLUSTER_CREATE_FUNC_ARG

#define STARPU_CLUSTER_CREATE_FUNC_ARG

Used when calling starpu_cluster_machine

30.38.2.10 STARPU_CLUSTER_TYPE

#define STARPU_CLUSTER_TYPE

Used when calling starpu_cluster_machine

30.38.2.11 STARPU_CLUSTER_AWAKE_WORKERS

#define STARPU_CLUSTER_AWAKE_WORKERS

Used when calling starpu_cluster_machine

30.38.2.12 STARPU_CLUSTER_PARTITION_ONE

#define STARPU_CLUSTER_PARTITION_ONE

Used when calling starpu_cluster_machine

30.38.2.13 STARPU_CLUSTER_NEW

#define STARPU_CLUSTER_NEW

Used when calling starpu_cluster_machine

30.38.2.14 STARPU_CLUSTER_NCORES

#define STARPU_CLUSTER_NCORES

Used when calling starpu_cluster_machine

30.38.3 Enumeration Type Documentation

30.38.3.1 starpu_cluster_types

enum starpu_cluster_types

These represent the default available functions to enforce cluster use by the sub-runtime

Generated by Doxygen

468 Module Documentation a.k.a StarPU’s API

Enumerator

STARPU_CLUSTER_OPENMP todo
STARPU_CLUSTER_INTEL_OPENMP_MKL todo

STARPU_CLUSTER_GNU_OPENMP_MKL todo

30.38.4 Function Documentation

30.38.4.1 starpu_openmp_prologue()

void starpu_openmp_prologue (

void ∗)

Prologue functions

Generated by Doxygen

30.39 Interoperability Support 469

30.39 Interoperability Support

This section describes the interface supplied by StarPU to interoperate with other runtime systems.

Typedefs

• typedef int starpurm_drs_ret_t
• typedef void ∗ starpurm_drs_desc_t
• typedef void ∗ starpurm_drs_cbs_t
• typedef void(∗ starpurm_drs_cb_t) (void ∗)
• typedef void ∗ starpurm_block_cond_t
• typedef int(∗ starpurm_polling_t) (void ∗)

Enumerations

• enum e_starpurm_drs_ret { starpurm_DRS_SUCCESS, starpurm_DRS_DISABLD, starpurm_DRS_PERM,
starpurm_DRS_EINVAL }

Initialisation

• void starpurm_initialize_with_cpuset (hwloc_cpuset_t initially_owned_cpuset)
• void starpurm_initialize (void)
• void starpurm_shutdown (void)

Spawn

• void starpurm_spawn_kernel_on_cpus (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t cpuset)
• void starpurm_spawn_kernel_on_cpus_callback (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_←↩

t cpuset, void(∗cb_f)(void ∗), void ∗cb_args)
• void starpurm_spawn_kernel_callback (void ∗data, void(∗f)(void ∗), void ∗args, void(∗cb_f)(void ∗), void
∗cb_args)

DynamicResourceSharing

• starpurm_drs_ret_t starpurm_set_drs_enable (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_set_drs_disable (starpurm_drs_desc_t ∗spd)
• int starpurm_drs_enabled_p (void)
• starpurm_drs_ret_t starpurm_set_max_parallelism (starpurm_drs_desc_t ∗spd, int max)
• starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (starpurm_drs_desc_t ∗spd, const hwloc←↩

_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_lend_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_lend_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_reclaim (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_reclaim_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_reclaim_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_reclaim_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)

Generated by Doxygen

470 Module Documentation a.k.a StarPU’s API

• starpurm_drs_ret_t starpurm_acquire (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_acquire_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_acquire_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_acquire_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_return_all (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_return_cpu (starpurm_drs_desc_t ∗spd, int cpuid)

Devices

• int starpurm_get_device_type_id (const char ∗type_str)
• const char ∗ starpurm_get_device_type_name (int type_id)
• int starpurm_get_nb_devices_by_type (int type_id)
• int starpurm_get_device_id (int type_id, int device_rank)
• starpurm_drs_ret_t starpurm_assign_device_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int unit_←↩

rank)
• starpurm_drs_ret_t starpurm_assign_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int nde-

vices)
• starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

unit_rank)
• starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

ndevices)
• starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_lend_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_lend_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_lend_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_lend_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_reclaim_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_reclaim_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_reclaim_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_reclaim_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_acquire_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_acquire_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_acquire_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)

CpusetsQueries

• hwloc_cpuset_t starpurm_get_device_worker_cpuset (int type_id, int unit_rank)
• hwloc_cpuset_t starpurm_get_global_cpuset (void)
• hwloc_cpuset_t starpurm_get_selected_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (int typeid)

30.39.1 Detailed Description

This section describes the interface supplied by StarPU to interoperate with other runtime systems.

Generated by Doxygen

30.39 Interoperability Support 471

30.39.2 Enumeration Type Documentation

30.39.2.1 e_starpurm_drs_ret

enum e_starpurm_drs_ret

StarPU Resource Manager return type.

Enumerator

starpurm_DRS_SUCCESS Dynamic resource sharing operation succeeded.

starpurm_DRS_DISABLD Dynamic resource sharing is disabled.

starpurm_DRS_PERM Dynamic resource sharing operation is not authorized or implemented.

starpurm_DRS_EINVAL Dynamic resource sharing operation has been called with one or more invalid
parameters.

30.39.3 Function Documentation

30.39.3.1 starpurm_initialize_with_cpuset()

void starpurm_initialize_with_cpuset (

hwloc_cpuset_t initially_owned_cpuset)

Resource enforcement

30.39.3.2 starpurm_initialize()

void starpurm_initialize (

void)

Initialize StarPU and the StarPU-RM resource management module. The starpu_init() function should not have
been called before the call to starpurm_initialize(). The starpurm_initialize() function will take care of this

30.39.3.3 starpurm_shutdown()

void starpurm_shutdown (

void)

Shutdown StarPU-RM and StarPU. The starpu_shutdown() function should not be called before. The starpurm_←↩
shutdown() function will take care of this.

30.39.3.4 starpurm_spawn_kernel_on_cpus()

void starpurm_spawn_kernel_on_cpus (

void ∗ data,

void(∗)(void ∗) f,

void ∗ args,

hwloc_cpuset_t cpuset)

Allocate a temporary context spanning the units selected in the cpuset bitmap, set it as the default context for the
current thread, and call user function f. Upon the return of user function f, the temporary context is freed and the
previous default context for the current thread is restored.

30.39.3.5 starpurm_spawn_kernel_on_cpus_callback()

void starpurm_spawn_kernel_on_cpus_callback (

void ∗ data,

void(∗)(void ∗) f,

void ∗ args,

Generated by Doxygen

472 Module Documentation a.k.a StarPU’s API

hwloc_cpuset_t cpuset,

void(∗)(void ∗) cb_f,

void ∗ cb_args)

Spawn a POSIX thread and returns immediately. The thread spawned will allocate a temporary context spanning
the units selected in the cpuset bitmap, set it as the default context for the current thread, and call user function
f. Upon the return of user function f, the temporary context will be freed and the previous default context for the
current thread restored. A user specified callback cb_f will be called just before the termination of the thread.

30.39.3.6 starpurm_set_drs_enable()

starpurm_drs_ret_t starpurm_set_drs_enable (

starpurm_drs_desc_t ∗ spd)

Turn-on dynamic resource sharing support.

30.39.3.7 starpurm_set_drs_disable()

starpurm_drs_ret_t starpurm_set_drs_disable (

starpurm_drs_desc_t ∗ spd)

Turn-off dynamic resource sharing support.

30.39.3.8 starpurm_drs_enabled_p()

int starpurm_drs_enabled_p (

void)

Return the state of the dynamic resource sharing support (=!0 enabled, =0 disabled).

30.39.3.9 starpurm_set_max_parallelism()

starpurm_drs_ret_t starpurm_set_max_parallelism (

starpurm_drs_desc_t ∗ spd,

int max)

Set the maximum number of CPU computing units available for StarPU computations to max. This number cannot
exceed the maximum number of StarPU's CPU worker allocated at start-up time.

30.39.3.10 starpurm_assign_cpu_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Extend StarPU's default scheduling context to execute tasks on worker corresponding to logical unit cpuid. If
StarPU does not have a worker thread initialized for logical unit cpuid, do nothing.

30.39.3.11 starpurm_assign_cpus_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Extend StarPU's default scheduling context to execute tasks on ncpus more workers, up to the number of StarPU
worker threads initialized.

30.39.3.12 starpurm_assign_cpu_mask_to_starpu()

starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Extend StarPU's default scheduling context to execute tasks on the additional logical units selected in mask. Logical
units of mask for which no StarPU worker is initialized are silently ignored.

Generated by Doxygen

30.39 Interoperability Support 473

30.39.3.13 starpurm_assign_all_cpus_to_starpu()

starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (

starpurm_drs_desc_t ∗ spd)

Set StarPU's default scheduling context to execute tasks on all available logical units for which a StarPU worker has
been initialized.

30.39.3.14 starpurm_withdraw_cpu_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Shrink StarPU's default scheduling context so as to not execute tasks on worker corresponding to logical unit
cpuid. If StarPU does not have a worker thread initialized for logical unit cpuid, do nothing.

30.39.3.15 starpurm_withdraw_cpus_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Shrink StarPU's default scheduling context to execute tasks on ncpus less workers.

30.39.3.16 starpurm_withdraw_cpu_mask_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Shrink StarPU's default scheduling context so as to not execute tasks on the logical units selected in mask. Logical
units of mask for which no StarPU worker is initialized are silently ignored.

30.39.3.17 starpurm_withdraw_all_cpus_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (

starpurm_drs_desc_t ∗ spd)

Shrink StarPU's default scheduling context so as to remove all logical units.

30.39.3.18 starpurm_lend()

starpurm_drs_ret_t starpurm_lend (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_assign_all_cpus_to_starpu().

30.39.3.19 starpurm_lend_cpu()

starpurm_drs_ret_t starpurm_lend_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_assign_cpu_to_starpu().

30.39.3.20 starpurm_lend_cpus()

starpurm_drs_ret_t starpurm_lend_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_assign_cpus_to_starpu().

Generated by Doxygen

474 Module Documentation a.k.a StarPU’s API

30.39.3.21 starpurm_lend_cpu_mask()

starpurm_drs_ret_t starpurm_lend_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_assign_cpu_mask_to_starpu().

30.39.3.22 starpurm_reclaim()

starpurm_drs_ret_t starpurm_reclaim (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_withdraw_all_cpus_from_starpu().

30.39.3.23 starpurm_reclaim_cpu()

starpurm_drs_ret_t starpurm_reclaim_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_withdraw_cpu_from_starpu().

30.39.3.24 starpurm_reclaim_cpus()

starpurm_drs_ret_t starpurm_reclaim_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_withdraw_cpus_from_starpu().

30.39.3.25 starpurm_reclaim_cpu_mask()

starpurm_drs_ret_t starpurm_reclaim_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_cpu_mask_from_starpu().

30.39.3.26 starpurm_acquire()

starpurm_drs_ret_t starpurm_acquire (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_withdraw_all_cpus_from_starpu().

30.39.3.27 starpurm_acquire_cpu()

starpurm_drs_ret_t starpurm_acquire_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_withdraw_cpu_from_starpu().

30.39.3.28 starpurm_acquire_cpus()

starpurm_drs_ret_t starpurm_acquire_cpus (

starpurm_drs_desc_t ∗ spd,

int ncpus)

Synonym for starpurm_withdraw_cpus_from_starpu().

30.39.3.29 starpurm_acquire_cpu_mask()

starpurm_drs_ret_t starpurm_acquire_cpu_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_cpu_mask_from_starpu().

Generated by Doxygen

30.39 Interoperability Support 475

30.39.3.30 starpurm_return_all()

starpurm_drs_ret_t starpurm_return_all (

starpurm_drs_desc_t ∗ spd)

Synonym for starpurm_assign_all_cpus_to_starpu().

30.39.3.31 starpurm_return_cpu()

starpurm_drs_ret_t starpurm_return_cpu (

starpurm_drs_desc_t ∗ spd,

int cpuid)

Synonym for starpurm_assign_cpu_to_starpu().

30.39.3.32 starpurm_get_device_type_id()

int starpurm_get_device_type_id (

const char ∗ type_str)

Return the device type ID constant associated to the device type name. Valid names for type_str are:

• "cpu": regular CPU unit;

• "opencl": OpenCL device unit;

• "cuda": nVidia CUDA device unit;

• "mic": Intel KNC type device unit.

30.39.3.33 starpurm_get_device_type_name()

const char∗ starpurm_get_device_type_name (

int type_id)

Return the device type name associated to the device type ID constant.

30.39.3.34 starpurm_get_nb_devices_by_type()

int starpurm_get_nb_devices_by_type (

int type_id)

Return the number of initialized StarPU worker for the device type type_id.

30.39.3.35 starpurm_get_device_id()

int starpurm_get_device_id (

int type_id,

int device_rank)

Return the unique ID assigned to the device_rank nth device of type type_id.

30.39.3.36 starpurm_assign_device_to_starpu()

starpurm_drs_ret_t starpurm_assign_device_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Extend StarPU's default scheduling context to use unit_rank nth device of type type_id.

30.39.3.37 starpurm_assign_devices_to_starpu()

starpurm_drs_ret_t starpurm_assign_devices_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Generated by Doxygen

476 Module Documentation a.k.a StarPU’s API

Extend StarPU's default scheduling context to use ndevices more devices of type type_id, up to the number
of StarPU workers initialized for such device type.

30.39.3.38 starpurm_assign_device_mask_to_starpu()

starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Extend StarPU's default scheduling context to use additional devices as designated by their corresponding StarPU
worker thread(s) CPU-set mask.

30.39.3.39 starpurm_assign_all_devices_to_starpu()

starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id)

Extend StarPU's default scheduling context to use all devices of type type_id for which it has a worker thread
initialized.

30.39.3.40 starpurm_withdraw_device_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Shrink StarPU's default scheduling context to not use unit_rank nth device of type type_id.

30.39.3.41 starpurm_withdraw_devices_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Shrink StarPU's default scheduling context to use ndevices less devices of type type_id.

30.39.3.42 starpurm_withdraw_device_mask_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Shrink StarPU's default scheduling context to not use devices designated by their corresponding StarPU worker
thread(s) CPU-set mask.

30.39.3.43 starpurm_withdraw_all_devices_from_starpu()

starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (

starpurm_drs_desc_t ∗ spd,

int type_id)

Shrink StarPU's default scheduling context to use no devices of type type_id.

30.39.3.44 starpurm_lend_device()

starpurm_drs_ret_t starpurm_lend_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_assign_device_to_starpu().

Generated by Doxygen

30.39 Interoperability Support 477

30.39.3.45 starpurm_lend_devices()

starpurm_drs_ret_t starpurm_lend_devices (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Synonym for starpurm_assign_devices_to_starpu().

30.39.3.46 starpurm_lend_device_mask()

starpurm_drs_ret_t starpurm_lend_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_assign_device_mask_to_starpu().

30.39.3.47 starpurm_lend_all_devices()

starpurm_drs_ret_t starpurm_lend_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_assign_all_devices_to_starpu().

30.39.3.48 starpurm_reclaim_device()

starpurm_drs_ret_t starpurm_reclaim_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_withdraw_device_from_starpu().

30.39.3.49 starpurm_reclaim_devices()

starpurm_drs_ret_t starpurm_reclaim_devices (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Synonym for starpurm_withdraw_devices_from_starpu().

30.39.3.50 starpurm_reclaim_device_mask()

starpurm_drs_ret_t starpurm_reclaim_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_device_mask_from_starpu().

30.39.3.51 starpurm_reclaim_all_devices()

starpurm_drs_ret_t starpurm_reclaim_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_withdraw_all_devices_from_starpu().

30.39.3.52 starpurm_acquire_device()

starpurm_drs_ret_t starpurm_acquire_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_withdraw_device_from_starpu().

Generated by Doxygen

478 Module Documentation a.k.a StarPU’s API

30.39.3.53 starpurm_acquire_devices()

starpurm_drs_ret_t starpurm_acquire_devices (

starpurm_drs_desc_t ∗ spd,

int type_id,

int ndevices)

Synonym for starpurm_withdraw_devices_from_starpu().

30.39.3.54 starpurm_acquire_device_mask()

starpurm_drs_ret_t starpurm_acquire_device_mask (

starpurm_drs_desc_t ∗ spd,

const hwloc_cpuset_t mask)

Synonym for starpurm_withdraw_device_mask_from_starpu().

30.39.3.55 starpurm_acquire_all_devices()

starpurm_drs_ret_t starpurm_acquire_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_withdraw_all_devices_from_starpu().

30.39.3.56 starpurm_return_all_devices()

starpurm_drs_ret_t starpurm_return_all_devices (

starpurm_drs_desc_t ∗ spd,

int type_id)

Synonym for starpurm_assign_all_devices_to_starpu().

30.39.3.57 starpurm_return_device()

starpurm_drs_ret_t starpurm_return_device (

starpurm_drs_desc_t ∗ spd,

int type_id,

int unit_rank)

Synonym for starpurm_assign_device_to_starpu().

30.39.3.58 starpurm_get_device_worker_cpuset()

hwloc_cpuset_t starpurm_get_device_worker_cpuset (

int type_id,

int unit_rank)

Return the CPU-set of the StarPU worker associated to the unit_rank nth unit of type type_id.

30.39.3.59 starpurm_get_global_cpuset()

hwloc_cpuset_t starpurm_get_global_cpuset (

void)

Return the cumulated CPU-set of all StarPU worker threads.

30.39.3.60 starpurm_get_selected_cpuset()

hwloc_cpuset_t starpurm_get_selected_cpuset (

void)

Return the CPU-set of the StarPU worker threads currently selected in the default StarPU's scheduling context.

30.39.3.61 starpurm_get_all_cpu_workers_cpuset()

hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (

void)

Generated by Doxygen

30.39 Interoperability Support 479

Return the cumulated CPU-set of all CPU StarPU worker threads.

30.39.3.62 starpurm_get_all_device_workers_cpuset()

hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (

void)

Return the cumulated CPU-set of all "non-CPU" StarPU worker threads.

30.39.3.63 starpurm_get_all_device_workers_cpuset_by_type()

hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (

int typeid)

Return the cumulated CPU-set of all StarPU worker threads for devices of type typeid.

Generated by Doxygen

480 Module Documentation a.k.a StarPU’s API

30.40 Master Slave Extension

Typedefs

• typedef void ∗ starpu_mpi_ms_func_symbol_t

Functions

• int starpu_mpi_ms_register_kernel (starpu_mpi_ms_func_symbol_t ∗symbol, const char ∗func_name)
• starpu_mpi_ms_kernel_t starpu_mpi_ms_get_kernel (starpu_mpi_ms_func_symbol_t symbol)

30.40.1 Detailed Description

Generated by Doxygen

30.41 Random Functions 481

30.41 Random Functions

Macros

• #define starpu_seed(seed)
• #define starpu_srand48(seed)
• #define starpu_drand48()
• #define starpu_lrand48()
• #define starpu_erand48(xsubi)
• #define starpu_srand48_r(seed, buffer)
• #define starpu_erand48_r(xsubi, buffer, result)

Typedefs

• typedef int starpu_drand48_data

30.41.1 Detailed Description

Generated by Doxygen

482 Module Documentation a.k.a StarPU’s API

30.42 Sink

Functions

• void starpu_sink_common_worker (int argc, char ∗∗argv)

30.42.1 Detailed Description

Generated by Doxygen

Chapter 31

File Index

31.1 File List

Here is a list of all documented files with brief descriptions:
sc_hypervisor.h . 535
sc_hypervisor_config.h . 536
sc_hypervisor_lp.h . 537
sc_hypervisor_monitoring.h . 538
sc_hypervisor_policy.h . 540
starpu.h . 485
starpu_bitmap.h . 486
starpu_bound.h . 486
starpu_clusters.h . 487
starpu_config.h . 487
starpu_cublas.h . 490
starpu_cublas_v2.h . 490
starpu_cuda.h . 491
starpu_cusparse.h . 490
starpu_data.h . 491
starpu_data_filters.h . 493
starpu_data_interfaces.h . 495
starpu_deprecated_api.h . 499
starpu_disk.h . 499
starpu_driver.h . 500
starpu_expert.h . 500
starpu_fxt.h . 500
starpu_hash.h . 501
starpu_helper.h . 501
starpu_heteroprio.h . 502
starpu_mic.h . 503
starpu_mod.f90 . 503
starpu_mpi.h . 504
starpu_mpi_lb.h . 506
starpu_mpi_ms.h . 506
starpu_opencl.h . 507
starpu_openmp.h . 508
starpu_perfmodel.h . 511
starpu_profiling.h . 512
starpu_rand.h . 513
starpu_sched_component.h . 513
starpu_sched_ctx.h . 517
starpu_sched_ctx_hypervisor.h . 519
starpu_scheduler.h . 520
starpu_simgrid_wrap.h . 521

484 File Index

starpu_sink.h . 521
starpu_stdlib.h . 521
starpu_task.h . 522
starpu_task_bundle.h . 524
starpu_task_dep.h . 524
starpu_task_list.h . 525
starpu_task_util.h . 526
starpu_thread.h . 527
starpu_thread_util.h . 530
starpu_tree.h . 531
starpu_util.h . 531
starpu_worker.h . 532
starpufft.h . 534
starpurm.h . 541

Generated by Doxygen

Chapter 32

File Documentation

32.1 starpu.h File Reference

#include <stdlib.h>
#include <stdint.h>
#include <starpu_config.h>
#include <starpu_opencl.h>
#include <starpu_thread.h>
#include <starpu_thread_util.h>
#include <starpu_util.h>
#include <starpu_data.h>
#include <starpu_helper.h>
#include <starpu_disk.h>
#include <starpu_data_interfaces.h>
#include <starpu_data_filters.h>
#include <starpu_stdlib.h>
#include <starpu_task_bundle.h>
#include <starpu_task_dep.h>
#include <starpu_task.h>
#include <starpu_worker.h>
#include <starpu_perfmodel.h>
#include <starpu_task_list.h>
#include <starpu_task_util.h>
#include <starpu_scheduler.h>
#include <starpu_sched_ctx.h>
#include <starpu_expert.h>
#include <starpu_rand.h>
#include <starpu_cuda.h>
#include <starpu_cublas.h>
#include <starpu_cusparse.h>
#include <starpu_bound.h>
#include <starpu_hash.h>
#include <starpu_profiling.h>
#include <starpu_fxt.h>
#include <starpu_driver.h>
#include <starpu_tree.h>
#include <starpu_openmp.h>
#include <starpu_simgrid_wrap.h>
#include <starpu_bitmap.h>
#include <starpu_clusters.h>
#include "starpu_deprecated_api.h"

486 File Documentation

Data Structures

• struct starpu_conf

Macros

• #define STARPU_THREAD_ACTIVE

Functions

• int starpu_conf_init (struct starpu_conf ∗conf)

• int starpu_init (struct starpu_conf ∗conf) STARPU_WARN_UNUSED_RESULT

• int starpu_initialize (struct starpu_conf ∗user_conf, int ∗argc, char ∗∗∗argv)

• int starpu_is_initialized (void)

• void starpu_wait_initialized (void)

• void starpu_shutdown (void)

• void starpu_pause (void)

• void starpu_resume (void)

• unsigned starpu_get_next_bindid (unsigned flags, unsigned ∗preferred, unsigned npreferred)

• int starpu_bind_thread_on (int cpuid, unsigned flags, const char ∗name)

• void starpu_topology_print (FILE ∗f)
• int starpu_asynchronous_copy_disabled (void)

• int starpu_asynchronous_cuda_copy_disabled (void)

• int starpu_asynchronous_opencl_copy_disabled (void)

• int starpu_asynchronous_mic_copy_disabled (void)

• int starpu_asynchronous_mpi_ms_copy_disabled (void)

• void starpu_display_stats (void)

• void starpu_get_version (int ∗major, int ∗minor, int ∗release)

32.2 starpu_bitmap.h File Reference

Functions

• struct starpu_bitmap ∗ starpu_bitmap_create (void) STARPU_ATTRIBUTE_MALLOC

• void starpu_bitmap_destroy (struct starpu_bitmap ∗b)

• void starpu_bitmap_set (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset_all (struct starpu_bitmap ∗b)

• int starpu_bitmap_get (struct starpu_bitmap ∗b, int e)

• void starpu_bitmap_unset_and (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b, struct starpu_bitmap ∗c)

• void starpu_bitmap_or (struct starpu_bitmap ∗a, struct starpu_bitmap ∗b)

• int starpu_bitmap_and_get (struct starpu_bitmap ∗b1, struct starpu_bitmap ∗b2, int e)

• int starpu_bitmap_cardinal (struct starpu_bitmap ∗b)

• int starpu_bitmap_first (struct starpu_bitmap ∗b)

• int starpu_bitmap_last (struct starpu_bitmap ∗b)

• int starpu_bitmap_next (struct starpu_bitmap ∗b, int e)

• int starpu_bitmap_has_next (struct starpu_bitmap ∗b, int e)

32.3 starpu_bound.h File Reference

#include <stdio.h>

Generated by Doxygen

32.4 starpu_clusters.h File Reference 487

Functions

• void starpu_bound_start (int deps, int prio)

• void starpu_bound_stop (void)

• void starpu_bound_print_dot (FILE ∗output)

• void starpu_bound_compute (double ∗res, double ∗integer_res, int integer)

• void starpu_bound_print_lp (FILE ∗output)

• void starpu_bound_print_mps (FILE ∗output)

• void starpu_bound_print (FILE ∗output, int integer)

32.4 starpu_clusters.h File Reference

#include <starpu_config.h>
#include <hwloc.h>

Macros

• #define STARPU_CLUSTER_MIN_NB

• #define STARPU_CLUSTER_MAX_NB

• #define STARPU_CLUSTER_NB

• #define STARPU_CLUSTER_PREFERE_MIN

• #define STARPU_CLUSTER_KEEP_HOMOGENEOUS

• #define STARPU_CLUSTER_POLICY_NAME

• #define STARPU_CLUSTER_POLICY_STRUCT

• #define STARPU_CLUSTER_CREATE_FUNC

• #define STARPU_CLUSTER_CREATE_FUNC_ARG

• #define STARPU_CLUSTER_TYPE

• #define STARPU_CLUSTER_AWAKE_WORKERS

• #define STARPU_CLUSTER_PARTITION_ONE

• #define STARPU_CLUSTER_NEW

• #define STARPU_CLUSTER_NCORES

• #define starpu_intel_openmp_mkl_prologue

Enumerations

• enum starpu_cluster_types { STARPU_CLUSTER_OPENMP, STARPU_CLUSTER_INTEL_OPENMP_M←↩
KL, STARPU_CLUSTER_GNU_OPENMP_MKL }

Functions

• struct starpu_cluster_machine ∗ starpu_cluster_machine (hwloc_obj_type_t cluster_level,...)

• int starpu_uncluster_machine (struct starpu_cluster_machine ∗clusters)

• int starpu_cluster_print (struct starpu_cluster_machine ∗clusters)

• void starpu_openmp_prologue (void ∗)
• void starpu_gnu_openmp_mkl_prologue (void ∗)

32.5 starpu_config.h File Reference

#include <sys/types.h>

Generated by Doxygen

488 File Documentation

Macros

• #define STARPU_MAJOR_VERSION
• #define STARPU_MINOR_VERSION
• #define STARPU_RELEASE_VERSION
• #define STARPU_USE_CPU
• #define STARPU_USE_CUDA
• #define STARPU_HAVE_LIBNVIDIA_ML
• #define STARPU_USE_OPENCL
• #define STARPU_USE_MIC
• #define STARPU_USE_MPI_MASTER_SLAVE
• #define STARPU_OPENMP
• #define STARPU_CLUSTER
• #define STARPU_SIMGRID
• #define STARPU_SIMGRID_MC
• #define STARPU_SIMGRID_HAVE_XBT_BARRIER_INIT
• #define STARPU_HAVE_SIMGRID_MSG_H
• #define STARPU_HAVE_MSG_MSG_H
• #define STARPU_HAVE_SIMGRID_ACTOR_H
• #define STARPU_HAVE_SIMGRID_SEMAPHORE_H
• #define STARPU_HAVE_SIMGRID_MUTEX_H
• #define STARPU_HAVE_SIMGRID_COND_H
• #define STARPU_HAVE_SIMGRID_BARRIER_H
• #define STARPU_HAVE_XBT_SYNCHRO_H
• #define STARPU_HAVE_VALGRIND_H
• #define STARPU_HAVE_MEMCHECK_H
• #define STARPU_VALGRIND_FULL
• #define STARPU_SANITIZE_LEAK
• #define STARPU_NON_BLOCKING_DRIVERS
• #define STARPU_WORKER_CALLBACKS
• #define STARPU_HAVE_ICC
• #define STARPU_USE_MPI
• #define STARPU_USE_MPI_MPI
• #define STARPU_USE_MPI_NMAD
• #define STARPU_ATLAS
• #define STARPU_GOTO
• #define STARPU_OPENBLAS
• #define STARPU_MKL
• #define STARPU_ARMPL
• #define STARPU_SYSTEM_BLAS
• #define STARPU_HAVE_BLAS
• #define STARPU_OPENCL_DATADIR
• #define STARPU_HAVE_MAGMA
• #define STARPU_OPENGL_RENDER
• #define STARPU_USE_GTK
• #define STARPU_HAVE_X11
• #define STARPU_HAVE_POSIX_MEMALIGN
• #define STARPU_HAVE_MEMALIGN
• #define STARPU_HAVE_MALLOC_H
• #define STARPU_HAVE_SYNC_BOOL_COMPARE_AND_SWAP
• #define STARPU_HAVE_SYNC_VAL_COMPARE_AND_SWAP
• #define STARPU_HAVE_SYNC_FETCH_AND_ADD
• #define STARPU_HAVE_SYNC_FETCH_AND_OR
• #define STARPU_HAVE_SYNC_LOCK_TEST_AND_SET
• #define STARPU_HAVE_SYNC_SYNCHRONIZE

Generated by Doxygen

32.5 starpu_config.h File Reference 489

• #define STARPU_HAVE_ATOMIC_EXCHANGE_N
• #define STARPU_DEVEL
• #define STARPU_MODEL_DEBUG
• #define STARPU_NO_ASSERT
• #define STARPU_DEBUG
• #define STARPU_VERBOSE
• #define STARPU_GDB_PATH
• #define STARPU_HAVE_FFTW
• #define STARPU_HAVE_FFTWF
• #define STARPU_HAVE_FFTWL
• #define STARPU_HAVE_CUFFTDOUBLECOMPLEX
• #define STARPU_HAVE_CURAND
• #define STARPU_MAXNODES
• #define STARPU_NMAXBUFS
• #define STARPU_MAXCPUS
• #define STARPU_MAXNUMANODES
• #define STARPU_MAXCUDADEVS
• #define STARPU_MAXOPENCLDEVS
• #define STARPU_MAXMICDEVS
• #define STARPU_NMAXWORKERS
• #define STARPU_NMAX_SCHED_CTXS
• #define STARPU_MAXIMPLEMENTATIONS
• #define STARPU_MAXMPKERNELS
• #define STARPU_USE_SC_HYPERVISOR
• #define STARPU_SC_HYPERVISOR_DEBUG
• #define STARPU_HAVE_GLPK_H
• #define STARPU_HAVE_CUDA_MEMCPY_PEER
• #define STARPU_HAVE_LIBNUMA
• #define STARPU_HAVE_WINDOWS
• #define STARPU_LINUX_SYS
• #define STARPU_HAVE_SETENV
• #define STARPU_HAVE_UNSETENV
• #define STARPU_HAVE_UNISTD_H
• #define STARPU_HAVE_HDF5
• #define STARPU_USE_FXT
• #define STARPU_FXT_LOCK_TRACES
• #define __starpu_func__
• #define __starpu_inline
• #define STARPU_QUICK_CHECK
• #define STARPU_LONG_CHECK
• #define STARPU_USE_DRAND48
• #define STARPU_USE_ERAND48_R
• #define STARPU_HAVE_NEARBYINTF
• #define STARPU_HAVE_RINTF
• #define STARPU_HAVE_HWLOC
• #define STARPU_HAVE_PTHREAD_SPIN_LOCK
• #define STARPU_HAVE_PTHREAD_BARRIER
• #define STARPU_HAVE_PTHREAD_SETNAME_NP
• #define STARPU_HAVE_STRUCT_TIMESPEC
• #define STARPU_HAVE_HELGRIND_H
• #define HAVE_MPI_COMM_F2C
• #define STARPU_HAVE_DARWIN
• #define STARPU_HAVE_CXX11
• #define STARPU_HAVE_STRERROR_R
• #define STARPU_HAVE_STATEMENT_EXPRESSIONS
• #define STARPU_PERF_MODEL_DIR

Generated by Doxygen

490 File Documentation

Typedefs

• typedef ssize_t starpu_ssize_t

32.5.1 Macro Definition Documentation

32.5.1.1 STARPU_HAVE_HELGRIND_H

#define STARPU_HAVE_HELGRIND_H

This is only for building examples

32.5.1.2 HAVE_MPI_COMM_F2C

#define HAVE_MPI_COMM_F2C

Enable Fortran to C MPI interface

32.6 starpu_cublas.h File Reference

Functions

• void starpu_cublas_init (void)

• void starpu_cublas_set_stream (void)

• void starpu_cublas_shutdown (void)

32.7 starpu_cublas_v2.h File Reference

#include <cublas_v2.h>

Functions

• cublasHandle_t starpu_cublas_get_local_handle (void)

32.8 starpu_cusparse.h File Reference

#include <cusparse.h>

Functions

• void starpu_cusparse_init (void)

• void starpu_cusparse_shutdown (void)

• cusparseHandle_t starpu_cusparse_get_local_handle (void)

Generated by Doxygen

32.9 starpu_cuda.h File Reference 491

32.9 starpu_cuda.h File Reference

#include <starpu_config.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>

Macros

• #define STARPU_CUBLAS_REPORT_ERROR(status)
• #define STARPU_CUDA_REPORT_ERROR(status)

Functions

• void starpu_cublas_report_error (const char ∗func, const char ∗file, int line, int status)
• void starpu_cuda_report_error (const char ∗func, const char ∗file, int line, cudaError_t status)
• cudaStream_t starpu_cuda_get_local_stream (void)
• const struct cudaDeviceProp ∗ starpu_cuda_get_device_properties (unsigned workerid)
• int starpu_cuda_copy_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t ssize, cudaStream_t stream, enum cudaMemcpyKind kind)
• int starpu_cuda_copy2d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,

size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, cudaStream_t stream, enum cudaMemcpy←↩
Kind kind)

• int starpu_cuda_copy3d_async_sync (void ∗src_ptr, unsigned src_node, void ∗dst_ptr, unsigned dst_node,
size_t blocksize, size_t numblocks_1, size_t ld1_src, size_t ld1_dst, size_t numblocks_2, size_t ld2_src,
size_t ld2_dst, cudaStream_t stream, enum cudaMemcpyKind kind)

• void starpu_cuda_set_device (unsigned devid)

32.10 starpu_data.h File Reference

#include <starpu.h>

Typedefs

• typedef struct _starpu_data_state ∗ starpu_data_handle_t
• typedef struct starpu_arbiter ∗ starpu_arbiter_t

Enumerations

• enum starpu_data_access_mode {
STARPU_NONE, STARPU_R, STARPU_W, STARPU_RW,
STARPU_SCRATCH, STARPU_REDUX, STARPU_COMMUTE, STARPU_SSEND,
STARPU_LOCALITY, STARPU_NOPLAN, STARPU_ACCESS_MODE_MAX }

Functions

• void starpu_data_set_name (starpu_data_handle_t handle, const char ∗name)
• void starpu_data_set_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int dims[])
• void starpu_data_set_coordinates (starpu_data_handle_t handle, unsigned dimensions,...)
• unsigned starpu_data_get_coordinates_array (starpu_data_handle_t handle, unsigned dimensions, int

dims[])
• void starpu_data_unregister (starpu_data_handle_t handle)
• void starpu_data_unregister_no_coherency (starpu_data_handle_t handle)
• void starpu_data_unregister_submit (starpu_data_handle_t handle)

Generated by Doxygen

492 File Documentation

• void starpu_data_invalidate (starpu_data_handle_t handle)
• void starpu_data_invalidate_submit (starpu_data_handle_t handle)
• void starpu_data_advise_as_important (starpu_data_handle_t handle, unsigned is_important)
• starpu_arbiter_t starpu_arbiter_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_data_assign_arbiter (starpu_data_handle_t handle, starpu_arbiter_t arbiter)
• void starpu_arbiter_destroy (starpu_arbiter_t arbiter)
• int starpu_data_request_allocation (starpu_data_handle_t handle, unsigned node)
• int starpu_data_fetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned async,

int prio)
• int starpu_data_idle_prefetch_on_node (starpu_data_handle_t handle, unsigned node, unsigned async)
• int starpu_data_idle_prefetch_on_node_prio (starpu_data_handle_t handle, unsigned node, unsigned

async, int prio)
• unsigned starpu_data_is_on_node (starpu_data_handle_t handle, unsigned node)
• void starpu_data_wont_use (starpu_data_handle_t handle)
• void starpu_data_set_wt_mask (starpu_data_handle_t handle, uint32_t wt_mask)
• void starpu_data_set_ooc_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_ooc_flag (starpu_data_handle_t handle)
• void starpu_data_query_status (starpu_data_handle_t handle, int memory_node, int ∗is_allocated, int ∗is←↩

_valid, int ∗is_requested)
• void starpu_data_set_reduction_methods (starpu_data_handle_t handle, struct starpu_codelet ∗redux_cl,

struct starpu_codelet ∗init_cl)
• struct starpu_data_interface_ops ∗ starpu_data_get_interface_ops (starpu_data_handle_t handle)
• unsigned starpu_data_test_if_allocated_on_node (starpu_data_handle_t handle, unsigned memory_←↩

node)
• void starpu_memchunk_tidy (unsigned memory_node)
• void starpu_data_set_user_data (starpu_data_handle_t handle, void ∗user_data)
• void ∗ starpu_data_get_user_data (starpu_data_handle_t handle)

Implicit Data Dependencies

In this section, we describe how StarPU makes it possible to insert implicit task dependencies in order to enforce
sequential data consistency. When this data consistency is enabled on a specific data handle, any data access
will appear as sequentially consistent from the application. For instance, if the application submits two tasks
that access the same piece of data in read-only mode, and then a third task that access it in write mode,
dependencies will be added between the two first tasks and the third one. Implicit data dependencies are also
inserted in the case of data accesses from the application.

• void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t handle, unsigned flag)
• unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t handle)
• unsigned starpu_data_get_default_sequential_consistency_flag (void)
• void starpu_data_set_default_sequential_consistency_flag (unsigned flag)

Access registered data from the application

• #define STARPU_ACQUIRE_NO_NODE
• #define STARPU_ACQUIRE_NO_NODE_LOCK_ALL
• #define STARPU_DATA_ACQUIRE_CB(handle, mode, code)
• int starpu_data_acquire (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node (starpu_data_handle_t handle, int node, enum starpu_data_access_mode

mode)
• int starpu_data_acquire_cb (starpu_data_handle_t handle, enum starpu_data_access_mode mode,

void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_on_node_cb (starpu_data_handle_t handle, int node, enum starpu_data_access←↩

_mode mode, void(∗callback)(void ∗), void ∗arg)
• int starpu_data_acquire_cb_sequential_consistency (starpu_data_handle_t handle, enum starpu_data_←↩

access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)

Generated by Doxygen

32.11 starpu_data_filters.h File Reference 493

• int starpu_data_acquire_on_node_cb_sequential_consistency (starpu_data_handle_t handle, int node, enum
starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency)

• int starpu_data_acquire_on_node_cb_sequential_consistency_quick (starpu_data_handle_t handle, int
node, enum starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_consistency,
int quick)

• int starpu_data_acquire_on_node_cb_sequential_consistency_sync_jobids (starpu_data_handle_t handle,
int node, enum starpu_data_access_mode mode, void(∗callback)(void ∗), void ∗arg, int sequential_←↩
consistency, int quick, long ∗pre_sync_jobid, long ∗post_sync_jobid)

• int starpu_data_acquire_try (starpu_data_handle_t handle, enum starpu_data_access_mode mode)
• int starpu_data_acquire_on_node_try (starpu_data_handle_t handle, int node, enum starpu_data_access←↩

_mode mode)
• void starpu_data_release (starpu_data_handle_t handle)
• void starpu_data_release_on_node (starpu_data_handle_t handle, int node)

32.11 starpu_data_filters.h File Reference

#include <starpu.h>
#include <stdarg.h>

Data Structures

• struct starpu_data_filter

Functions

Basic API

• void starpu_data_partition (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f)
• void starpu_data_unpartition (starpu_data_handle_t root_data, unsigned gathering_node)
• starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t handle, unsigned i)
• int starpu_data_get_nb_children (starpu_data_handle_t handle)
• starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t root_data, unsigned depth,...)
• starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t root_data, unsigned depth,

va_list pa)
• void starpu_data_map_filters (starpu_data_handle_t root_data, unsigned nfilters,...)
• void starpu_data_vmap_filters (starpu_data_handle_t root_data, unsigned nfilters, va_list pa)

Asynchronous API

• void starpu_data_partition_plan (starpu_data_handle_t initial_handle, struct starpu_data_filter ∗f, starpu←↩
_data_handle_t ∗children)

• void starpu_data_partition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_←↩
handle_t ∗children)

• void starpu_data_partition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,
starpu_data_handle_t ∗children)

• void starpu_data_partition_readwrite_upgrade_submit (starpu_data_handle_t initial_handle, unsigned
nparts, starpu_data_handle_t ∗children)

• void starpu_data_unpartition_submit (starpu_data_handle_t initial_handle, unsigned nparts, starpu_←↩
data_handle_t ∗children, int gathering_node)

• void starpu_data_unpartition_submit_r (starpu_data_handle_t initial_handle, int gathering_node)
• void starpu_data_unpartition_readonly_submit (starpu_data_handle_t initial_handle, unsigned nparts,

starpu_data_handle_t ∗children, int gathering_node)
• void starpu_data_partition_clean (starpu_data_handle_t root_data, unsigned nparts, starpu_data_←↩

handle_t ∗children)
• void starpu_data_unpartition_submit_sequential_consistency_cb (starpu_data_handle_t initial_←↩

handle, unsigned nparts, starpu_data_handle_t ∗children, int gather_node, int sequential_consistency,
void(∗callback_func)(void ∗), void ∗callback_arg)

Generated by Doxygen

494 File Documentation

• void starpu_data_partition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int sequential_consistency)

• void starpu_data_unpartition_submit_sequential_consistency (starpu_data_handle_t initial_handle, un-
signed nparts, starpu_data_handle_t ∗children, int gathering_node, int sequential_consistency)

Predefined BCSR Filter Functions

Predefined partitioning functions for BCSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_bcsr_filter_canonical_block (void ∗father_interface, void ∗child_interface, struct starpu_data←↩
_filter ∗f, unsigned id, unsigned nparts)

• unsigned starpu_bcsr_filter_canonical_block_get_nchildren (struct starpu_data_filter ∗f, starpu_data_←↩
handle_t handle)

• struct starpu_data_interface_ops ∗ starpu_bcsr_filter_canonical_block_child_ops (struct starpu_data_←↩
filter ∗f, unsigned child)

• void starpu_bcsr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_←↩
filter ∗f, unsigned id, unsigned nparts)

Predefined CSR Filter Functions

Predefined partitioning functions for CSR data. Examples on how to use them are shown in Partitioning Data.

• void starpu_csr_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

Predefined Matrix Filter Functions

Predefined partitioning functions for matrix data. Examples on how to use them are shown in Partitioning Data.
Note: this is using the C element order which is row-major, i.e. elements with consecutive x coordinates are
consecutive in memory.

• void starpu_matrix_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_matrix_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data←↩
_filter ∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data←↩
_filter ∗f, unsigned id, unsigned nparts)

• void starpu_matrix_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

Predefined Vector Filter Functions

Predefined partitioning functions for vector data. Examples on how to use them are shown in Partitioning Data.

• void starpu_vector_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_vector_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data←↩
_filter ∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list_long (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_vector_filter_list (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f, un-
signed id, unsigned nparts)

• void starpu_vector_filter_divide_in_2 (void ∗father_interface, void ∗child_interface, struct starpu_data_←↩
filter ∗f, unsigned id, unsigned nparts)

Predefined Block Filter Functions

Predefined partitioning functions for block data. Examples on how to use them are shown in Partitioning Data.
An example is available in examples/filters/shadow3d.c Note: this is using the C element order
which is row-major, i.e. elements with consecutive x coordinates are consecutive in memory.

• void starpu_block_filter_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter ∗f,
unsigned id, unsigned nparts)

• void starpu_block_filter_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu_data←↩
_filter ∗f, unsigned id, unsigned nparts)

Generated by Doxygen

32.12 starpu_data_interfaces.h File Reference 495

• void starpu_block_filter_vertical_block (void ∗father_interface, void ∗child_interface, struct starpu_data_←↩
filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_vertical_block_shadow (void ∗father_interface, void ∗child_interface, struct
starpu_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block (void ∗father_interface, void ∗child_interface, struct starpu_data_filter
∗f, unsigned id, unsigned nparts)

• void starpu_block_filter_depth_block_shadow (void ∗father_interface, void ∗child_interface, struct starpu←↩
_data_filter ∗f, unsigned id, unsigned nparts)

• void starpu_filter_nparts_compute_chunk_size_and_offset (unsigned n, unsigned nparts, size_t elemsize,
unsigned id, unsigned ld, unsigned ∗chunk_size, size_t ∗offset)

32.12 starpu_data_interfaces.h File Reference

#include <starpu.h>
#include <cuda_runtime.h>

Data Structures

• struct starpu_data_copy_methods
• struct starpu_data_interface_ops
• struct starpu_matrix_interface
• struct starpu_coo_interface
• struct starpu_block_interface
• struct starpu_vector_interface
• struct starpu_variable_interface
• struct starpu_csr_interface
• struct starpu_bcsr_interface
• struct starpu_multiformat_data_interface_ops
• struct starpu_multiformat_interface

Typedefs

• typedef cudaStream_t starpu_cudaStream_t

Enumerations

• enum starpu_data_interface_id {
STARPU_UNKNOWN_INTERFACE_ID, STARPU_MATRIX_INTERFACE_ID, STARPU_BLOCK_INTER←↩
FACE_ID, STARPU_VECTOR_INTERFACE_ID,
STARPU_CSR_INTERFACE_ID, STARPU_BCSR_INTERFACE_ID, STARPU_VARIABLE_INTERFACE←↩
_ID, STARPU_VOID_INTERFACE_ID,
STARPU_MULTIFORMAT_INTERFACE_ID, STARPU_COO_INTERFACE_ID, STARPU_MAX_INTERF←↩
ACE_ID }

Functions

Basic API

• void starpu_data_register (starpu_data_handle_t ∗handleptr, int home_node, void ∗data_interface, struct
starpu_data_interface_ops ∗ops)

• void starpu_data_ptr_register (starpu_data_handle_t handle, unsigned node)
• void starpu_data_register_same (starpu_data_handle_t ∗handledst, starpu_data_handle_t handlesrc)
• void ∗ starpu_data_handle_to_pointer (starpu_data_handle_t handle, unsigned node)
• int starpu_data_pointer_is_inside (starpu_data_handle_t handle, unsigned node, void ∗ptr)
• void ∗ starpu_data_get_local_ptr (starpu_data_handle_t handle)
• void ∗ starpu_data_get_interface_on_node (starpu_data_handle_t handle, unsigned memory_node)
• enum starpu_data_interface_id starpu_data_get_interface_id (starpu_data_handle_t handle)

Generated by Doxygen

496 File Documentation

• int starpu_data_pack (starpu_data_handle_t handle, void ∗∗ptr, starpu_ssize_t ∗count)
• int starpu_data_unpack (starpu_data_handle_t handle, void ∗ptr, size_t count)
• size_t starpu_data_get_size (starpu_data_handle_t handle)
• size_t starpu_data_get_alloc_size (starpu_data_handle_t handle)
• starpu_data_handle_t starpu_data_lookup (const void ∗ptr)
• int starpu_data_get_home_node (starpu_data_handle_t handle)
• int starpu_data_interface_get_next_id (void)
• int starpu_interface_copy (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩

offset, unsigned dst_node, size_t size, void ∗async_data)
• int starpu_interface_copy2d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst←↩

_offset, unsigned dst_node, size_t blocksize, size_t numblocks, size_t ld_src, size_t ld_dst, void ∗async←↩
_data)

• int starpu_interface_copy3d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst←↩
_offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t
numblocks2, size_t ld2_src, size_t ld2_dst, void ∗async_data)

• int starpu_interface_copy4d (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst, size_t dst_←↩
offset, unsigned dst_node, size_t blocksize, size_t numblocks1, size_t ld1_src, size_t ld1_dst, size_t num-
blocks2, size_t ld2_src, size_t ld2_dst, size_t numblocks3, size_t ld3_src, size_t ld3_dst, void ∗async_←↩
data)

• void starpu_interface_start_driver_copy_async (unsigned src_node, unsigned dst_node, double ∗start)
• void starpu_interface_end_driver_copy_async (unsigned src_node, unsigned dst_node, double start)
• void starpu_interface_data_copy (unsigned src_node, unsigned dst_node, size_t size)
• uintptr_t starpu_malloc_on_node_flags (unsigned dst_node, size_t size, int flags)
• uintptr_t starpu_malloc_on_node (unsigned dst_node, size_t size)
• void starpu_free_on_node_flags (unsigned dst_node, uintptr_t addr, size_t size, int flags)
• void starpu_free_on_node (unsigned dst_node, uintptr_t addr, size_t size)
• void starpu_malloc_on_node_set_default_flags (unsigned node, int flags)

Accessing Matrix Data Interfaces

• #define STARPU_MATRIX_GET_PTR(interface)

• #define STARPU_MATRIX_GET_DEV_HANDLE(interface)

• #define STARPU_MATRIX_GET_OFFSET(interface)

• #define STARPU_MATRIX_GET_NX(interface)

• #define STARPU_MATRIX_GET_NY(interface)

• #define STARPU_MATRIX_GET_LD(interface)

• #define STARPU_MATRIX_GET_ELEMSIZE(interface)

• #define STARPU_MATRIX_GET_ALLOCSIZE(interface)

• #define STARPU_MATRIX_SET_NX(interface, newnx)

• #define STARPU_MATRIX_SET_NY(interface, newny)

• #define STARPU_MATRIX_SET_LD(interface, newld)

• struct starpu_data_interface_ops starpu_interface_matrix_ops

• void starpu_matrix_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ld,
uint32_t nx, uint32_t ny, size_t elemsize)

• void starpu_matrix_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,
uint32_t ld, uint32_t nx, uint32_t ny, size_t elemsize, size_t allocsize)

• void starpu_matrix_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩
handle, size_t offset, uint32_t ld)

• uint32_t starpu_matrix_get_nx (starpu_data_handle_t handle)

• uint32_t starpu_matrix_get_ny (starpu_data_handle_t handle)

• uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t handle)

• uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t handle)

• size_t starpu_matrix_get_elemsize (starpu_data_handle_t handle)

• size_t starpu_matrix_get_allocsize (starpu_data_handle_t handle)

Generated by Doxygen

32.12 starpu_data_interfaces.h File Reference 497

Accessing COO Data Interfaces

• #define STARPU_COO_GET_COLUMNS(interface)
• #define STARPU_COO_GET_COLUMNS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_ROWS(interface)
• #define STARPU_COO_GET_ROWS_DEV_HANDLE(interface)
• #define STARPU_COO_GET_VALUES(interface)
• #define STARPU_COO_GET_VALUES_DEV_HANDLE(interface)
• #define STARPU_COO_GET_OFFSET
• #define STARPU_COO_GET_NX(interface)
• #define STARPU_COO_GET_NY(interface)
• #define STARPU_COO_GET_NVALUES(interface)
• #define STARPU_COO_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_coo_ops
• void starpu_coo_data_register (starpu_data_handle_t ∗handleptr, int home_node, uint32_t nx, uint32_t ny,

uint32_t n_values, uint32_t ∗columns, uint32_t ∗rows, uintptr_t values, size_t elemsize)

Block Data Interface

• #define STARPU_BLOCK_GET_PTR(interface)
• #define STARPU_BLOCK_GET_DEV_HANDLE(interface)
• #define STARPU_BLOCK_GET_OFFSET(interface)
• #define STARPU_BLOCK_GET_NX(interface)
• #define STARPU_BLOCK_GET_NY(interface)
• #define STARPU_BLOCK_GET_NZ(interface)
• #define STARPU_BLOCK_GET_LDY(interface)
• #define STARPU_BLOCK_GET_LDZ(interface)
• #define STARPU_BLOCK_GET_ELEMSIZE(interface)
• struct starpu_data_interface_ops starpu_interface_block_ops
• void starpu_block_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t ldy,

uint32_t ldz, uint32_t nx, uint32_t ny, uint32_t nz, size_t elemsize)
• void starpu_block_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩

handle, size_t offset, uint32_t ldy, uint32_t ldz)
• uint32_t starpu_block_get_nx (starpu_data_handle_t handle)
• uint32_t starpu_block_get_ny (starpu_data_handle_t handle)
• uint32_t starpu_block_get_nz (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldy (starpu_data_handle_t handle)
• uint32_t starpu_block_get_local_ldz (starpu_data_handle_t handle)
• uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t handle)
• size_t starpu_block_get_elemsize (starpu_data_handle_t handle)

Vector Data Interface

• #define STARPU_VECTOR_GET_PTR(interface)
• #define STARPU_VECTOR_GET_DEV_HANDLE(interface)
• #define STARPU_VECTOR_GET_OFFSET(interface)
• #define STARPU_VECTOR_GET_NX(interface)
• #define STARPU_VECTOR_GET_ELEMSIZE(interface)
• #define STARPU_VECTOR_GET_ALLOCSIZE(interface)
• #define STARPU_VECTOR_GET_SLICE_BASE(interface)
• #define STARPU_VECTOR_SET_NX(interface, newnx)
• struct starpu_data_interface_ops starpu_interface_vector_ops
• void starpu_vector_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, uint32_t nx,

size_t elemsize)
• void starpu_vector_data_register_allocsize (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr,

uint32_t nx, size_t elemsize, size_t allocsize)

Generated by Doxygen

498 File Documentation

• void starpu_vector_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev_←↩
handle, size_t offset)

• uint32_t starpu_vector_get_nx (starpu_data_handle_t handle)

• size_t starpu_vector_get_elemsize (starpu_data_handle_t handle)

• size_t starpu_vector_get_allocsize (starpu_data_handle_t handle)

• uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t handle)

Variable Data Interface

• #define STARPU_VARIABLE_GET_PTR(interface)

• #define STARPU_VARIABLE_GET_OFFSET(interface)

• #define STARPU_VARIABLE_GET_ELEMSIZE(interface)

• #define STARPU_VARIABLE_GET_DEV_HANDLE(interface)

• struct starpu_data_interface_ops starpu_interface_variable_ops

• void starpu_variable_data_register (starpu_data_handle_t ∗handle, int home_node, uintptr_t ptr, size_t size)

• void starpu_variable_ptr_register (starpu_data_handle_t handle, unsigned node, uintptr_t ptr, uintptr_t dev←↩
_handle, size_t offset)

• size_t starpu_variable_get_elemsize (starpu_data_handle_t handle)

• uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t handle)

Void Data Interface

• struct starpu_data_interface_ops starpu_interface_void_ops

• void starpu_void_data_register (starpu_data_handle_t ∗handle)

CSR Data Interface

• #define STARPU_CSR_GET_NNZ(interface)

• #define STARPU_CSR_GET_NROW(interface)

• #define STARPU_CSR_GET_NZVAL(interface)

• #define STARPU_CSR_GET_NZVAL_DEV_HANDLE(interface)

• #define STARPU_CSR_GET_COLIND(interface)

• #define STARPU_CSR_GET_COLIND_DEV_HANDLE(interface)

• #define STARPU_CSR_GET_ROWPTR(interface)

• #define STARPU_CSR_GET_ROWPTR_DEV_HANDLE(interface)

• #define STARPU_CSR_GET_OFFSET

• #define STARPU_CSR_GET_FIRSTENTRY(interface)

• #define STARPU_CSR_GET_ELEMSIZE(interface)

• struct starpu_data_interface_ops starpu_interface_csr_ops

• void starpu_csr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,
uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, size_t elemsize)

• uint32_t starpu_csr_get_nnz (starpu_data_handle_t handle)

• uint32_t starpu_csr_get_nrow (starpu_data_handle_t handle)

• uint32_t starpu_csr_get_firstentry (starpu_data_handle_t handle)

• uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t handle)

• uint32_t ∗ starpu_csr_get_local_colind (starpu_data_handle_t handle)

• uint32_t ∗ starpu_csr_get_local_rowptr (starpu_data_handle_t handle)

• size_t starpu_csr_get_elemsize (starpu_data_handle_t handle)

Generated by Doxygen

32.13 starpu_deprecated_api.h File Reference 499

BCSR Data Interface

• #define STARPU_BCSR_GET_NNZ(interface)
• #define STARPU_BCSR_GET_NROW(interface)
• #define STARPU_BCSR_GET_NZVAL(interface)
• #define STARPU_BCSR_GET_NZVAL_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_COLIND(interface)
• #define STARPU_BCSR_GET_COLIND_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_ROWPTR(interface)
• #define STARPU_BCSR_GET_ROWPTR_DEV_HANDLE(interface)
• #define STARPU_BCSR_GET_FIRSTENTRY(interface)
• #define STARPU_BCSR_GET_R(interface)
• #define STARPU_BCSR_GET_C(interface)
• #define STARPU_BCSR_GET_ELEMSIZE(interface)
• #define STARPU_BCSR_GET_OFFSET
• struct starpu_data_interface_ops starpu_interface_bcsr_ops
• void starpu_bcsr_data_register (starpu_data_handle_t ∗handle, int home_node, uint32_t nnz, uint32_t nrow,

uintptr_t nzval, uint32_t ∗colind, uint32_t ∗rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize)
• uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t handle)
• uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_colind (starpu_data_handle_t handle)
• uint32_t ∗ starpu_bcsr_get_local_rowptr (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_r (starpu_data_handle_t handle)
• uint32_t starpu_bcsr_get_c (starpu_data_handle_t handle)
• size_t starpu_bcsr_get_elemsize (starpu_data_handle_t handle)

Multiformat Data Interface

• #define STARPU_MULTIFORMAT_GET_CPU_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_CUDA_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_OPENCL_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_MIC_PTR(interface)
• #define STARPU_MULTIFORMAT_GET_NX(interface)
• void starpu_multiformat_data_register (starpu_data_handle_t ∗handle, int home_node, void ∗ptr, uint32_t

nobjects, struct starpu_multiformat_data_interface_ops ∗format_ops)

32.13 starpu_deprecated_api.h File Reference

Macros

• #define starpu_permodel_history_based_expected_perf

32.14 starpu_disk.h File Reference

#include <sys/types.h>
#include <starpu_config.h>

Data Structures

• struct starpu_disk_ops

Generated by Doxygen

500 File Documentation

Macros

• #define STARPU_DISK_SIZE_MIN

Functions

• void starpu_disk_close (unsigned node, void ∗obj, size_t size)

• void ∗ starpu_disk_open (unsigned node, void ∗pos, size_t size)

• int starpu_disk_register (struct starpu_disk_ops ∗func, void ∗parameter, starpu_ssize_t size)

Variables

• struct starpu_disk_ops starpu_disk_stdio_ops

• struct starpu_disk_ops starpu_disk_hdf5_ops

• struct starpu_disk_ops starpu_disk_unistd_ops

• struct starpu_disk_ops starpu_disk_unistd_o_direct_ops

• struct starpu_disk_ops starpu_disk_leveldb_ops

• int starpu_disk_swap_node

32.15 starpu_driver.h File Reference

#include <starpu_config.h>
#include <starpu_opencl.h>

Data Structures

• struct starpu_driver

• union starpu_driver.id

Functions

• int starpu_driver_run (struct starpu_driver ∗d)

• void starpu_drivers_request_termination (void)

• int starpu_driver_init (struct starpu_driver ∗d)

• int starpu_driver_run_once (struct starpu_driver ∗d)

• int starpu_driver_deinit (struct starpu_driver ∗d)

32.16 starpu_expert.h File Reference

Functions

• void starpu_wake_all_blocked_workers (void)

• int starpu_progression_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)

• void starpu_progression_hook_deregister (int hook_id)

• int starpu_idle_hook_register (unsigned(∗func)(void ∗arg), void ∗arg)

• void starpu_idle_hook_deregister (int hook_id)

32.17 starpu_fxt.h File Reference

#include <starpu_perfmodel.h>

Generated by Doxygen

32.18 starpu_hash.h File Reference 501

Data Structures

• struct starpu_fxt_codelet_event

• struct starpu_fxt_options

Macros

• #define STARPU_FXT_MAX_FILES

Functions

• void starpu_fxt_options_init (struct starpu_fxt_options ∗options)

• void starpu_fxt_options_shutdown (struct starpu_fxt_options ∗options)

• void starpu_fxt_options_set_dir (struct starpu_fxt_options ∗options)

• void starpu_fxt_generate_trace (struct starpu_fxt_options ∗options)

• void starpu_fxt_autostart_profiling (int autostart)

• void starpu_fxt_start_profiling (void)

• void starpu_fxt_stop_profiling (void)

• void starpu_fxt_write_data_trace (char ∗filename_in)

• int starpu_fxt_is_enabled ()

• void starpu_fxt_trace_user_event (unsigned long code)

• void starpu_fxt_trace_user_event_string (const char ∗s)

32.18 starpu_hash.h File Reference

#include <stdint.h>
#include <stddef.h>

Functions

• uint32_t starpu_hash_crc32c_be_n (const void ∗input, size_t n, uint32_t inputcrc)

• uint32_t starpu_hash_crc32c_be (uint32_t input, uint32_t inputcrc)

• uint32_t starpu_hash_crc32c_string (const char ∗str, uint32_t inputcrc)

32.19 starpu_helper.h File Reference

#include <stdio.h>
#include <starpu.h>
#include <hwloc.h>

Macros

• #define STARPU_MIN(a, b)

• #define STARPU_MAX(a, b)

• #define STARPU_POISON_PTR

Generated by Doxygen

502 File Documentation

Functions

• char ∗ starpu_getenv (const char ∗str)
• int starpu_get_env_string_var_default (const char ∗str, const char ∗strings[], int defvalue)
• int starpu_get_env_size_default (const char ∗str, int defval)
• static __starpu_inline int starpu_get_env_number (const char ∗str)
• static __starpu_inline int starpu_get_env_number_default (const char ∗str, int defval)
• static __starpu_inline float starpu_get_env_float_default (const char ∗str, float defval)
• void starpu_execute_on_each_worker (void(∗func)(void ∗), void ∗arg, uint32_t where)
• void starpu_execute_on_each_worker_ex (void(∗func)(void ∗), void ∗arg, uint32_t where, const char ∗name)
• void starpu_execute_on_specific_workers (void(∗func)(void ∗), void ∗arg, unsigned num_workers, unsigned
∗workers, const char ∗name)

• double starpu_timing_now (void)
• int starpu_data_cpy (starpu_data_handle_t dst_handle, starpu_data_handle_t src_handle, int asynchronous,

void(∗callback_func)(void ∗), void ∗callback_arg)
• void starpu_display_bindings (void)
• int starpu_get_pu_os_index (unsigned logical_index)
• hwloc_topology_t starpu_get_hwloc_topology (void)

Variables

• int _starpu_silent

32.20 starpu_heteroprio.h File Reference

#include <starpu.h>

Macros

• #define STARPU_HETEROPRIO_MAX_PRIO
• #define STARPU_HETEROPRIO_MAX_PREFETCH

Enumerations

• enum starpu_heteroprio_types {
STARPU_CPU_IDX, STARPU_CUDA_IDX, STARPU_OPENCL_IDX, STARPU_MIC_IDX,
STARPU_MPI_MS_IDX, STARPU_NB_TYPES }

Functions

• void starpu_heteroprio_set_nb_prios (unsigned sched_ctx_id, enum starpu_heteroprio_types arch, unsigned
max_prio)

• void starpu_heteroprio_set_mapping (unsigned sched_ctx_id, enum starpu_heteroprio_types arch, unsigned
source_prio, unsigned dest_bucket_id)

• void starpu_heteroprio_set_faster_arch (unsigned sched_ctx_id, enum starpu_heteroprio_types arch, un-
signed bucket_id)

• void starpu_heteroprio_set_arch_slow_factor (unsigned sched_ctx_id, enum starpu_heteroprio_types arch,
unsigned bucket_id, float slow_factor)

Variables

• static const unsigned starpu_heteroprio_types_to_arch [STARPU_NB_TYPES+1]

32.20.1 Function Documentation

Generated by Doxygen

32.21 starpu_mic.h File Reference 503

32.20.1.1 starpu_heteroprio_set_nb_prios()

void starpu_heteroprio_set_nb_prios (

unsigned sched_ctx_id,

enum starpu_heteroprio_types arch,

unsigned max_prio)

Tell how many prio there are for a given arch

32.20.1.2 starpu_heteroprio_set_mapping()

void starpu_heteroprio_set_mapping (

unsigned sched_ctx_id,

enum starpu_heteroprio_types arch,

unsigned source_prio,

unsigned dest_bucket_id)

Set the mapping for a given arch prio=>bucket

32.20.1.3 starpu_heteroprio_set_faster_arch()

void starpu_heteroprio_set_faster_arch (

unsigned sched_ctx_id,

enum starpu_heteroprio_types arch,

unsigned bucket_id)

Tell which arch is the faster for the tasks of a bucket (optional)

32.20.1.4 starpu_heteroprio_set_arch_slow_factor()

void starpu_heteroprio_set_arch_slow_factor (

unsigned sched_ctx_id,

enum starpu_heteroprio_types arch,

unsigned bucket_id,

float slow_factor)

Tell how slow is a arch for the tasks of a bucket (optional)

32.21 starpu_mic.h File Reference

#include <starpu_config.h>

Typedefs

• typedef void ∗ starpu_mic_func_symbol_t

Functions

• int starpu_mic_register_kernel (starpu_mic_func_symbol_t ∗symbol, const char ∗func_name)
• starpu_mic_kernel_t starpu_mic_get_kernel (starpu_mic_func_symbol_t symbol)

32.22 starpu_mod.f90 File Reference

Data Types

• interface starpu_mod::starpu_conf_init
• interface starpu_mod::starpu_init
• interface starpu_mod::starpu_pause
• interface starpu_mod::starpu_resume
• interface starpu_mod::starpu_shutdown

Generated by Doxygen

504 File Documentation

• interface starpu_mod::starpu_asynchronous_copy_disabled
• interface starpu_mod::starpu_asynchronous_cuda_copy_disabled
• interface starpu_mod::starpu_asynchronous_opencl_copy_disabled
• interface starpu_mod::starpu_asynchronous_mic_copy_disabled
• interface starpu_mod::starpu_display_stats
• interface starpu_mod::starpu_get_version
• interface starpu_mod::starpu_cpu_worker_get_count
• interface starpu_mod::starpu_task_wait_for_all

32.23 starpu_mpi.h File Reference

#include <starpu.h>
#include <mpi.h>
#include <stdint.h>

Functions

• int starpu_mpi_pre_submit_hook_register (void(∗f)(struct starpu_task ∗))
• int starpu_mpi_pre_submit_hook_unregister ()

Communication Cache

• int starpu_mpi_cache_is_enabled ()
• int starpu_mpi_cache_set (int enabled)
• void starpu_mpi_cache_flush (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_cache_flush_all_data (MPI_Comm comm)
• int starpu_mpi_cached_receive (starpu_data_handle_t data_handle)
• int starpu_mpi_cached_receive_set (starpu_data_handle_t data)
• void starpu_mpi_cached_receive_clear (starpu_data_handle_t data)
• int starpu_mpi_cached_send (starpu_data_handle_t data_handle, int dest)
• int starpu_mpi_cached_send_set (starpu_data_handle_t data, int dest)
• void starpu_mpi_cached_send_clear (starpu_data_handle_t data)

Collective Operations

• void starpu_mpi_redux_data (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_redux_data_prio (MPI_Comm comm, starpu_data_handle_t data_handle, int prio)
• int starpu_mpi_scatter_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)
• int starpu_mpi_gather_detached (starpu_data_handle_t ∗data_handles, int count, int root, MPI_Comm

comm, void(∗scallback)(void ∗), void ∗sarg, void(∗rcallback)(void ∗), void ∗rarg)

Initialisation

• #define STARPU_MPI_TAG_UB
• int starpu_mpi_init_conf (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm, struct starpu_conf
∗conf)

• int starpu_mpi_init_comm (int ∗argc, char ∗∗∗argv, int initialize_mpi, MPI_Comm comm)
• int starpu_mpi_init (int ∗argc, char ∗∗∗argv, int initialize_mpi)
• int starpu_mpi_initialize (void)
• int starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)
• int starpu_mpi_shutdown (void)
• void starpu_mpi_comm_amounts_retrieve (size_t ∗comm_amounts)
• int starpu_mpi_comm_size (MPI_Comm comm, int ∗size)
• int starpu_mpi_comm_rank (MPI_Comm comm, int ∗rank)
• int starpu_mpi_world_rank (void)
• int starpu_mpi_world_size (void)
• int starpu_mpi_comm_get_attr (MPI_Comm comm, int keyval, void ∗attribute_val, int ∗flag)
• int starpu_mpi_get_communication_tag (void)
• void starpu_mpi_set_communication_tag (int tag)

Generated by Doxygen

32.23 starpu_mpi.h File Reference 505

Communication

• typedef void ∗ starpu_mpi_req
• typedef int64_t starpu_mpi_tag_t
• typedef int(∗ starpu_mpi_datatype_allocate_func_t) (starpu_data_handle_t, MPI_Datatype ∗)
• typedef void(∗ starpu_mpi_datatype_free_func_t) (MPI_Datatype ∗)
• int starpu_mpi_isend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag_t

data_tag, MPI_Comm comm)
• int starpu_mpi_isend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi←↩

_tag_t data_tag, int prio, MPI_Comm comm)
• int starpu_mpi_irecv (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int source, starpu_mpi_←↩

tag_t data_tag, MPI_Comm comm)
• int starpu_mpi_send (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, MPI_Comm

comm)
• int starpu_mpi_send_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag, int prio,

MPI_Comm comm)
• int starpu_mpi_recv (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag, MPI_Comm

comm, MPI_Status ∗status)
• int starpu_mpi_isend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_isend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩

_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached (starpu_data_handle_t data_handle, int source, starpu_mpi_tag_t data_tag,

MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)
• int starpu_mpi_irecv_detached_sequential_consistency (starpu_data_handle_t data_handle, int source,

starpu_mpi_tag_t data_tag, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg, int sequential_←↩
consistency)

• int starpu_mpi_issend (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi_tag←↩
_t data_tag, MPI_Comm comm)

• int starpu_mpi_issend_prio (starpu_data_handle_t data_handle, starpu_mpi_req ∗req, int dest, starpu_mpi←↩
_tag_t data_tag, int prio, MPI_Comm comm)

• int starpu_mpi_issend_detached (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data_tag,
MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_issend_detached_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag_t data←↩
_tag, int prio, MPI_Comm comm, void(∗callback)(void ∗), void ∗arg)

• int starpu_mpi_wait (starpu_mpi_req ∗req, MPI_Status ∗status)
• int starpu_mpi_test (starpu_mpi_req ∗req, int ∗flag, MPI_Status ∗status)
• int starpu_mpi_barrier (MPI_Comm comm)
• int starpu_mpi_wait_for_all (MPI_Comm comm)
• int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t data_handle, int dest, starpu_mpi_tag←↩

_t data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_detached_unlock_tag_prio (starpu_data_handle_t data_handle, int dest, starpu_mpi←↩

_tag_t data_tag, int prio, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t data_handle, int source, starpu_mpi_←↩

tag_t data_tag, MPI_Comm comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_isend_array_detached_unlock_tag_prio (unsigned array_size, starpu_data_handle_t ∗data←↩

_handle, int ∗dest, starpu_mpi_tag_t ∗data_tag, int ∗prio, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_irecv_array_detached_unlock_tag (unsigned array_size, starpu_data_handle_t ∗data_←↩

handle, int ∗source, starpu_mpi_tag_t ∗data_tag, MPI_Comm ∗comm, starpu_tag_t tag)
• int starpu_mpi_datatype_register (starpu_data_handle_t handle, starpu_mpi_datatype_allocate_func_←↩

t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_interface_datatype_register (enum starpu_data_interface_id id, starpu_mpi_datatype_←↩

allocate_func_t allocate_datatype_func, starpu_mpi_datatype_free_func_t free_datatype_func)
• int starpu_mpi_datatype_unregister (starpu_data_handle_t handle)
• int starpu_mpi_interface_datatype_unregister (enum starpu_data_interface_id id)

Generated by Doxygen

506 File Documentation

MPI Insert Task

• #define STARPU_MPI_PER_NODE
• #define starpu_mpi_data_register(data_handle, data_tag, rank)
• #define starpu_data_set_tag
• #define starpu_mpi_data_set_rank(handle, rank)
• #define starpu_data_set_rank
• #define starpu_data_get_rank
• #define starpu_data_get_tag
• void starpu_mpi_data_register_comm (starpu_data_handle_t data_handle, starpu_mpi_tag_t data_tag, int

rank, MPI_Comm comm)
• void starpu_mpi_data_set_tag (starpu_data_handle_t handle, starpu_mpi_tag_t data_tag)
• void starpu_mpi_data_set_rank_comm (starpu_data_handle_t handle, int rank, MPI_Comm comm)
• int starpu_mpi_data_get_rank (starpu_data_handle_t handle)
• starpu_mpi_tag_t starpu_mpi_data_get_tag (starpu_data_handle_t handle)
• int starpu_mpi_task_insert (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_insert_task (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• struct starpu_task ∗ starpu_mpi_task_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• int starpu_mpi_task_post_build (MPI_Comm comm, struct starpu_codelet ∗codelet,...)
• void starpu_mpi_get_data_on_node (MPI_Comm comm, starpu_data_handle_t data_handle, int node)
• void starpu_mpi_get_data_on_node_detached (MPI_Comm comm, starpu_data_handle_t data_handle, int

node, void(∗callback)(void ∗), void ∗arg)
• void starpu_mpi_get_data_on_all_nodes_detached (MPI_Comm comm, starpu_data_handle_t data_handle)
• void starpu_mpi_data_migrate (MPI_Comm comm, starpu_data_handle_t handle, int new_rank)

Node Selection Policy

• #define STARPU_MPI_NODE_SELECTION_CURRENT_POLICY
• #define STARPU_MPI_NODE_SELECTION_MOST_R_DATA
• typedef int(∗ starpu_mpi_select_node_policy_func_t) (int me, int nb_nodes, struct starpu_data_descr
∗descr, int nb_data)

• int starpu_mpi_node_selection_register_policy (starpu_mpi_select_node_policy_func_t policy_func)
• int starpu_mpi_node_selection_unregister_policy (int policy)
• int starpu_mpi_node_selection_get_current_policy ()
• int starpu_mpi_node_selection_set_current_policy (int policy)

32.24 starpu_mpi_lb.h File Reference

#include <starpu.h>

Data Structures

• struct starpu_mpi_lb_conf

Functions

• void starpu_mpi_lb_init (const char ∗lb_policy_name, struct starpu_mpi_lb_conf ∗)
• void starpu_mpi_lb_shutdown ()

32.25 starpu_mpi_ms.h File Reference

#include <starpu_config.h>

Generated by Doxygen

32.26 starpu_opencl.h File Reference 507

Typedefs

• typedef void ∗ starpu_mpi_ms_func_symbol_t

Functions

• int starpu_mpi_ms_register_kernel (starpu_mpi_ms_func_symbol_t ∗symbol, const char ∗func_name)
• starpu_mpi_ms_kernel_t starpu_mpi_ms_get_kernel (starpu_mpi_ms_func_symbol_t symbol)

32.26 starpu_opencl.h File Reference

#include <starpu_config.h>
#include <CL/cl.h>
#include <assert.h>

Data Structures

• struct starpu_opencl_program

Macros

• #define CL_TARGET_OPENCL_VERSION

Functions

Writing OpenCL kernels

• void starpu_opencl_get_context (int devid, cl_context ∗context)
• void starpu_opencl_get_device (int devid, cl_device_id ∗device)
• void starpu_opencl_get_queue (int devid, cl_command_queue ∗queue)
• void starpu_opencl_get_current_context (cl_context ∗context)
• void starpu_opencl_get_current_queue (cl_command_queue ∗queue)
• int starpu_opencl_set_kernel_args (cl_int ∗err, cl_kernel ∗kernel,...)

Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides functions to build the
program executable for each available OpenCL device as a cl_program object. This program executable can
then be loaded within a specific queue as explained in the next section. These are only helpers, Applications
can also fill a starpu_opencl_program array by hand for more advanced use (e.g. different programs on the
different OpenCL devices, for relocation purpose for instance).

• void starpu_opencl_load_program_source (const char ∗source_file_name, char ∗located_file_name, char
∗located_dir_name, char ∗opencl_program_source)

• void starpu_opencl_load_program_source_malloc (const char ∗source_file_name, char ∗∗located_file_←↩
name, char ∗∗located_dir_name, char ∗∗opencl_program_source)

• int starpu_opencl_compile_opencl_from_file (const char ∗source_file_name, const char ∗build_options)
• int starpu_opencl_compile_opencl_from_string (const char ∗opencl_program_source, const char ∗file_←↩

name, const char ∗build_options)
• int starpu_opencl_load_binary_opencl (const char ∗kernel_id, struct starpu_opencl_program ∗opencl_←↩

programs)
• int starpu_opencl_load_opencl_from_file (const char ∗source_file_name, struct starpu_opencl_program
∗opencl_programs, const char ∗build_options)

• int starpu_opencl_load_opencl_from_string (const char ∗opencl_program_source, struct starpu_opencl←↩
_program ∗opencl_programs, const char ∗build_options)

• int starpu_opencl_unload_opencl (struct starpu_opencl_program ∗opencl_programs)

Loading OpenCL kernels

Generated by Doxygen

508 File Documentation

• int starpu_opencl_load_kernel (cl_kernel ∗kernel, cl_command_queue ∗queue, struct starpu_opencl_←↩
program ∗opencl_programs, const char ∗kernel_name, int devid)

• int starpu_opencl_release_kernel (cl_kernel kernel)

OpenCL Statistics

• int starpu_opencl_collect_stats (cl_event event)

OpenCL Utilities

• #define STARPU_OPENCL_DISPLAY_ERROR(status)

• #define STARPU_OPENCL_REPORT_ERROR(status)

• #define STARPU_OPENCL_REPORT_ERROR_WITH_MSG(msg, status)

• const char ∗ starpu_opencl_error_string (cl_int status)

• void starpu_opencl_display_error (const char ∗func, const char ∗file, int line, const char ∗msg, cl_int status)

• static __starpu_inline void starpu_opencl_report_error (const char ∗func, const char ∗file, int line, const char
∗msg, cl_int status)

• cl_int starpu_opencl_allocate_memory (int devid, cl_mem ∗addr, size_t size, cl_mem_flags flags)

• cl_int starpu_opencl_copy_ram_to_opencl (void ∗ptr, unsigned src_node, cl_mem buffer, unsigned dst_node,
size_t size, size_t offset, cl_event ∗event, int ∗ret)

• cl_int starpu_opencl_copy_opencl_to_ram (cl_mem buffer, unsigned src_node, void ∗ptr, unsigned dst_node,
size_t size, size_t offset, cl_event ∗event, int ∗ret)

• cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem src, unsigned src_node, size_t src_offset, cl_mem
dst, unsigned dst_node, size_t dst_offset, size_t size, cl_event ∗event, int ∗ret)

• cl_int starpu_opencl_copy_async_sync (uintptr_t src, size_t src_offset, unsigned src_node, uintptr_t dst,
size_t dst_offset, unsigned dst_node, size_t size, cl_event ∗event)

32.27 starpu_openmp.h File Reference

#include <starpu_config.h>

Data Structures

• struct starpu_omp_lock_t

• struct starpu_omp_nest_lock_t

• struct starpu_omp_parallel_region_attr

• struct starpu_omp_task_region_attr

Macros

• #define __STARPU_OMP_NOTHROW

Enumerations

• enum starpu_omp_sched_value {
starpu_omp_sched_undefined, starpu_omp_sched_static, starpu_omp_sched_dynamic, starpu_omp_←↩
sched_guided,
starpu_omp_sched_auto, starpu_omp_sched_runtime }

• enum starpu_omp_proc_bind_value {
starpu_omp_proc_bind_undefined, starpu_omp_proc_bind_false, starpu_omp_proc_bind_true, starpu_←↩
omp_proc_bind_master,
starpu_omp_proc_bind_close, starpu_omp_proc_bind_spread }

Generated by Doxygen

32.27 starpu_openmp.h File Reference 509

Functions

Initialisation

• int starpu_omp_init (void) __STARPU_OMP_NOTHROW
• void starpu_omp_shutdown (void) __STARPU_OMP_NOTHROW

Parallel

• void starpu_omp_parallel_region (const struct starpu_omp_parallel_region_attr ∗attr) __STARPU_OM←↩
P_NOTHROW

• void starpu_omp_master (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• int starpu_omp_master_inline (void) __STARPU_OMP_NOTHROW

Synchronization

• void starpu_omp_barrier (void) __STARPU_OMP_NOTHROW
• void starpu_omp_critical (void(∗f)(void ∗arg), void ∗arg, const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_begin (const char ∗name) __STARPU_OMP_NOTHROW
• void starpu_omp_critical_inline_end (const char ∗name) __STARPU_OMP_NOTHROW

Worksharing

• void starpu_omp_single (void(∗f)(void ∗arg), void ∗arg, int nowait) __STARPU_OMP_NOTHROW
• int starpu_omp_single_inline (void) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate (void(∗f)(void ∗arg, void ∗data, unsigned long long data_size), void
∗arg, void ∗data, unsigned long long data_size) __STARPU_OMP_NOTHROW

• void ∗ starpu_omp_single_copyprivate_inline_begin (void ∗data) __STARPU_OMP_NOTHROW
• void starpu_omp_single_copyprivate_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_for (void(∗f)(unsigned long long _first_i, unsigned long long _nb_i, void ∗arg), void ∗arg,

unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) __ST←↩
ARPU_OMP_NOTHROW

• int starpu_omp_for_inline_first (unsigned long long nb_iterations, unsigned long long chunk, int schedule,
int ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_next (unsigned long long nb_iterations, unsigned long long chunk, int schedule,
int ordered, unsigned long long ∗_first_i, unsigned long long ∗_nb_i) __STARPU_OMP_NOTHROW

• void starpu_omp_for_alt (void(∗f)(unsigned long long _begin_i, unsigned long long _end_i, void ∗arg), void
∗arg, unsigned long long nb_iterations, unsigned long long chunk, int schedule, int ordered, int nowait) ←↩
__STARPU_OMP_NOTHROW

• int starpu_omp_for_inline_first_alt (unsigned long long nb_iterations, unsigned long long chunk, int sched-
ule, int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHR←↩
OW

• int starpu_omp_for_inline_next_alt (unsigned long long nb_iterations, unsigned long long chunk, int sched-
ule, int ordered, unsigned long long ∗_begin_i, unsigned long long ∗_end_i) __STARPU_OMP_NOTHR←↩
OW

• void starpu_omp_ordered (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_ordered_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_sections (unsigned long long nb_sections, void(∗∗section_f)(void ∗arg), void ∗∗section←↩

_arg, int nowait) __STARPU_OMP_NOTHROW
• void starpu_omp_sections_combined (unsigned long long nb_sections, void(∗section_f)(unsigned long

long section_num, void ∗arg), void ∗section_arg, int nowait) __STARPU_OMP_NOTHROW

Task

• void starpu_omp_task_region (const struct starpu_omp_task_region_attr ∗attr) __STARPU_OMP_NOT←↩
HROW

• void starpu_omp_taskwait (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup (void(∗f)(void ∗arg), void ∗arg) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskgroup_inline_end (void) __STARPU_OMP_NOTHROW
• void starpu_omp_taskloop_inline_begin (struct starpu_omp_task_region_attr ∗attr) __STARPU_OM←↩

P_NOTHROW

Generated by Doxygen

510 File Documentation

• void starpu_omp_taskloop_inline_end (const struct starpu_omp_task_region_attr ∗attr) __STARPU_←↩
OMP_NOTHROW

API

• void starpu_omp_set_num_threads (int threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_threads () __STARPU_OMP_NOTHROW
• int starpu_omp_get_thread_num () __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_threads () __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_procs (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_parallel (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_dynamic (int dynamic_threads) __STARPU_OMP_NOTHROW
• int starpu_omp_get_dynamic (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nested (int nested) __STARPU_OMP_NOTHROW
• int starpu_omp_get_nested (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_cancellation (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_schedule (enum starpu_omp_sched_value kind, int modifier) __STARPU_OMP_←↩

NOTHROW
• void starpu_omp_get_schedule (enum starpu_omp_sched_value ∗kind, int ∗modifier) __STARPU_OM←↩

P_NOTHROW
• int starpu_omp_get_thread_limit (void) __STARPU_OMP_NOTHROW
• void starpu_omp_set_max_active_levels (int max_levels) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_active_levels (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_ancestor_thread_num (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_size (int level) __STARPU_OMP_NOTHROW
• int starpu_omp_get_active_level (void) __STARPU_OMP_NOTHROW
• int starpu_omp_in_final (void) __STARPU_OMP_NOTHROW
• enum starpu_omp_proc_bind_value starpu_omp_get_proc_bind (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_places (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num_procs (int place_num) __STARPU_OMP_NOTHROW
• void starpu_omp_get_place_proc_ids (int place_num, int ∗ids) __STARPU_OMP_NOTHROW
• int starpu_omp_get_place_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_partition_num_places (void) __STARPU_OMP_NOTHROW
• void starpu_omp_get_partition_place_nums (int ∗place_nums) __STARPU_OMP_NOTHROW
• void starpu_omp_set_default_device (int device_num) __STARPU_OMP_NOTHROW
• int starpu_omp_get_default_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_devices (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_num_teams (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_team_num (void) __STARPU_OMP_NOTHROW
• int starpu_omp_is_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_initial_device (void) __STARPU_OMP_NOTHROW
• int starpu_omp_get_max_task_priority (void) __STARPU_OMP_NOTHROW
• void starpu_omp_init_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_lock (starpu_omp_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_init_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_destroy_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_set_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_unset_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• int starpu_omp_test_nest_lock (starpu_omp_nest_lock_t ∗lock) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_begin (void) __STARPU_OMP_NOTHROW
• void starpu_omp_atomic_fallback_inline_end (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtime (void) __STARPU_OMP_NOTHROW
• double starpu_omp_get_wtick (void) __STARPU_OMP_NOTHROW
• void starpu_omp_vector_annotate (starpu_data_handle_t handle, uint32_t slice_base) __STARPU_OM←↩

P_NOTHROW
• struct starpu_arbiter ∗ starpu_omp_get_default_arbiter (void) __STARPU_OMP_NOTHROW

Generated by Doxygen

32.28 starpu_perfmodel.h File Reference 511

32.28 starpu_perfmodel.h File Reference

#include <starpu.h>
#include <stdio.h>

Data Structures

• struct starpu_perfmodel_device
• struct starpu_perfmodel_arch
• struct starpu_perfmodel_history_entry
• struct starpu_perfmodel_history_list
• struct starpu_perfmodel_regression_model
• struct starpu_perfmodel_per_arch
• struct starpu_perfmodel

Macros

• #define STARPU_NARCH
• #define starpu_per_arch_perfmodel

Typedefs

• typedef double(∗ starpu_perfmodel_per_arch_cost_function) (struct starpu_task ∗task, struct starpu_←↩
perfmodel_arch ∗arch, unsigned nimpl)

• typedef size_t(∗ starpu_perfmodel_per_arch_size_base) (struct starpu_task ∗task, struct starpu_←↩
perfmodel_arch ∗arch, unsigned nimpl)

• typedef struct _starpu_perfmodel_state ∗ starpu_perfmodel_state_t

Enumerations

• enum starpu_perfmodel_type {
STARPU_PERFMODEL_INVALID, STARPU_PER_ARCH, STARPU_COMMON, STARPU_HISTORY_B←↩
ASED,
STARPU_REGRESSION_BASED, STARPU_NL_REGRESSION_BASED, STARPU_MULTIPLE_REGR←↩
ESSION_BASED }

Functions

• void starpu_perfmodel_init (struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_file (const char ∗filename, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_load_symbol (const char ∗symbol, struct starpu_perfmodel ∗model)
• int starpu_perfmodel_unload_model (struct starpu_perfmodel ∗model)
• void starpu_perfmodel_get_model_path (const char ∗symbol, char ∗path, size_t maxlen)
• void starpu_perfmodel_dump_xml (FILE ∗output, struct starpu_perfmodel ∗model)
• void starpu_perfmodel_free_sampling (void)
• struct starpu_perfmodel_arch ∗ starpu_worker_get_perf_archtype (int workerid, unsigned sched_ctx_id)
• int starpu_perfmodel_get_narch_combs (void)
• int starpu_perfmodel_arch_comb_add (int ndevices, struct starpu_perfmodel_device ∗devices)
• int starpu_perfmodel_arch_comb_get (int ndevices, struct starpu_perfmodel_device ∗devices)
• struct starpu_perfmodel_arch ∗ starpu_perfmodel_arch_comb_fetch (int comb)
• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_arch (struct starpu_perfmodel
∗model, struct starpu_perfmodel_arch ∗arch, unsigned impl)

• struct starpu_perfmodel_per_arch ∗ starpu_perfmodel_get_model_per_devices (struct starpu_perfmodel
∗model, int impl,...)

• int starpu_perfmodel_set_per_devices_cost_function (struct starpu_perfmodel ∗model, int impl, starpu←↩
_perfmodel_per_arch_cost_function func,...)

Generated by Doxygen

512 File Documentation

• int starpu_perfmodel_set_per_devices_size_base (struct starpu_perfmodel ∗model, int impl, starpu_←↩
perfmodel_per_arch_size_base func,...)

• void starpu_perfmodel_debugfilepath (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch,
char ∗path, size_t maxlen, unsigned nimpl)

• char ∗ starpu_perfmodel_get_archtype_name (enum starpu_worker_archtype archtype)

• void starpu_perfmodel_get_arch_name (struct starpu_perfmodel_arch ∗arch, char ∗archname, size_←↩
t maxlen, unsigned nimpl)

• double starpu_perfmodel_history_based_expected_perf (struct starpu_perfmodel ∗model, struct starpu_←↩
perfmodel_arch ∗arch, uint32_t footprint)

• void starpu_perfmodel_initialize (void)

• int starpu_perfmodel_list (FILE ∗output)

• void starpu_perfmodel_print (struct starpu_perfmodel ∗model, struct starpu_perfmodel_arch ∗arch, un-
signed nimpl, char ∗parameter, uint32_t ∗footprint, FILE ∗output)

• int starpu_perfmodel_print_all (struct starpu_perfmodel ∗model, char ∗arch, char ∗parameter, uint32_←↩
t ∗footprint, FILE ∗output)

• int starpu_perfmodel_print_estimations (struct starpu_perfmodel ∗model, uint32_t footprint, FILE ∗output)

• int starpu_perfmodel_list_combs (FILE ∗output, struct starpu_perfmodel ∗model)

• void starpu_perfmodel_update_history (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct
starpu_perfmodel_arch ∗arch, unsigned cpuid, unsigned nimpl, double measured)

• void starpu_perfmodel_directory (FILE ∗output)

• void starpu_bus_print_bandwidth (FILE ∗f)
• void starpu_bus_print_affinity (FILE ∗f)
• void starpu_bus_print_filenames (FILE ∗f)
• double starpu_transfer_bandwidth (unsigned src_node, unsigned dst_node)

• double starpu_transfer_latency (unsigned src_node, unsigned dst_node)

• double starpu_transfer_predict (unsigned src_node, unsigned dst_node, size_t size)

Variables

• struct starpu_perfmodel starpu_perfmodel_nop

32.29 starpu_profiling.h File Reference

#include <starpu.h>
#include <errno.h>
#include <time.h>

Data Structures

• struct starpu_profiling_task_info

• struct starpu_profiling_worker_info

• struct starpu_profiling_bus_info

Macros

• #define STARPU_PROFILING_DISABLE

• #define STARPU_PROFILING_ENABLE

• #define STARPU_NS_PER_S

• #define starpu_timespec_cmp(a, b, CMP)

Generated by Doxygen

32.30 starpu_rand.h File Reference 513

Functions

• void starpu_profiling_init (void)
• void starpu_profiling_set_id (int new_id)
• int starpu_profiling_status_set (int status)
• int starpu_profiling_status_get (void)
• int starpu_profiling_worker_get_info (int workerid, struct starpu_profiling_worker_info ∗worker_info)
• int starpu_bus_get_count (void)
• int starpu_bus_get_id (int src, int dst)
• int starpu_bus_get_src (int busid)
• int starpu_bus_get_dst (int busid)
• void starpu_bus_set_direct (int busid, int direct)
• int starpu_bus_get_direct (int busid)
• void starpu_bus_set_ngpus (int busid, int ngpus)
• int starpu_bus_get_ngpus (int busid)
• int starpu_bus_get_profiling_info (int busid, struct starpu_profiling_bus_info ∗bus_info)
• static __starpu_inline void starpu_timespec_clear (struct timespec ∗tsp)
• static __starpu_inline void starpu_timespec_add (struct timespec ∗a, struct timespec ∗b, struct timespec
∗result)

• static __starpu_inline void starpu_timespec_accumulate (struct timespec ∗result, struct timespec ∗a)
• static __starpu_inline void starpu_timespec_sub (const struct timespec ∗a, const struct timespec ∗b, struct

timespec ∗result)
• double starpu_timing_timespec_delay_us (struct timespec ∗start, struct timespec ∗end)
• double starpu_timing_timespec_to_us (struct timespec ∗ts)
• void starpu_profiling_bus_helper_display_summary (void)
• void starpu_profiling_worker_helper_display_summary (void)
• void starpu_data_display_memory_stats ()

32.30 starpu_rand.h File Reference

#include <stdlib.h>
#include <starpu_config.h>

Macros

• #define starpu_seed(seed)
• #define starpu_srand48(seed)
• #define starpu_drand48()
• #define starpu_lrand48()
• #define starpu_erand48(xsubi)
• #define starpu_srand48_r(seed, buffer)
• #define starpu_erand48_r(xsubi, buffer, result)

Typedefs

• typedef int starpu_drand48_data

32.31 starpu_sched_component.h File Reference

#include <starpu.h>
#include <hwloc.h>

Generated by Doxygen

514 File Documentation

Data Structures

• struct starpu_sched_component
• struct starpu_sched_tree
• struct starpu_sched_component_fifo_data
• struct starpu_sched_component_prio_data
• struct starpu_sched_component_mct_data
• struct starpu_sched_component_heteroprio_data
• struct starpu_sched_component_perfmodel_select_data
• struct starpu_sched_component_specs

Macros

• #define STARPU_SCHED_COMPONENT_IS_HOMOGENEOUS(component)
• #define STARPU_SCHED_COMPONENT_IS_SINGLE_MEMORY_NODE(component)
• #define STARPU_COMPONENT_MUTEX_LOCK(m)
• #define STARPU_COMPONENT_MUTEX_TRYLOCK(m)
• #define STARPU_COMPONENT_MUTEX_UNLOCK(m)

Enumerations

• enum starpu_sched_component_properties { STARPU_SCHED_COMPONENT_HOMOGENEOUS, STA←↩
RPU_SCHED_COMPONENT_SINGLE_MEMORY_NODE }

Functions

• void starpu_initialize_prio_center_policy (unsigned sched_ctx_id)

Scheduling Tree API

• struct starpu_sched_tree ∗ starpu_sched_tree_create (unsigned sched_ctx_id) STARPU_ATTRIBUTE←↩
_MALLOC

• void starpu_sched_tree_destroy (struct starpu_sched_tree ∗tree)
• void starpu_sched_tree_deinitialize (unsigned sched_ctx_id)
• struct starpu_sched_tree ∗ starpu_sched_tree_get (unsigned sched_ctx_id)
• void starpu_sched_tree_update_workers (struct starpu_sched_tree ∗t)
• void starpu_sched_tree_update_workers_in_ctx (struct starpu_sched_tree ∗t)
• int starpu_sched_tree_push_task (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_tree_pop_task (unsigned sched_ctx)
• int starpu_sched_component_push_task (struct starpu_sched_component ∗from, struct starpu_sched_←↩

component ∗to, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_sched_component_pull_task (struct starpu_sched_component ∗from, struct

starpu_sched_component ∗to)
• struct starpu_task ∗ starpu_sched_component_pump_to (struct starpu_sched_component ∗component,

struct starpu_sched_component ∗to, int ∗success)
• struct starpu_task ∗ starpu_sched_component_pump_downstream (struct starpu_sched_component
∗component, int ∗success)

• int starpu_sched_component_send_can_push_to_parents (struct starpu_sched_component
∗component)

• void starpu_sched_tree_add_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_tree_remove_workers (unsigned sched_ctx_id, int ∗workerids, unsigned nworkers)
• void starpu_sched_component_connect (struct starpu_sched_component ∗parent, struct starpu_sched←↩

_component ∗child)

Worker Component API

• struct starpu_sched_component ∗ starpu_sched_component_worker_get (unsigned sched_ctx, int work-
erid)

• struct starpu_sched_component ∗ starpu_sched_component_worker_new (unsigned sched_ctx, int
workerid)

Generated by Doxygen

32.31 starpu_sched_component.h File Reference 515

• struct starpu_sched_component ∗ starpu_sched_component_parallel_worker_create (struct starpu_←↩
sched_tree ∗tree, unsigned nworkers, unsigned ∗workers)

• int starpu_sched_component_worker_get_workerid (struct starpu_sched_component ∗worker_←↩
component)

• int starpu_sched_component_is_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_simple_worker (struct starpu_sched_component ∗component)
• int starpu_sched_component_is_combined_worker (struct starpu_sched_component ∗component)
• void starpu_sched_component_worker_pre_exec_hook (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_component_worker_post_exec_hook (struct starpu_task ∗task, unsigned sched_ctx←↩

_id)

Flow-control Fifo Component API

• struct starpu_task ∗ starpu_sched_component_parents_pull_task (struct starpu_sched_component
∗component, struct starpu_sched_component ∗to)

• int starpu_sched_component_can_push (struct starpu_sched_component ∗component, struct starpu_←↩
sched_component ∗to)

• int starpu_sched_component_can_pull (struct starpu_sched_component ∗component)
• int starpu_sched_component_can_pull_all (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_load (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min (struct starpu_sched_component ∗component)
• double starpu_sched_component_estimated_end_min_add (struct starpu_sched_component ∗component,

double exp_len)
• double starpu_sched_component_estimated_end_average (struct starpu_sched_component ∗component)
• struct starpu_sched_component ∗ starpu_sched_component_fifo_create (struct starpu_sched_tree ∗tree,

struct starpu_sched_component_fifo_data ∗fifo_data) STARPU_ATTRIBUTE_MALLOC
• int starpu_sched_component_is_fifo (struct starpu_sched_component ∗component)

Flow-control Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_prio_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_prio_data ∗prio_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_prio (struct starpu_sched_component ∗component)

Resource-mapping Work-Stealing Component API

• struct starpu_sched_component ∗ starpu_sched_component_work_stealing_create (struct starpu_←↩
sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_work_stealing (struct starpu_sched_component ∗component)
• int starpu_sched_tree_work_stealing_push_task (struct starpu_task ∗task)

Resource-mapping Random Component API

• struct starpu_sched_component ∗ starpu_sched_component_random_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_random (struct starpu_sched_component ∗)

Resource-mapping Eager Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager (struct starpu_sched_component ∗)

Resource-mapping Eager Prio Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_prio_create (struct starpu_←↩
sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_prio (struct starpu_sched_component ∗)

Resource-mapping Eager-Calibration Component API

• struct starpu_sched_component ∗ starpu_sched_component_eager_calibration_create (struct
starpu_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_eager_calibration (struct starpu_sched_component ∗)

Generated by Doxygen

516 File Documentation

Resource-mapping MCT Component API

• struct starpu_sched_component ∗ starpu_sched_component_mct_create (struct starpu_sched_tree ∗tree,
struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_mct (struct starpu_sched_component ∗component)

Resource-mapping Heft Component API

• struct starpu_sched_component ∗ starpu_sched_component_heft_create (struct starpu_sched_tree
∗tree, struct starpu_sched_component_mct_data ∗mct_data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_heft (struct starpu_sched_component ∗component)

Resource-mapping Heteroprio Component API

• struct starpu_sched_component ∗ starpu_sched_component_heteroprio_create (struct starpu_←↩
sched_tree ∗tree, struct starpu_sched_component_heteroprio_data ∗params) STARPU_ATTRIBUTE_←↩
MALLOC

• int starpu_sched_component_is_heteroprio (struct starpu_sched_component ∗component)

Special-purpose Best_Implementation Component API

• struct starpu_sched_component ∗ starpu_sched_component_best_implementation_create (struct
starpu_sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

Special-purpose Perfmodel_Select Component API

• struct starpu_sched_component ∗ starpu_sched_component_perfmodel_select_create (struct
starpu_sched_tree ∗tree, struct starpu_sched_component_perfmodel_select_data ∗perfmodel_select_←↩
data) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_perfmodel_select (struct starpu_sched_component ∗component)

Staged pull Component API

• struct starpu_sched_component ∗ starpu_sched_component_stage_create (struct starpu_sched_tree
∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_stage (struct starpu_sched_component ∗component)

User-choice push Component API

• struct starpu_sched_component ∗ starpu_sched_component_userchoice_create (struct starpu_←↩
sched_tree ∗tree, void ∗arg) STARPU_ATTRIBUTE_MALLOC

• int starpu_sched_component_is_userchoice (struct starpu_sched_component ∗component)

Recipe Component API

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe_←↩
create (void) STARPU_ATTRIBUTE_MALLOC

• struct starpu_sched_component_composed_recipe ∗ starpu_sched_component_composed_recipe←↩
_create_singleton (struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree
∗tree, void ∗arg), void ∗arg) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_composed_recipe_add (struct starpu_sched_component_composed_←↩
recipe ∗recipe, struct starpu_sched_component ∗(∗create_component)(struct starpu_sched_tree ∗tree,
void ∗arg), void ∗arg)

• void starpu_sched_component_composed_recipe_destroy (struct starpu_sched_component_composed←↩
_recipe ∗)

• struct starpu_sched_component ∗ starpu_sched_component_composed_component_create (struct
starpu_sched_tree ∗tree, struct starpu_sched_component_composed_recipe ∗recipe) STARPU_AT←↩
TRIBUTE_MALLOC

• struct starpu_sched_tree ∗ starpu_sched_component_make_scheduler (unsigned sched_ctx_id, struct
starpu_sched_component_specs s)

Generated by Doxygen

32.32 starpu_sched_ctx.h File Reference 517

Generic Scheduling Component API

• typedef struct starpu_sched_component ∗(∗ starpu_sched_component_create_t) (struct starpu_sched_←↩
tree ∗tree, void ∗data)

• struct starpu_sched_component ∗ starpu_sched_component_create (struct starpu_sched_tree ∗tree, const
char ∗name) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_component_destroy (struct starpu_sched_component ∗component)
• void starpu_sched_component_destroy_rec (struct starpu_sched_component ∗component)
• void starpu_sched_component_add_child (struct starpu_sched_component ∗component, struct starpu←↩

_sched_component ∗child)
• int starpu_sched_component_can_execute_task (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• int STARPU_WARN_UNUSED_RESULT starpu_sched_component_execute_preds (struct starpu_sched←↩

_component ∗component, struct starpu_task ∗task, double ∗length)
• double starpu_sched_component_transfer_length (struct starpu_sched_component ∗component, struct

starpu_task ∗task)
• void starpu_sched_component_prefetch_on_node (struct starpu_sched_component ∗component, struct

starpu_task ∗task)

Basic API

• #define STARPU_SCHED_SIMPLE_DECIDE_MASK
• #define STARPU_SCHED_SIMPLE_DECIDE_WORKERS
• #define STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
• #define STARPU_SCHED_SIMPLE_DECIDE_ARCHS
• #define STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
• #define STARPU_SCHED_SIMPLE_PERFMODEL
• #define STARPU_SCHED_SIMPLE_IMPL
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE
• #define STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
• #define STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
• #define STARPU_SCHED_SIMPLE_WS_BELOW
• #define STARPU_SCHED_SIMPLE_COMBINED_WORKERS
• #define STARPU_SCHED_SIMPLE_PRE_DECISION
• void starpu_sched_component_initialize_simple_scheduler (starpu_sched_component_create_t create_←↩

decision_component, void ∗data, unsigned flags, unsigned sched_ctx_id)
• void starpu_sched_component_initialize_simple_schedulers (unsigned sched_ctx_id, unsigned ndeci-

sions,...)

32.32 starpu_sched_ctx.h File Reference

#include <starpu.h>

Functions

Scheduling Context Worker Collection

• struct starpu_worker_collection ∗ starpu_sched_ctx_create_worker_collection (unsigned sched_ctx_id,
enum starpu_worker_collection_type type) STARPU_ATTRIBUTE_MALLOC

• void starpu_sched_ctx_delete_worker_collection (unsigned sched_ctx_id)
• struct starpu_worker_collection ∗ starpu_sched_ctx_get_worker_collection (unsigned sched_ctx_id)

Generated by Doxygen

518 File Documentation

Scheduling Contexts Basic API

• #define STARPU_SCHED_CTX_POLICY_NAME
• #define STARPU_SCHED_CTX_POLICY_STRUCT
• #define STARPU_SCHED_CTX_POLICY_MIN_PRIO
• #define STARPU_SCHED_CTX_POLICY_MAX_PRIO
• #define STARPU_SCHED_CTX_HIERARCHY_LEVEL
• #define STARPU_SCHED_CTX_NESTED
• #define STARPU_SCHED_CTX_AWAKE_WORKERS
• #define STARPU_SCHED_CTX_POLICY_INIT
• #define STARPU_SCHED_CTX_USER_DATA
• #define STARPU_SCHED_CTX_CUDA_NSMS
• #define STARPU_SCHED_CTX_SUB_CTXS
• void(∗)(unsigned) starpu_sched_ctx_get_sched_policy_init (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_create (int ∗workerids_ctx, int nworkers_ctx, const char ∗sched_ctx_name,...)
• unsigned starpu_sched_ctx_create_inside_interval (const char ∗policy_name, const char ∗sched_ctx_name,

int min_ncpus, int max_ncpus, int min_ngpus, int max_ngpus, unsigned allow_overlap)
• void starpu_sched_ctx_register_close_callback (unsigned sched_ctx_id, void(∗close_callback)(unsigned

sched_ctx_id, void ∗args), void ∗args)
• void starpu_sched_ctx_add_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx_id)
• void starpu_sched_ctx_remove_workers (int ∗workerids_ctx, unsigned nworkers_ctx, unsigned sched_ctx←↩

_id)
• void starpu_sched_ctx_display_workers (unsigned sched_ctx_id, FILE ∗f)
• void starpu_sched_ctx_delete (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_inheritor (unsigned sched_ctx_id, unsigned inheritor)
• unsigned starpu_sched_ctx_get_inheritor (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_hierarchy_level (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_context (unsigned ∗sched_ctx_id)
• unsigned starpu_sched_ctx_get_context (void)
• void starpu_sched_ctx_stop_task_submission (void)
• void starpu_sched_ctx_finished_submit (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_workers_list (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_workers_list_raw (unsigned sched_ctx_id, int ∗∗workerids)
• unsigned starpu_sched_ctx_get_nworkers (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_nshared_workers (unsigned sched_ctx_id, unsigned sched_ctx_id2)
• unsigned starpu_sched_ctx_contains_worker (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_contains_type_of_worker (enum starpu_worker_archtype arch, unsigned

sched_ctx_id)
• unsigned starpu_sched_ctx_worker_get_id (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_get_ctx_for_task (struct starpu_task ∗task)
• unsigned starpu_sched_ctx_overlapping_ctxs_on_worker (int workerid)
• void ∗ starpu_sched_ctx_get_user_data (unsigned sched_ctx_id)
• void starpu_sched_ctx_set_user_data (unsigned sched_ctx_id, void ∗user_data)
• void starpu_sched_ctx_set_policy_data (unsigned sched_ctx_id, void ∗policy_data)
• void ∗ starpu_sched_ctx_get_policy_data (unsigned sched_ctx_id)
• struct starpu_sched_policy ∗ starpu_sched_ctx_get_sched_policy (unsigned sched_ctx_id)
• void ∗ starpu_sched_ctx_exec_parallel_code (void ∗(∗func)(void ∗), void ∗param, unsigned sched_ctx_id)
• int starpu_sched_ctx_get_nready_tasks (unsigned sched_ctx_id)
• double starpu_sched_ctx_get_nready_flops (unsigned sched_ctx_id)
• void starpu_sched_ctx_list_task_counters_increment (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_decrement (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_reset (unsigned sched_ctx_id, int workerid)
• void starpu_sched_ctx_list_task_counters_increment_all_ctx_locked (struct starpu_task ∗task, un-

signed sched_ctx_id)

Generated by Doxygen

32.33 starpu_sched_ctx_hypervisor.h File Reference 519

• void starpu_sched_ctx_list_task_counters_decrement_all_ctx_locked (struct starpu_task ∗task, un-
signed sched_ctx_id)

• void starpu_sched_ctx_list_task_counters_reset_all (struct starpu_task ∗task, unsigned sched_ctx_id)
• void starpu_sched_ctx_set_priority (int ∗workers, int nworkers, unsigned sched_ctx_id, unsigned priority)
• unsigned starpu_sched_ctx_get_priority (int worker, unsigned sched_ctx_id)
• void starpu_sched_ctx_get_available_cpuids (unsigned sched_ctx_id, int ∗∗cpuids, int ∗ncpuids)
• void starpu_sched_ctx_bind_current_thread_to_cpuid (unsigned cpuid)
• int starpu_sched_ctx_book_workers_for_task (unsigned sched_ctx_id, int ∗workerids, int nworkers)
• void starpu_sched_ctx_unbook_workers_for_task (unsigned sched_ctx_id, int master)
• unsigned starpu_sched_ctx_worker_is_master_for_child_ctx (int workerid, unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_master_get_context (int masterid)
• void starpu_sched_ctx_revert_task_counters_ctx_locked (unsigned sched_ctx_id, double flops)
• void starpu_sched_ctx_move_task_to_ctx_locked (struct starpu_task ∗task, unsigned sched_ctx, un-

signed with_repush)
• int starpu_sched_ctx_get_worker_rank (unsigned sched_ctx_id)
• unsigned starpu_sched_ctx_has_starpu_scheduler (unsigned sched_ctx_id, unsigned ∗awake_workers)
• int starpu_sched_ctx_get_stream_worker (unsigned sub_ctx)
• int starpu_sched_ctx_get_nsms (unsigned sched_ctx)
• void starpu_sched_ctx_get_sms_interval (int stream_workerid, int ∗start, int ∗end)

Scheduling Context Priorities

• #define STARPU_MIN_PRIO
• #define STARPU_MAX_PRIO
• #define STARPU_DEFAULT_PRIO
• int starpu_sched_ctx_get_min_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_get_max_priority (unsigned sched_ctx_id)
• int starpu_sched_ctx_set_min_priority (unsigned sched_ctx_id, int min_prio)
• int starpu_sched_ctx_set_max_priority (unsigned sched_ctx_id, int max_prio)
• int starpu_sched_ctx_min_priority_is_set (unsigned sched_ctx_id)
• int starpu_sched_ctx_max_priority_is_set (unsigned sched_ctx_id)

32.33 starpu_sched_ctx_hypervisor.h File Reference

Data Structures

• struct starpu_sched_ctx_performance_counters

Functions

Scheduling Context Link with Hypervisor

• void starpu_sched_ctx_set_perf_counters (unsigned sched_ctx_id, void ∗perf_counters)
• void starpu_sched_ctx_call_pushed_task_cb (int workerid, unsigned sched_ctx_id)
• void starpu_sched_ctx_notify_hypervisor_exists (void)
• unsigned starpu_sched_ctx_check_if_hypervisor_exists (void)
• void starpu_sched_ctx_update_start_resizing_sample (unsigned sched_ctx_id, double start_sample)

32.33.1 Function Documentation

32.33.1.1 starpu_sched_ctx_set_perf_counters()

void starpu_sched_ctx_set_perf_counters (

unsigned sched_ctx_id,

void ∗ perf_counters)

Indicate to starpu the pointer to the performance counter

Generated by Doxygen

520 File Documentation

32.33.1.2 starpu_sched_ctx_call_pushed_task_cb()

void starpu_sched_ctx_call_pushed_task_cb (

int workerid,

unsigned sched_ctx_id)

Callback that lets the scheduling policy tell the hypervisor that a task was pushed on a worker

32.33.1.3 starpu_sched_ctx_notify_hypervisor_exists()

void starpu_sched_ctx_notify_hypervisor_exists (

void)

Allow the hypervisor to let starpu know it's initialised

32.33.1.4 starpu_sched_ctx_check_if_hypervisor_exists()

unsigned starpu_sched_ctx_check_if_hypervisor_exists (

void)

Ask starpu if it is informed if the hypervisor is initialised

32.34 starpu_scheduler.h File Reference

#include <starpu.h>

Data Structures

• struct starpu_sched_policy

Typedefs

• typedef void(∗ starpu_notify_ready_soon_func) (void ∗data, struct starpu_task ∗task, double delay)

Functions

• struct starpu_sched_policy ∗∗ starpu_sched_get_predefined_policies ()
• void starpu_worker_get_sched_condition (int workerid, starpu_pthread_mutex_t ∗∗sched_mutex, starpu_←↩

pthread_cond_t ∗∗sched_cond)
• unsigned long starpu_task_get_job_id (struct starpu_task ∗task)
• int starpu_sched_get_min_priority (void)
• int starpu_sched_get_max_priority (void)
• int starpu_sched_set_min_priority (int min_prio)
• int starpu_sched_set_max_priority (int max_prio)
• int starpu_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned nimpl)
• int starpu_worker_can_execute_task_impl (unsigned workerid, struct starpu_task ∗task, unsigned ∗impl_←↩

mask)
• int starpu_worker_can_execute_task_first_impl (unsigned workerid, struct starpu_task ∗task, unsigned
∗nimpl)

• int starpu_push_local_task (int workerid, struct starpu_task ∗task, int back)
• int starpu_push_task_end (struct starpu_task ∗task)
• int starpu_get_prefetch_flag (void)
• int starpu_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_idle_prefetch_task_input_on_node_prio (struct starpu_task ∗task, unsigned node, int prio)
• int starpu_idle_prefetch_task_input_on_node (struct starpu_task ∗task, unsigned node)
• int starpu_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)
• int starpu_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• int starpu_idle_prefetch_task_input_for_prio (struct starpu_task ∗task, unsigned worker, int prio)

Generated by Doxygen

32.35 starpu_simgrid_wrap.h File Reference 521

• int starpu_idle_prefetch_task_input_for (struct starpu_task ∗task, unsigned worker)
• uint32_t starpu_task_footprint (struct starpu_perfmodel ∗model, struct starpu_task ∗task, struct starpu_←↩

perfmodel_arch ∗arch, unsigned nimpl)
• uint32_t starpu_task_data_footprint (struct starpu_task ∗task)
• double starpu_task_expected_length (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_worker_get_relative_speedup (struct starpu_perfmodel_arch ∗perf_arch)
• double starpu_task_expected_data_transfer_time (unsigned memory_node, struct starpu_task ∗task)
• double starpu_task_expected_data_transfer_time_for (struct starpu_task ∗task, unsigned worker)
• double starpu_data_expected_transfer_time (starpu_data_handle_t handle, unsigned memory_node, enum

starpu_data_access_mode mode)
• double starpu_task_expected_energy (struct starpu_task ∗task, struct starpu_perfmodel_arch ∗arch, un-

signed nimpl)
• double starpu_task_expected_conversion_time (struct starpu_task ∗task, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• void starpu_task_notify_ready_soon_register (starpu_notify_ready_soon_func f, void ∗data)
• void starpu_sched_ctx_worker_shares_tasks_lists (int workerid, int sched_ctx_id)
• void starpu_sched_task_break (struct starpu_task ∗task)

Worker operations

• int starpu_wake_worker_relax (int workerid)
• int starpu_wake_worker_no_relax (int workerid)
• int starpu_wake_worker_locked (int workerid)
• int starpu_wake_worker_relax_light (int workerid)

32.35 starpu_simgrid_wrap.h File Reference

#include <starpu_config.h>

Macros

• #define main

32.36 starpu_sink.h File Reference

Functions

• void starpu_sink_common_worker (int argc, char ∗∗argv)

32.37 starpu_stdlib.h File Reference

#include <starpu.h>

Macros

• #define STARPU_MALLOC_PINNED
• #define STARPU_MALLOC_COUNT
• #define STARPU_MALLOC_NORECLAIM
• #define STARPU_MEMORY_WAIT
• #define STARPU_MEMORY_OVERFLOW
• #define STARPU_MALLOC_SIMULATION_FOLDED
• #define starpu_data_malloc_pinned_if_possible
• #define starpu_data_free_pinned_if_possible

Generated by Doxygen

522 File Documentation

Typedefs

• typedef int(∗ starpu_malloc_hook) (unsigned dst_node, void ∗∗A, size_t dim, int flags)
• typedef int(∗ starpu_free_hook) (unsigned dst_node, void ∗A, size_t dim, int flags)

Functions

• void starpu_malloc_set_align (size_t align)
• int starpu_malloc (void ∗∗A, size_t dim)
• int starpu_free (void ∗A)
• int starpu_malloc_flags (void ∗∗A, size_t dim, int flags)
• int starpu_free_flags (void ∗A, size_t dim, int flags)
• void starpu_malloc_set_hooks (starpu_malloc_hook malloc_hook, starpu_free_hook free_hook)
• int starpu_memory_pin (void ∗addr, size_t size)
• int starpu_memory_unpin (void ∗addr, size_t size)
• starpu_ssize_t starpu_memory_get_total (unsigned node)
• starpu_ssize_t starpu_memory_get_available (unsigned node)
• starpu_ssize_t starpu_memory_get_total_all_nodes (void)
• starpu_ssize_t starpu_memory_get_available_all_nodes (void)
• int starpu_memory_allocate (unsigned node, size_t size, int flags)
• void starpu_memory_deallocate (unsigned node, size_t size)
• void starpu_memory_wait_available (unsigned node, size_t size)
• void starpu_sleep (float nb_sec)
• void starpu_usleep (float nb_micro_sec)

32.38 starpu_task.h File Reference

#include <starpu.h>
#include <errno.h>
#include <assert.h>
#include <cuda.h>

Data Structures

• struct starpu_codelet
• struct starpu_data_descr
• struct starpu_task

Macros

• #define STARPU_NOWHERE
• #define STARPU_CPU
• #define STARPU_CUDA
• #define STARPU_OPENCL
• #define STARPU_MIC
• #define STARPU_MPI_MS
• #define STARPU_CODELET_SIMGRID_EXECUTE
• #define STARPU_CODELET_SIMGRID_EXECUTE_AND_INJECT
• #define STARPU_CODELET_NOPLANS
• #define STARPU_CUDA_ASYNC
• #define STARPU_OPENCL_ASYNC
• #define STARPU_MAIN_RAM
• #define STARPU_TASK_INIT
• #define STARPU_TASK_INVALID
• #define STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Generated by Doxygen

32.38 starpu_task.h File Reference 523

• #define STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
• #define STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
• #define STARPU_VARIABLE_NBUFFERS
• #define STARPU_SPECIFIC_NODE_LOCAL
• #define STARPU_SPECIFIC_NODE_CPU
• #define STARPU_SPECIFIC_NODE_SLOW
• #define STARPU_SPECIFIC_NODE_FAST
• #define STARPU_TASK_TYPE_NORMAL
• #define STARPU_TASK_TYPE_INTERNAL
• #define STARPU_TASK_TYPE_DATA_ACQUIRE
• #define STARPU_TASK_INITIALIZER
• #define STARPU_TASK_GET_NBUFFERS(task)
• #define STARPU_TASK_GET_HANDLE(task, i)
• #define STARPU_TASK_GET_HANDLES(task)
• #define STARPU_TASK_SET_HANDLE(task, handle, i)
• #define STARPU_CODELET_GET_MODE(codelet, i)
• #define STARPU_CODELET_SET_MODE(codelet, mode, i)
• #define STARPU_TASK_GET_MODE(task, i)
• #define STARPU_TASK_SET_MODE(task, mode, i)
• #define STARPU_CODELET_GET_NODE(codelet, i)
• #define STARPU_CODELET_SET_NODE(codelet, __node, i)

Typedefs

• typedef void(∗ starpu_cpu_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_cuda_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_opencl_func_t) (void ∗∗, void ∗)
• typedef void(∗ starpu_mic_kernel_t) (void ∗∗, void ∗)
• typedef starpu_mic_kernel_t(∗ starpu_mic_func_t) (void)
• typedef void(∗ starpu_mpi_ms_kernel_t) (void ∗∗, void ∗)
• typedef starpu_mpi_ms_kernel_t(∗ starpu_mpi_ms_func_t) (void)

Enumerations

• enum starpu_codelet_type { STARPU_SEQ, STARPU_SPMD, STARPU_FORKJOIN }
• enum starpu_task_status {

STARPU_TASK_INIT, STARPU_TASK_INIT, STARPU_TASK_BLOCKED, STARPU_TASK_READY,
STARPU_TASK_RUNNING, STARPU_TASK_FINISHED, STARPU_TASK_BLOCKED_ON_TAG, STAR←↩
PU_TASK_BLOCKED_ON_TASK,
STARPU_TASK_BLOCKED_ON_DATA, STARPU_TASK_STOPPED }

Functions

• void starpu_task_init (struct starpu_task ∗task)
• void starpu_task_clean (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_create (void) STARPU_ATTRIBUTE_MALLOC
• void starpu_task_destroy (struct starpu_task ∗task)
• int starpu_task_submit (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_submit_to_ctx (struct starpu_task ∗task, unsigned sched_ctx_id)
• int starpu_task_finished (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_wait (struct starpu_task ∗task) STARPU_WARN_UNUSED_RESULT
• int starpu_task_wait_array (struct starpu_task ∗∗tasks, unsigned nb_tasks) STARPU_WARN_UNUSED_←↩

RESULT
• int starpu_task_wait_for_all (void)
• int starpu_task_wait_for_n_submitted (unsigned n)
• int starpu_task_wait_for_all_in_ctx (unsigned sched_ctx_id)

Generated by Doxygen

524 File Documentation

• int starpu_task_wait_for_n_submitted_in_ctx (unsigned sched_ctx_id, unsigned n)
• int starpu_task_wait_for_no_ready (void)
• int starpu_task_nready (void)
• int starpu_task_nsubmitted (void)
• void starpu_iteration_push (unsigned long iteration)
• void starpu_iteration_pop (void)
• void starpu_do_schedule (void)
• void starpu_codelet_init (struct starpu_codelet ∗cl)
• void starpu_codelet_display_stats (struct starpu_codelet ∗cl)
• struct starpu_task ∗ starpu_task_get_current (void)
• int starpu_task_get_current_data_node (unsigned i)
• const char ∗ starpu_task_get_model_name (struct starpu_task ∗task)
• const char ∗ starpu_task_get_name (struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_dup (struct starpu_task ∗task)
• void starpu_task_set_implementation (struct starpu_task ∗task, unsigned impl)
• unsigned starpu_task_get_implementation (struct starpu_task ∗task)
• void starpu_create_sync_task (starpu_tag_t sync_tag, unsigned ndeps, starpu_tag_t ∗deps, void(∗callback)(void
∗), void ∗callback_arg)

• void starpu_create_callback_task (void(∗callback)(void ∗), void ∗callback_arg)
• void starpu_task_watchdog_set_hook (void(∗hook)(void ∗), void ∗hook_arg)

32.38.1 Macro Definition Documentation

32.38.1.1 STARPU_TASK_INVALID

#define STARPU_TASK_INVALID

old name for STARPU_TASK_INIT

32.39 starpu_task_bundle.h File Reference

Typedefs

• typedef struct _starpu_task_bundle ∗ starpu_task_bundle_t

Functions

• void starpu_task_bundle_create (starpu_task_bundle_t ∗bundle)
• int starpu_task_bundle_insert (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• int starpu_task_bundle_remove (starpu_task_bundle_t bundle, struct starpu_task ∗task)
• void starpu_task_bundle_close (starpu_task_bundle_t bundle)
• double starpu_task_bundle_expected_length (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

• double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t bundle, unsigned
memory_node)

• double starpu_task_bundle_expected_energy (starpu_task_bundle_t bundle, struct starpu_perfmodel_arch
∗arch, unsigned nimpl)

32.40 starpu_task_dep.h File Reference

#include <starpu.h>

Generated by Doxygen

32.41 starpu_task_list.h File Reference 525

Typedefs

• typedef uint64_t starpu_tag_t

Functions

• void starpu_task_declare_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task←↩
_array[])

• void starpu_task_declare_deps (struct starpu_task ∗task, unsigned ndeps,...)
• void starpu_task_declare_end_deps_array (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_declare_end_deps (struct starpu_task ∗task, unsigned ndeps,...)
• int starpu_task_get_task_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task ∗task_array[])
• int starpu_task_get_task_scheduled_succs (struct starpu_task ∗task, unsigned ndeps, struct starpu_task
∗task_array[])

• void starpu_task_end_dep_add (struct starpu_task ∗t, int nb_deps)
• void starpu_task_end_dep_release (struct starpu_task ∗t)
• void starpu_tag_declare_deps (starpu_tag_t id, unsigned ndeps,...)
• void starpu_tag_declare_deps_array (starpu_tag_t id, unsigned ndeps, starpu_tag_t ∗array)
• int starpu_tag_wait (starpu_tag_t id)
• int starpu_tag_wait_array (unsigned ntags, starpu_tag_t ∗id)
• void starpu_tag_restart (starpu_tag_t id)
• void starpu_tag_remove (starpu_tag_t id)
• void starpu_tag_notify_from_apps (starpu_tag_t id)
• void starpu_tag_notify_restart_from_apps (starpu_tag_t id)
• struct starpu_task ∗ starpu_tag_get_task (starpu_tag_t id)

32.41 starpu_task_list.h File Reference

#include <starpu_task.h>
#include <starpu_util.h>

Data Structures

• struct starpu_task_list

Functions

• void starpu_task_list_init (struct starpu_task_list ∗list)
• void starpu_task_list_push_front (struct starpu_task_list ∗list, struct starpu_task ∗task)
• void starpu_task_list_push_back (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_front (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_back (const struct starpu_task_list ∗list)
• int starpu_task_list_empty (const struct starpu_task_list ∗list)
• void starpu_task_list_erase (struct starpu_task_list ∗list, struct starpu_task ∗task)
• struct starpu_task ∗ starpu_task_list_pop_front (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_pop_back (struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_begin (const struct starpu_task_list ∗list)
• struct starpu_task ∗ starpu_task_list_end (const struct starpu_task_list ∗list STARPU_ATTRIBUTE_UNU←↩

SED)
• struct starpu_task ∗ starpu_task_list_next (const struct starpu_task ∗task)
• int starpu_task_list_ismember (const struct starpu_task_list ∗list, const struct starpu_task ∗look)
• void starpu_task_list_move (struct starpu_task_list ∗ldst, struct starpu_task_list ∗lsrc)

Generated by Doxygen

526 File Documentation

32.42 starpu_task_util.h File Reference

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <starpu.h>

Data Structures

• struct starpu_codelet_pack_arg_data

Macros

• #define STARPU_MODE_SHIFT
• #define STARPU_VALUE
• #define STARPU_CALLBACK
• #define STARPU_CALLBACK_WITH_ARG
• #define STARPU_CALLBACK_ARG
• #define STARPU_PRIORITY
• #define STARPU_EXECUTE_ON_NODE
• #define STARPU_EXECUTE_ON_DATA
• #define STARPU_DATA_ARRAY
• #define STARPU_DATA_MODE_ARRAY
• #define STARPU_TAG
• #define STARPU_HYPERVISOR_TAG
• #define STARPU_FLOPS
• #define STARPU_SCHED_CTX
• #define STARPU_PROLOGUE_CALLBACK
• #define STARPU_PROLOGUE_CALLBACK_ARG
• #define STARPU_PROLOGUE_CALLBACK_POP
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG
• #define STARPU_EXECUTE_ON_WORKER
• #define STARPU_EXECUTE_WHERE
• #define STARPU_TAG_ONLY
• #define STARPU_POSSIBLY_PARALLEL
• #define STARPU_WORKER_ORDER
• #define STARPU_NODE_SELECTION_POLICY
• #define STARPU_NAME
• #define STARPU_CL_ARGS
• #define STARPU_CL_ARGS_NFREE
• #define STARPU_TASK_DEPS_ARRAY
• #define STARPU_TASK_COLOR
• #define STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_SYNCHRONOUS
• #define STARPU_TASK_END_DEPS_ARRAY
• #define STARPU_TASK_END_DEP
• #define STARPU_TASK_WORKERIDS
• #define STARPU_SEQUENTIAL_CONSISTENCY
• #define STARPU_TASK_PROFILING_INFO
• #define STARPU_TASK_NO_SUBMITORDER
• #define STARPU_CALLBACK_ARG_NFREE
• #define STARPU_CALLBACK_WITH_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_ARG_NFREE
• #define STARPU_PROLOGUE_CALLBACK_POP_ARG_NFREE
• #define STARPU_TASK_SCHED_DATA
• #define STARPU_SHIFTED_MODE_MAX

Generated by Doxygen

32.43 starpu_thread.h File Reference 527

Functions

• int starpu_task_set (struct starpu_task ∗task, struct starpu_codelet ∗cl,...)
• struct starpu_task ∗ starpu_task_build (struct starpu_codelet ∗cl,...)
• int starpu_task_insert (struct starpu_codelet ∗cl,...)
• int starpu_insert_task (struct starpu_codelet ∗cl,...)
• void starpu_task_insert_data_make_room (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int current_buffer, int room)

• void starpu_task_insert_data_process_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int arg_type, starpu_data_handle_t handle)

• void starpu_task_insert_data_process_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task, int
∗allocated_buffers, int ∗current_buffer, int nb_handles, starpu_data_handle_t ∗handles)

• void starpu_task_insert_data_process_mode_array_arg (struct starpu_codelet ∗cl, struct starpu_task ∗task,
int ∗allocated_buffers, int ∗current_buffer, int nb_descrs, struct starpu_data_descr ∗descrs)

• void starpu_codelet_pack_args (void ∗∗arg_buffer, size_t ∗arg_buffer_size,...)
• void starpu_codelet_pack_arg_init (struct starpu_codelet_pack_arg_data ∗state)
• void starpu_codelet_pack_arg (struct starpu_codelet_pack_arg_data ∗state, const void ∗ptr, size_t ptr_size)
• void starpu_codelet_pack_arg_fini (struct starpu_codelet_pack_arg_data ∗state, void ∗∗cl_arg, size_t ∗cl←↩

_arg_size)
• void starpu_codelet_unpack_args (void ∗cl_arg,...)
• void starpu_codelet_unpack_args_and_copyleft (void ∗cl_arg, void ∗buffer, size_t buffer_size,...)

32.43 starpu_thread.h File Reference

#include <starpu_config.h>
#include <starpu_util.h>
#include <pthread.h>
#include <xbt/synchro_core.h>
#include <stdint.h>

Data Structures

• struct starpu_pthread_barrier_t
• struct starpu_pthread_spinlock_t
• struct starpu_pthread_wait_t
• struct starpu_pthread_queue_t

Macros

• #define starpu_pthread_setname(name)
• #define STARPU_PTHREAD_MUTEX_INITIALIZER
• #define STARPU_PTHREAD_COND_INITIALIZER
• #define STARPU_PTHREAD_BARRIER_SERIAL_THREAD

Typedefs

• typedef msg_process_t starpu_pthread_t
• typedef int starpu_pthread_attr_t
• typedef msg_host_t starpu_sg_host_t
• typedef xbt_mutex_t starpu_pthread_mutex_t
• typedef int starpu_pthread_mutexattr_t
• typedef int starpu_pthread_key_t
• typedef xbt_cond_t starpu_pthread_cond_t
• typedef int starpu_pthread_condattr_t
• typedef xbt_mutex_t starpu_pthread_rwlock_t

Generated by Doxygen

528 File Documentation

• typedef int starpu_pthread_rwlockattr_t
• typedef int starpu_pthread_barrierattr_t
• typedef msg_sem_t starpu_sem_t

Functions

• int starpu_pthread_equal (starpu_pthread_t t1, starpu_pthread_t t2)
• starpu_pthread_t starpu_pthread_self (void)
• int starpu_pthread_create_on (const char ∗name, starpu_pthread_t ∗thread, const starpu_pthread_attr_t
∗attr, void ∗(∗start_routine)(void ∗), void ∗arg, starpu_sg_host_t host)

• int starpu_pthread_create (starpu_pthread_t ∗thread, const starpu_pthread_attr_t ∗attr, void ∗(∗start_←↩
routine)(void ∗), void ∗arg)

• starpu_pthread_t _starpu_simgrid_actor_create (const char ∗name, xbt_main_func_t code, starpu_sg_←↩
host_t host, int argc, char ∗argv[])

• int starpu_pthread_join (starpu_pthread_t thread, void ∗∗retval)
• int starpu_pthread_exit (void ∗retval) STARPU_ATTRIBUTE_NORETURN
• int starpu_pthread_attr_init (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_destroy (starpu_pthread_attr_t ∗attr)
• int starpu_pthread_attr_setdetachstate (starpu_pthread_attr_t ∗attr, int detachstate)
• int starpu_pthread_mutex_init (starpu_pthread_mutex_t ∗mutex, const starpu_pthread_mutexattr_←↩

t ∗mutexattr)
• int starpu_pthread_mutex_destroy (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_lock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutexattr_gettype (const starpu_pthread_mutexattr_t ∗attr, int ∗type)
• int starpu_pthread_mutexattr_settype (starpu_pthread_mutexattr_t ∗attr, int type)
• int starpu_pthread_mutexattr_destroy (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_mutexattr_init (starpu_pthread_mutexattr_t ∗attr)
• int starpu_pthread_mutex_lock_sched (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_unlock_sched (starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_mutex_trylock_sched (starpu_pthread_mutex_t ∗mutex)
• void starpu_pthread_mutex_check_sched (starpu_pthread_mutex_t ∗mutex, char ∗file, int line)
• int starpu_pthread_key_create (starpu_pthread_key_t ∗key, void(∗destr_function)(void ∗))
• int starpu_pthread_key_delete (starpu_pthread_key_t key)
• int starpu_pthread_setspecific (starpu_pthread_key_t key, const void ∗pointer)
• void ∗ starpu_pthread_getspecific (starpu_pthread_key_t key)
• int starpu_pthread_cond_init (starpu_pthread_cond_t ∗cond, starpu_pthread_condattr_t ∗cond_attr)
• int starpu_pthread_cond_signal (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_broadcast (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_cond_wait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex)
• int starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_pthread_mutex_t ∗mutex, const

struct timespec ∗abstime)
• int starpu_pthread_cond_destroy (starpu_pthread_cond_t ∗cond)
• int starpu_pthread_rwlock_init (starpu_pthread_rwlock_t ∗rwlock, const starpu_pthread_rwlockattr_t ∗attr)
• int starpu_pthread_rwlock_destroy (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_rdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_wrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_rwlock_unlock (starpu_pthread_rwlock_t ∗rwlock)
• int starpu_pthread_barrier_init (starpu_pthread_barrier_t ∗barrier, const starpu_pthread_barrierattr_t ∗attr,

unsigned count)
• int starpu_pthread_barrier_destroy (starpu_pthread_barrier_t ∗barrier)
• int starpu_pthread_barrier_wait (starpu_pthread_barrier_t ∗barrier)

Generated by Doxygen

32.43 starpu_thread.h File Reference 529

• int starpu_pthread_spin_init (starpu_pthread_spinlock_t ∗lock, int pshared)
• int starpu_pthread_spin_destroy (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_lock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_trylock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_spin_unlock (starpu_pthread_spinlock_t ∗lock)
• int starpu_pthread_queue_init (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_signal (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_broadcast (starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_destroy (starpu_pthread_queue_t ∗q)
• int starpu_pthread_wait_init (starpu_pthread_wait_t ∗w)
• int starpu_pthread_queue_register (starpu_pthread_wait_t ∗w, starpu_pthread_queue_t ∗q)
• int starpu_pthread_queue_unregister (starpu_pthread_wait_t ∗w, starpu_pthread_queue_t ∗q)
• int starpu_pthread_wait_reset (starpu_pthread_wait_t ∗w)
• int starpu_pthread_wait_wait (starpu_pthread_wait_t ∗w)
• int starpu_pthread_wait_timedwait (starpu_pthread_wait_t ∗w, const struct timespec ∗abstime)
• int starpu_pthread_wait_destroy (starpu_pthread_wait_t ∗w)
• int starpu_sem_destroy (starpu_sem_t ∗)
• int starpu_sem_getvalue (starpu_sem_t ∗, int ∗)
• int starpu_sem_init (starpu_sem_t ∗, int, unsigned)
• int starpu_sem_post (starpu_sem_t ∗)
• int starpu_sem_trywait (starpu_sem_t ∗)
• int starpu_sem_wait (starpu_sem_t ∗)

32.43.1 Data Structure Documentation

32.43.1.1 struct starpu_pthread_barrier_t

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_cond_t cond

starpu_pthread_cond_t cond_destroy

unsigned count

unsigned done

unsigned busy

32.43.1.2 struct starpu_pthread_spinlock_t

Data Fields

int taken

32.43.1.3 struct starpu_pthread_wait_t

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_cond_t cond

unsigned block

32.43.1.4 struct starpu_pthread_queue_t

Generated by Doxygen

530 File Documentation

Data Fields

starpu_pthread_mutex_t mutex

starpu_pthread_wait_t ∗∗ queue

unsigned allocqueue

unsigned nqueue

32.44 starpu_thread_util.h File Reference

#include <starpu_util.h>
#include <starpu_thread.h>
#include <errno.h>

Macros

• #define STARPU_PTHREAD_CREATE_ON(name, thread, attr, routine, arg, where)

• #define STARPU_PTHREAD_CREATE(thread, attr, routine, arg)

• #define STARPU_PTHREAD_JOIN(thread, retval)

• #define STARPU_PTHREAD_MUTEX_INIT(mutex, attr)

• #define STARPU_PTHREAD_MUTEX_DESTROY(mutex)

• #define _STARPU_CHECK_NOT_SCHED_MUTEX(mutex, file, line)

• #define STARPU_PTHREAD_MUTEX_LOCK(mutex)

• #define STARPU_PTHREAD_MUTEX_LOCK_SCHED(mutex)

• #define STARPU_PTHREAD_MUTEX_TRYLOCK(mutex)

• #define STARPU_PTHREAD_MUTEX_TRYLOCK_SCHED(mutex)

• #define STARPU_PTHREAD_MUTEX_UNLOCK(mutex)

• #define STARPU_PTHREAD_MUTEX_UNLOCK_SCHED(mutex)

• #define STARPU_PTHREAD_KEY_CREATE(key, destr)

• #define STARPU_PTHREAD_KEY_DELETE(key)

• #define STARPU_PTHREAD_SETSPECIFIC(key, ptr)

• #define STARPU_PTHREAD_GETSPECIFIC(key)

• #define STARPU_PTHREAD_RWLOCK_INIT(rwlock, attr)

• #define STARPU_PTHREAD_RWLOCK_RDLOCK(rwlock)

• #define STARPU_PTHREAD_RWLOCK_TRYRDLOCK(rwlock)

• #define STARPU_PTHREAD_RWLOCK_WRLOCK(rwlock)

• #define STARPU_PTHREAD_RWLOCK_TRYWRLOCK(rwlock)

• #define STARPU_PTHREAD_RWLOCK_UNLOCK(rwlock)

• #define STARPU_PTHREAD_RWLOCK_DESTROY(rwlock)

• #define STARPU_PTHREAD_COND_INIT(cond, attr)

• #define STARPU_PTHREAD_COND_DESTROY(cond)

• #define STARPU_PTHREAD_COND_SIGNAL(cond)

• #define STARPU_PTHREAD_COND_BROADCAST(cond)

• #define STARPU_PTHREAD_COND_WAIT(cond, mutex)

• #define STARPU_PTHREAD_COND_TIMEDWAIT(cond, mutex, abstime)

• #define STARPU_PTHREAD_BARRIER_INIT(barrier, attr, count)

• #define STARPU_PTHREAD_BARRIER_DESTROY(barrier)

• #define STARPU_PTHREAD_BARRIER_WAIT(barrier)

Generated by Doxygen

32.45 starpu_tree.h File Reference 531

Functions

• static STARPU_INLINE int _starpu_pthread_mutex_trylock (starpu_pthread_mutex_t ∗mutex, char ∗file,
int line)

• static STARPU_INLINE int _starpu_pthread_mutex_trylock_sched (starpu_pthread_mutex_t ∗mutex,
char ∗file, int line)

• static STARPU_INLINE int _starpu_pthread_rwlock_tryrdlock (starpu_pthread_rwlock_t ∗rwlock, char
∗file, int line)

• static STARPU_INLINE int _starpu_pthread_rwlock_trywrlock (starpu_pthread_rwlock_t ∗rwlock, char
∗file, int line)

• static STARPU_INLINE int _starpu_pthread_cond_timedwait (starpu_pthread_cond_t ∗cond, starpu_←↩
pthread_mutex_t ∗mutex, const struct timespec ∗abstime, char ∗file, int line)

32.45 starpu_tree.h File Reference

Data Structures

• struct starpu_tree

Functions

• void starpu_tree_reset_visited (struct starpu_tree ∗tree, char ∗visited)
• void starpu_tree_prepare_children (unsigned arity, struct starpu_tree ∗father)
• void starpu_tree_insert (struct starpu_tree ∗tree, int id, int level, int is_pu, int arity, struct starpu_tree ∗father)
• struct starpu_tree ∗ starpu_tree_get (struct starpu_tree ∗tree, int id)
• struct starpu_tree ∗ starpu_tree_get_neighbour (struct starpu_tree ∗tree, struct starpu_tree ∗node, char
∗visited, char ∗present)

• void starpu_tree_free (struct starpu_tree ∗tree)

32.46 starpu_util.h File Reference

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <starpu_config.h>
#include <sys/time.h>

Macros

• #define STARPU_GNUC_PREREQ(maj, min)
• #define STARPU_UNLIKELY(expr)
• #define STARPU_LIKELY(expr)
• #define STARPU_ATTRIBUTE_UNUSED
• #define STARPU_ATTRIBUTE_NORETURN
• #define STARPU_ATTRIBUTE_INTERNAL
• #define STARPU_ATTRIBUTE_MALLOC
• #define STARPU_ATTRIBUTE_WARN_UNUSED_RESULT
• #define STARPU_ATTRIBUTE_PURE
• #define STARPU_ATTRIBUTE_ALIGNED(size)
• #define STARPU_ATTRIBUTE_FORMAT(type, string, first)
• #define STARPU_INLINE
• #define STARPU_ATTRIBUTE_CALLOC_SIZE(num, size)
• #define STARPU_ATTRIBUTE_ALLOC_SIZE(size)

Generated by Doxygen

532 File Documentation

• #define endif

• #define STARPU_WARN_UNUSED_RESULT

• #define STARPU_BACKTRACE_LENGTH

• #define STARPU_DUMP_BACKTRACE()

• #define STARPU_SIMGRID_ASSERT(x)

• #define STARPU_ASSERT(x)

• #define STARPU_ASSERT_ACCESSIBLE(ptr)

• #define STARPU_ASSERT_MSG(x, msg, ...)

• #define _starpu_abort()

• #define STARPU_ABORT()

• #define STARPU_ABORT_MSG(msg, ...)

• #define STARPU_CHECK_RETURN_VALUE(err, message, ...)

• #define STARPU_CHECK_RETURN_VALUE_IS(err, value, message, ...)

• #define STARPU_ATOMIC_SOMETHING(name, expr)

• #define STARPU_ATOMIC_SOMETHINGL(name, expr)

• #define STARPU_ATOMIC_SOMETHING64(name, expr)

• #define STARPU_BOOL_COMPARE_AND_SWAP_PTR(ptr, old, value)

• #define STARPU_VAL_COMPARE_AND_SWAP_PTR(ptr, old, value)

• #define STARPU_RMB()

• #define STARPU_WMB()

• #define STARPU_CACHELINE_SIZE

32.47 starpu_worker.h File Reference

#include <stdlib.h>
#include <starpu_config.h>
#include <starpu_thread.h>
#include <starpu_task.h>
#include <hwloc.h>

Data Structures

• struct starpu_sched_ctx_iterator

• struct starpu_worker_collection

Macros

• #define starpu_worker_get_id_check()

Enumerations

• enum starpu_node_kind {
STARPU_UNUSED, STARPU_CPU_RAM, STARPU_CUDA_RAM, STARPU_OPENCL_RAM,
STARPU_DISK_RAM, STARPU_MIC_RAM, STARPU_MPI_MS_RAM }

• enum starpu_worker_archtype {
STARPU_CPU_WORKER, STARPU_CUDA_WORKER, STARPU_OPENCL_WORKER, STARPU_MIC_←↩
WORKER,
STARPU_MPI_MS_WORKER, STARPU_ANY_WORKER }

• enum starpu_worker_collection_type { STARPU_WORKER_TREE, STARPU_WORKER_LIST }

Generated by Doxygen

32.47 starpu_worker.h File Reference 533

Functions

• unsigned starpu_worker_get_count (void)
• unsigned starpu_cpu_worker_get_count (void)
• unsigned starpu_cuda_worker_get_count (void)
• unsigned starpu_opencl_worker_get_count (void)
• unsigned starpu_mic_worker_get_count (void)
• unsigned starpu_mpi_ms_worker_get_count (void)
• unsigned starpu_mic_device_get_count (void)
• int starpu_worker_get_id (void)
• unsigned _starpu_worker_get_id_check (const char ∗f, int l)
• int starpu_worker_get_bindid (int workerid)
• void starpu_sched_find_all_worker_combinations (void)
• enum starpu_worker_archtype starpu_worker_get_type (int id)
• int starpu_worker_get_count_by_type (enum starpu_worker_archtype type)
• unsigned starpu_worker_get_ids_by_type (enum starpu_worker_archtype type, int ∗workerids, unsigned

maxsize)
• int starpu_worker_get_by_type (enum starpu_worker_archtype type, int num)
• int starpu_worker_get_by_devid (enum starpu_worker_archtype type, int devid)
• void starpu_worker_get_name (int id, char ∗dst, size_t maxlen)
• void starpu_worker_display_names (FILE ∗output, enum starpu_worker_archtype type)
• int starpu_worker_get_devid (int id)
• int starpu_worker_get_mp_nodeid (int id)
• struct starpu_tree ∗ starpu_workers_get_tree (void)
• unsigned starpu_worker_get_sched_ctx_list (int worker, unsigned ∗∗sched_ctx)
• unsigned starpu_worker_is_blocked_in_parallel (int workerid)
• unsigned starpu_worker_is_slave_somewhere (int workerid)
• char ∗ starpu_worker_get_type_as_string (enum starpu_worker_archtype type)
• int starpu_bindid_get_workerids (int bindid, int ∗∗workerids)
• int starpu_worker_get_devids (enum starpu_worker_archtype type, int ∗devids, int num)
• int starpu_worker_get_stream_workerids (unsigned devid, int ∗workerids, enum starpu_worker_archtype

type)
• unsigned starpu_worker_get_sched_ctx_id_stream (unsigned stream_workerid)
• hwloc_cpuset_t starpu_worker_get_hwloc_cpuset (int workerid)
• hwloc_obj_t starpu_worker_get_hwloc_obj (int workerid)
• int starpu_memory_node_get_devid (unsigned node)
• unsigned starpu_worker_get_local_memory_node (void)
• unsigned starpu_worker_get_memory_node (unsigned workerid)
• unsigned starpu_memory_nodes_get_count (void)
• int starpu_memory_node_get_name (unsigned node, char ∗name, size_t size)
• int starpu_memory_nodes_get_numa_count (void)
• int starpu_memory_nodes_numa_id_to_devid (int osid)
• int starpu_memory_nodes_numa_devid_to_id (unsigned id)
• enum starpu_node_kind starpu_node_get_kind (unsigned node)
• unsigned starpu_combined_worker_get_count (void)
• unsigned starpu_worker_is_combined_worker (int id)
• int starpu_combined_worker_get_id (void)
• int starpu_combined_worker_get_size (void)
• int starpu_combined_worker_get_rank (void)
• int starpu_combined_worker_assign_workerid (int nworkers, int workerid_array[])
• int starpu_combined_worker_get_description (int workerid, int ∗worker_size, int ∗∗combined_workerid)
• int starpu_combined_worker_can_execute_task (unsigned workerid, struct starpu_task ∗task, unsigned

nimpl)
• void starpu_parallel_task_barrier_init (struct starpu_task ∗task, int workerid)
• void starpu_parallel_task_barrier_init_n (struct starpu_task ∗task, int worker_size)

Generated by Doxygen

534 File Documentation

Scheduling operations

• int starpu_worker_sched_op_pending (void)
• void starpu_worker_relax_on (void)
• void starpu_worker_relax_off (void)
• int starpu_worker_get_relax_state (void)
• void starpu_worker_lock (int workerid)
• int starpu_worker_trylock (int workerid)
• void starpu_worker_unlock (int workerid)
• void starpu_worker_lock_self (void)
• void starpu_worker_unlock_self (void)
• void starpu_worker_set_going_to_sleep_callback (void(∗callback)(unsigned workerid))
• void starpu_worker_set_waking_up_callback (void(∗callback)(unsigned workerid))

Variables

• struct starpu_worker_collection starpu_worker_list
• struct starpu_worker_collection starpu_worker_tree

32.48 starpufft.h File Reference

Typedefs

• typedef double _Complex starpufft_complex
• typedef struct starpufft_plan ∗ starpufft_plan
• typedef float _Complex starpufftf_complex
• typedef struct starpufftf_plan ∗ starpufftf_plan
• typedef long double _Complex starpufftl_complex
• typedef struct starpufftl_plan ∗ starpufftl_plan

Functions

• starpufft_plan starpufft_plan_dft_1d (int n, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufft_plan starpufft_plan_dft_r2c_1d (int n, unsigned flags)
• starpufft_plan starpufft_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufft_malloc (size_t n)
• void starpufft_free (void ∗p)
• int starpufft_execute (starpufft_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufft_start (starpufft_plan p, void ∗in, void ∗out)
• int starpufft_execute_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufft_start_handle (starpufft_plan p, starpu_data_handle_t in, starpu_data_handle←↩

_t out)
• void starpufft_cleanup (starpufft_plan p)
• void starpufft_destroy_plan (starpufft_plan p)
• void starpufft_startstats (void)
• void starpufft_stopstats (void)
• void starpufft_showstats (FILE ∗out)
• starpufftf_plan starpufftf_plan_dft_1d (int n, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_r2c_1d (int n, unsigned flags)
• starpufftf_plan starpufftf_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufftf_malloc (size_t n)
• void starpufftf_free (void ∗p)
• int starpufftf_execute (starpufftf_plan p, void ∗in, void ∗out)

Generated by Doxygen

32.49 sc_hypervisor.h File Reference 535

• struct starpu_task ∗ starpufftf_start (starpufftf_plan p, void ∗in, void ∗out)
• int starpufftf_execute_handle (starpufftf_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufftf_start_handle (starpufftf_plan p, starpu_data_handle_t in, starpu_data_←↩

handle_t out)
• void starpufftf_cleanup (starpufftf_plan p)
• void starpufftf_destroy_plan (starpufftf_plan p)
• void starpufftf_startstats (void)
• void starpufftf_stopstats (void)
• void starpufftf_showstats (FILE ∗out)
• starpufftl_plan starpufftl_plan_dft_1d (int n, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_2d (int n, int m, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_3d (int n, int m, int p, int sign, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_r2c_1d (int n, unsigned flags)
• starpufftl_plan starpufftl_plan_dft_c2r_1d (int n, unsigned flags)
• void ∗ starpufftl_malloc (size_t n)
• void starpufftl_free (void ∗p)
• int starpufftl_execute (starpufftl_plan p, void ∗in, void ∗out)
• struct starpu_task ∗ starpufftl_start (starpufftl_plan p, void ∗in, void ∗out)
• int starpufftl_execute_handle (starpufftl_plan p, starpu_data_handle_t in, starpu_data_handle_t out)
• struct starpu_task ∗ starpufftl_start_handle (starpufftl_plan p, starpu_data_handle_t in, starpu_data_←↩

handle_t out)
• void starpufftl_cleanup (starpufftl_plan p)
• void starpufftl_destroy_plan (starpufftl_plan p)
• void starpufftl_startstats (void)
• void starpufftl_stopstats (void)
• void starpufftl_showstats (FILE ∗out)

Variables

• int starpufft_last_plan_number

32.49 sc_hypervisor.h File Reference

#include <starpu.h>
#include <starpu_sched_ctx_hypervisor.h>
#include <sc_hypervisor_config.h>
#include <sc_hypervisor_monitoring.h>
#include <math.h>

Data Structures

• struct sc_hypervisor_policy

Functions

• void ∗ sc_hypervisor_init (struct sc_hypervisor_policy ∗policy)
• void sc_hypervisor_shutdown (void)
• void sc_hypervisor_register_ctx (unsigned sched_ctx, double total_flops)
• void sc_hypervisor_unregister_ctx (unsigned sched_ctx)
• void sc_hypervisor_post_resize_request (unsigned sched_ctx, int task_tag)
• void sc_hypervisor_resize_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_stop_resize (unsigned sched_ctx)
• void sc_hypervisor_start_resize (unsigned sched_ctx)
• const char ∗ sc_hypervisor_get_policy ()

Generated by Doxygen

536 File Documentation

• void sc_hypervisor_add_workers_to_sched_ctx (int ∗workers_to_add, unsigned nworkers_to_add, unsigned
sched_ctx)

• void sc_hypervisor_remove_workers_from_sched_ctx (int ∗workers_to_remove, unsigned nworkers_to_←↩
remove, unsigned sched_ctx, unsigned now)

• void sc_hypervisor_move_workers (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, int
∗workers_to_move, unsigned nworkers_to_move, unsigned now)

• void sc_hypervisor_size_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• unsigned sc_hypervisor_get_size_req (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, int ∗∗workers, int
∗nworkers)

• void sc_hypervisor_save_size_req (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers, int nworkers)
• void sc_hypervisor_free_size_req (void)
• unsigned sc_hypervisor_can_resize (unsigned sched_ctx)
• void sc_hypervisor_set_type_of_task (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t footprint,

size_t data_size)
• void sc_hypervisor_update_diff_total_flops (unsigned sched_ctx, double diff_total_flops)
• void sc_hypervisor_update_diff_elapsed_flops (unsigned sched_ctx, double diff_task_flops)
• void sc_hypervisor_update_resize_interval (unsigned ∗sched_ctxs, int nsched_ctxs, int max_nworkers)
• void sc_hypervisor_get_ctxs_on_level (unsigned ∗∗sched_ctxs, int ∗nsched_ctxs, unsigned hierarchy_level,

unsigned father_sched_ctx_id)
• unsigned sc_hypervisor_get_nhierarchy_levels (void)
• void sc_hypervisor_get_leaves (unsigned ∗sched_ctxs, int nsched_ctxs, unsigned ∗leaves, int ∗nleaves)
• double sc_hypervisor_get_nready_flops_of_all_sons_of_sched_ctx (unsigned sched_ctx)
• void sc_hypervisor_print_overhead ()
• void sc_hypervisor_init_worker (int workerid, unsigned sched_ctx)

Variables

• starpu_pthread_mutex_t act_hypervisor_mutex

32.50 sc_hypervisor_config.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct sc_hypervisor_policy_config

• #define SC_HYPERVISOR_MAX_IDLE
• #define SC_HYPERVISOR_MIN_WORKING
• #define SC_HYPERVISOR_PRIORITY
• #define SC_HYPERVISOR_MIN_WORKERS
• #define SC_HYPERVISOR_MAX_WORKERS
• #define SC_HYPERVISOR_GRANULARITY
• #define SC_HYPERVISOR_FIXED_WORKERS
• #define SC_HYPERVISOR_MIN_TASKS
• #define SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE
• #define SC_HYPERVISOR_TIME_TO_APPLY
• #define SC_HYPERVISOR_NULL
• #define SC_HYPERVISOR_ISPEED_W_SAMPLE
• #define SC_HYPERVISOR_ISPEED_CTX_SAMPLE
• #define SC_HYPERVISOR_TIME_SAMPLE
• #define MAX_IDLE_TIME
• #define MIN_WORKING_TIME
• void sc_hypervisor_set_config (unsigned sched_ctx, void ∗config)
• struct sc_hypervisor_policy_config ∗ sc_hypervisor_get_config (unsigned sched_ctx)
• void sc_hypervisor_ctl (unsigned sched_ctx,...)

Generated by Doxygen

32.51 sc_hypervisor_lp.h File Reference 537

32.50.1 Data Structure Documentation

32.50.1.1 struct sc_hypervisor_policy_config

Methods that implement a hypervisor resizing policy.

Data Fields

int min_nworkers Indicate the minimum number of workers needed
by the context

int max_nworkers Indicate the maximum number of workers
needed by the context

int granularity Indicate the workers granularity of the context

int priority[STARPU_NMAXWORKERS] Indicate the priority of each worker to stay in the
context the smaller the priority the faster it will be
moved to another context

double max_idle[STARPU_NMAXWORKERS] Indicate the maximum idle time accepted before
a resize is triggered above this limit the priority of
the worker is reduced

double min_working[STARPU_NMAXWORKERS] Indicate that underneath this limit the priority of
the worker is reduced

int fixed_workers[STARPU_NMAXWORKERS] Indicate which workers can be moved and which
ones are fixed

double new_workers_max_idle Indicate the maximum idle time accepted before
a resize is triggered for the workers that just
arrived in the new context

double ispeed_w_sample[STARPU_NMAXWORKERS] Indicate the sample used to compute the instant
speed per worker

double ispeed_ctx_sample Indicate the sample used to compute the instant
speed per ctxs

double time_sample Indicate the sample used to compute the instant
speed per ctx (in seconds)

32.51 sc_hypervisor_lp.h File Reference

#include <sc_hypervisor.h>
#include <starpu_config.h>
#include <glpk.h>

Functions

• double sc_hypervisor_lp_get_nworkers_per_ctx (int nsched_ctxs, int ntypes_of_workers, double res[nsched←↩
_ctxs][ntypes_of_workers], int total_nw[ntypes_of_workers], struct types_of_workers ∗tw, unsigned ∗in_←↩
sched_ctxs)

• double sc_hypervisor_lp_get_tmax (int nw, int ∗workers)
• void sc_hypervisor_lp_round_double_to_int (int ns, int nw, double res[ns][nw], int res_rounded[ns][nw])
• void sc_hypervisor_lp_redistribute_resources_in_ctxs (int ns, int nw, int res_rounded[ns][nw], double

res[ns][nw], unsigned ∗sched_ctxs, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_distribute_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, int res_←↩

rounded[ns][nw], double res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_distribute_floating_no_resources_in_ctxs (unsigned ∗sched_ctxs, int ns, int nw, dou-

ble res[ns][nw], int ∗workers, int nworkers, struct types_of_workers ∗tw)
• void sc_hypervisor_lp_place_resources_in_ctx (int ns, int nw, double w_in_s[ns][nw], unsigned ∗sched_ctxs,

int ∗workers, unsigned do_size, struct types_of_workers ∗tw)

Generated by Doxygen

538 File Documentation

• void sc_hypervisor_lp_share_remaining_resources (int ns, unsigned ∗sched_ctxs, int nworkers, int ∗workers)
• double sc_hypervisor_lp_find_tmax (double t1, double t2)
• unsigned sc_hypervisor_lp_execute_dichotomy (int ns, int nw, double w_in_s[ns][nw], unsigned solve_lp_←↩

integer, void ∗specific_data, double tmin, double tmax, double smallest_tmax, double(∗lp_estimated_distrib←↩
_func)(int ns, int nw, double draft_w_in_s[ns][nw], unsigned is_integer, double tmax, void ∗specifc_data))

• double sc_hypervisor_lp_simulate_distrib_flops (int nsched_ctxs, int ntypes_of_workers, double speed[nsched←↩
_ctxs][ntypes_of_workers], double flops[nsched_ctxs], double res[nsched_ctxs][ntypes_of_workers], int
total_nw[ntypes_of_workers], unsigned sched_ctxs[nsched_ctxs], double vmax)

• double sc_hypervisor_lp_simulate_distrib_tasks (int ns, int nw, int nt, double w_in_s[ns][nw], double
tasks[nw][nt], double times[nw][nt], unsigned is_integer, double tmax, unsigned ∗in_sched_ctxs, struct
sc_hypervisor_policy_task_pool ∗tmp_task_pools)

• double sc_hypervisor_lp_simulate_distrib_flops_on_sample (int ns, int nw, double final_w_in_s[ns][nw], un-
signed is_integer, double tmax, double ∗∗speed, double flops[ns], double ∗∗final_flops_on_w)

32.52 sc_hypervisor_monitoring.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct sc_hypervisor_resize_ack
• struct sc_hypervisor_wrapper

Functions

• struct sc_hypervisor_wrapper ∗ sc_hypervisor_get_wrapper (unsigned sched_ctx)
• unsigned ∗ sc_hypervisor_get_sched_ctxs ()
• int sc_hypervisor_get_nsched_ctxs ()
• int sc_hypervisor_get_nworkers_ctx (unsigned sched_ctx, enum starpu_worker_archtype arch)
• double sc_hypervisor_get_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_total_elapsed_flops_per_sched_ctx (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisorsc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w,

enum starpu_worker_archtype arch)
• double sc_hypervisor_get_speed (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_worker_archtype arch)

32.52.1 Data Structure Documentation

32.52.1.1 struct sc_hypervisor_wrapper

Wrapper of the contexts available in StarPU which contains all information about a context obtained by incrementing
the performance counters. it is attached to a sched_ctx storing monitoring information

Data Fields

unsigned sched_ctx the monitored context

struct
sc_hypervisor_policy_config ∗ config The corresponding resize

configuration

double start_time_w[STARPU_NMAXWORKERS]the start time of the resizing
sample of the workers of this
context

double current_idle_time[STARPU_NMAXWORKERS]The idle time counter of each
worker of the context

Generated by Doxygen

32.52 sc_hypervisor_monitoring.h File Reference 539

Data Fields

double idle_time[STARPU_NMAXWORKERS]The time the workers were idle
from the last resize

double idle_start_time[STARPU_NMAXWORKERS]The moment when the workers
started being idle

double exec_time[STARPU_NMAXWORKERS]Time during which the worker
executed tasks

double exec_start_time[STARPU_NMAXWORKERS]Time when the worker started
executing a task

int worker_to_be_removed[STARPU_NMAXWORKERS]List of workers that will leave the
context (lazy resizing process)

int pushed_tasks[STARPU_NMAXWORKERS]Number of tasks pushed on each
worker in this context

int poped_tasks[STARPU_NMAXWORKERS]Number of tasks poped from each
worker in this context

double total_flops The total number of flops to
execute by the context

double total_elapsed_flops[STARPU_NMAXWORKERS]The number of flops executed by
each workers of the context

double elapsed_flops[STARPU_NMAXWORKERS]number of flops executed since
last resizing

size_t elapsed_data[STARPU_NMAXWORKERS]Quantity of data (in bytes) used to
execute tasks on each worker in
this context

int elapsed_tasks[STARPU_NMAXWORKERS]Number of tasks executed on each
worker in this context

double ref_speed[2] the average speed of the type of
workers when they belonged to
this context 0 - cuda 1 - cpu

double submitted_flops Number of flops submitted to this
context

double remaining_flops Number of flops that still have to
be executed by the workers in this
context

double start_time Start time of the resizing sample of
this context

double real_start_time First time a task was pushed to
this context

double hyp_react_start_time Start time for sample in which the
hypervisor is not allowed to react
bc too expensive

struct sc_hypervisor_resize_ack resize_ack Structure confirming the last resize
finished and a new one can be
done. Workers do not leave the
current context until the receiver
context does not ack the receive of
these workers

starpu_pthread_mutex_t mutex Mutex needed to synchronize the
acknowledgment of the workers
into the receiver context

unsigned total_flops_available Boolean indicating if the hypervisor
can use the flops corresponding to
the entire execution of the context

unsigned to_be_sized boolean indicating that a context is
being sized

Generated by Doxygen

540 File Documentation

Data Fields

unsigned compute_idle[STARPU_NMAXWORKERS]Boolean indicating if we add the
idle of this worker to the idle of the
context

unsigned compute_partial_idle[STARPU_NMAXWORKERS]Boolean indicating if we add the
entiere idle of this worker to the
idle of the context or just half

unsigned consider_max consider the max in the lp

32.53 sc_hypervisor_policy.h File Reference

#include <sc_hypervisor.h>

Data Structures

• struct types_of_workers
• struct sc_hypervisor_policy_task_pool

Macros

• #define HYPERVISOR_REDIM_SAMPLE
• #define HYPERVISOR_START_REDIM_SAMPLE
• #define SC_NOTHING
• #define SC_IDLE
• #define SC_SPEED

Functions

• void sc_hypervisor_policy_add_task_to_pool (struct starpu_codelet ∗cl, unsigned sched_ctx, uint32_t foot-
print, struct sc_hypervisor_policy_task_pool ∗∗task_pools, size_t data_size)

• void sc_hypervisor_policy_remove_task_from_pool (struct starpu_task ∗task, uint32_t footprint, struct sc_←↩
hypervisor_policy_task_pool ∗∗task_pools)

• struct sc_hypervisor_policy_task_pool ∗ sc_hypervisor_policy_clone_task_pool (struct sc_hypervisor_←↩
policy_task_pool ∗tp)

• void sc_hypervisor_get_tasks_times (int nw, int nt, double times[nw][nt], int ∗workers, unsigned size_ctxs,
struct sc_hypervisor_policy_task_pool ∗task_pools)

• unsigned sc_hypervisor_find_lowest_prio_sched_ctx (unsigned req_sched_ctx, int nworkers_to_move)
• int ∗ sc_hypervisor_get_idlest_workers (unsigned sched_ctx, int ∗nworkers, enum starpu_worker_archtype

arch)
• int ∗ sc_hypervisor_get_idlest_workers_in_list (int ∗start, int ∗workers, int nall_workers, int ∗nworkers, enum

starpu_worker_archtype arch)
• int sc_hypervisor_get_movable_nworkers (struct sc_hypervisor_policy_config ∗config, unsigned sched_ctx,

enum starpu_worker_archtype arch)
• int sc_hypervisor_compute_nworkers_to_move (unsigned req_sched_ctx)
• unsigned sc_hypervisor_policy_resize (unsigned sender_sched_ctx, unsigned receiver_sched_ctx, unsigned

force_resize, unsigned now)
• unsigned sc_hypervisor_policy_resize_to_unknown_receiver (unsigned sender_sched_ctx, unsigned now)
• double sc_hypervisor_get_ctx_speed (struct sc_hypervisor_wrapper ∗sc_w)
• double sc_hypervisor_get_slowest_ctx_exec_time (void)
• double sc_hypervisor_get_fastest_ctx_exec_time (void)
• double sc_hypervisor_get_speed_per_worker (struct sc_hypervisor_wrapper ∗sc_w, unsigned worker)
• double sc_hypervisor_get_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum starpu_←↩

worker_archtype arch)

Generated by Doxygen

32.54 starpurm.h File Reference 541

• double sc_hypervisor_get_ref_speed_per_worker_type (struct sc_hypervisor_wrapper ∗sc_w, enum
starpu_worker_archtype arch)

• double sc_hypervisor_get_avg_speed (enum starpu_worker_archtype arch)
• void sc_hypervisor_check_if_consider_max (struct types_of_workers ∗tw)
• void sc_hypervisor_group_workers_by_type (struct types_of_workers ∗tw, int ∗total_nw)
• enum starpu_worker_archtype sc_hypervisor_get_arch_for_index (unsigned w, struct types_of_workers ∗tw)
• unsigned sc_hypervisor_get_index_for_arch (enum starpu_worker_archtype arch, struct types_of_workers
∗tw)

• unsigned sc_hypervisor_criteria_fulfilled (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_idle (unsigned sched_ctx, int worker)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs (unsigned ∗sched_ctxs, int nsched_ctxs, int ∗workers,

int nworkers)
• unsigned sc_hypervisor_check_speed_gap_btw_ctxs_on_level (int level, int ∗workers_in, int nworkers_in,

unsigned father_sched_ctx_id, unsigned ∗∗sched_ctxs, int ∗nsched_ctxs)
• unsigned sc_hypervisor_get_resize_criteria ()
• struct types_of_workers ∗ sc_hypervisor_get_types_of_workers (int ∗workers, unsigned nworkers)

32.54 starpurm.h File Reference

#include <hwloc.h>
#include <starpurm_config.h>

Typedefs

• typedef int starpurm_drs_ret_t
• typedef void ∗ starpurm_drs_desc_t
• typedef void ∗ starpurm_drs_cbs_t
• typedef void(∗ starpurm_drs_cb_t) (void ∗)
• typedef void ∗ starpurm_block_cond_t
• typedef int(∗ starpurm_polling_t) (void ∗)

Enumerations

• enum e_starpurm_drs_ret { starpurm_DRS_SUCCESS, starpurm_DRS_DISABLD, starpurm_DRS_PERM,
starpurm_DRS_EINVAL }

Functions

Initialisation

• void starpurm_initialize_with_cpuset (hwloc_cpuset_t initially_owned_cpuset)
• void starpurm_initialize (void)
• void starpurm_shutdown (void)

Spawn

• void starpurm_spawn_kernel_on_cpus (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t cpuset)
• void starpurm_spawn_kernel_on_cpus_callback (void ∗data, void(∗f)(void ∗), void ∗args, hwloc_cpuset_t

cpuset, void(∗cb_f)(void ∗), void ∗cb_args)
• void starpurm_spawn_kernel_callback (void ∗data, void(∗f)(void ∗), void ∗args, void(∗cb_f)(void ∗), void
∗cb_args)

DynamicResourceSharing

• starpurm_drs_ret_t starpurm_set_drs_enable (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_set_drs_disable (starpurm_drs_desc_t ∗spd)
• int starpurm_drs_enabled_p (void)

Generated by Doxygen

542 File Documentation

• starpurm_drs_ret_t starpurm_set_max_parallelism (starpurm_drs_desc_t ∗spd, int max)
• starpurm_drs_ret_t starpurm_assign_cpu_to_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_assign_cpus_to_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_assign_cpu_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc_←↩

cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_cpus_to_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_withdraw_cpu_from_starpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_withdraw_cpus_from_starpu (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_withdraw_cpu_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_cpus_from_starpu (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_lend_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_lend_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_lend_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_reclaim (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_reclaim_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_reclaim_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_reclaim_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_acquire_cpu (starpurm_drs_desc_t ∗spd, int cpuid)
• starpurm_drs_ret_t starpurm_acquire_cpus (starpurm_drs_desc_t ∗spd, int ncpus)
• starpurm_drs_ret_t starpurm_acquire_cpu_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_return_all (starpurm_drs_desc_t ∗spd)
• starpurm_drs_ret_t starpurm_return_cpu (starpurm_drs_desc_t ∗spd, int cpuid)

Devices

• int starpurm_get_device_type_id (const char ∗type_str)
• const char ∗ starpurm_get_device_type_name (int type_id)
• int starpurm_get_nb_devices_by_type (int type_id)
• int starpurm_get_device_id (int type_id, int device_rank)
• starpurm_drs_ret_t starpurm_assign_device_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int unit←↩

_rank)
• starpurm_drs_ret_t starpurm_assign_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id, int nde-

vices)
• starpurm_drs_ret_t starpurm_assign_device_mask_to_starpu (starpurm_drs_desc_t ∗spd, const hwloc←↩

_cpuset_t mask)
• starpurm_drs_ret_t starpurm_assign_all_devices_to_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_withdraw_device_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

unit_rank)
• starpurm_drs_ret_t starpurm_withdraw_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id, int

ndevices)
• starpurm_drs_ret_t starpurm_withdraw_device_mask_from_starpu (starpurm_drs_desc_t ∗spd, const

hwloc_cpuset_t mask)
• starpurm_drs_ret_t starpurm_withdraw_all_devices_from_starpu (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_lend_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_lend_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_lend_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_lend_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_reclaim_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_reclaim_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_reclaim_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_reclaim_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_acquire_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)
• starpurm_drs_ret_t starpurm_acquire_devices (starpurm_drs_desc_t ∗spd, int type_id, int ndevices)
• starpurm_drs_ret_t starpurm_acquire_device_mask (starpurm_drs_desc_t ∗spd, const hwloc_cpuset_←↩

t mask)
• starpurm_drs_ret_t starpurm_acquire_all_devices (starpurm_drs_desc_t ∗spd, int type_id)

Generated by Doxygen

32.54 starpurm.h File Reference 543

• starpurm_drs_ret_t starpurm_return_all_devices (starpurm_drs_desc_t ∗spd, int type_id)
• starpurm_drs_ret_t starpurm_return_device (starpurm_drs_desc_t ∗spd, int type_id, int unit_rank)

CpusetsQueries

• hwloc_cpuset_t starpurm_get_device_worker_cpuset (int type_id, int unit_rank)
• hwloc_cpuset_t starpurm_get_global_cpuset (void)
• hwloc_cpuset_t starpurm_get_selected_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_cpu_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset (void)
• hwloc_cpuset_t starpurm_get_all_device_workers_cpuset_by_type (int typeid)

Generated by Doxygen

544 File Documentation

Generated by Doxygen

Chapter 33

Deprecated List

Global starpu_codelet::cpu_func

Optional field which has been made deprecated. One should use instead the field starpu_codelet::cpu_funcs.

Global starpu_codelet::cuda_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::cuda_funcs field.

Global starpu_codelet::opencl_func

Optional field which has been made deprecated. One should use instead the starpu_codelet::opencl_funcs
field.

Global starpu_data_free_pinned_if_possible

Equivalent to starpu_free(). This macro is provided to avoid breaking old codes.

Global starpu_data_interface_ops::handle_to_pointer)(starpu_data_handle_t handle, unsigned node)

Use starpu_data_interface_ops::to_pointer instead. Return the current pointer (if any) for the handle on the
given node.

Global starpu_data_malloc_pinned_if_possible

Equivalent to starpu_malloc(). This macro is provided to avoid breaking old codes.

Global starpu_mpi_initialize (void)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). This function
does not call MPI_Init(), it should be called beforehand.

Global starpu_mpi_initialize_extended (int ∗rank, int ∗world_size)

This function has been made deprecated. One should use instead the function starpu_mpi_init(). MPI will be
initialized by starpumpi by calling MPI_Init_Thread(argc, argv, MPI_THREAD_SERIALIZED,
...).

Global STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Setting the field starpu_codelet::cpu_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cpu_funcs.

Global STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Setting the field starpu_codelet::cuda_func with this macro indicates the codelet will have several implementa-
tions. The use of this macro is deprecated. One should always only define the field starpu_codelet::cuda_funcs.

Global STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Setting the field starpu_codelet::opencl_func with this macro indicates the codelet will have several implemen-
tations. The use of this macro is deprecated. One should always only define the field starpu_codelet::opencl←↩
_funcs.

546 Deprecated List

Generated by Doxygen

Part VI

Appendix

Chapter 34

Full Source Code for the ’Scaling a Vector’ Example

34.1 Main Application

/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>

#define NX 2048

extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);

static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};

#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif

int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;

fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);

/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("

examples/basic_examples/vector_scal_opencl_kernel.cl", &programs, NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

550 Full Source Code for the ’Scaling a Vector’ Example

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an adress on a GPU for instance.

* - the third argument is the adress of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM,

(uintptr_t)vector, NX, sizeof(vector[0]));

float factor = 3.14;

/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;

task->cl = &cl;

/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;

/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);

/* execute the task on any eligible computational ressource */
starpu_task_submit(task);

/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif

/* terminate StarPU, no task can be submitted after */
starpu_shutdown();

fprintf(stderr, "AFTER First element is %f\n", vector[0]);

return 0;
}

34.2 CPU Kernel

#include <starpu.h>
#include <xmmintrin.h>

/* This kernel takes a buffer and scales it by a constant factor */
void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;

/*
* The "buffers" array matches the task->handles array: for instance

* task->handles[0] is a handle that corresponds to a data with

* vector "interface", so that the first entry of the array in the

* codelet is a pointer to a structure describing such a vector (ie.

* struct starpu_vector_interface *). Here, we therefore manipulate

* the buffers[0] element as a vector: nx gives the number of elements

* in the array, ptr gives the location of the array (that was possibly

* migrated/replicated), and elemsize gives the size of each elements.

*/
struct starpu_vector_interface *vector = buffers[0];

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(vector);

/* get a pointer to the local copy of the vector: note that we have to

* cast it in (float *) since a vector could contain any type of

* elements so that the .ptr field is actually a uintptr_t */
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

/* scale the vector */
for (i = 0; i < n; i++)

val[i] *= *factor;
}

Generated by Doxygen

34.3 CUDA Kernel 551

void scal_sse_func(void *buffers[], void *cl_arg)
{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
unsigned int n_iterations = n/4;

__m128 *VECTOR = (__m128*) vector;
__m128 FACTOR STARPU_ATTRIBUTE_ALIGNED(16);
float factor = *(float *) cl_arg;
FACTOR = _mm_set1_ps(factor);

unsigned int i;
for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(FACTOR, VECTOR[i]);

unsigned int remainder = n%4;
if (remainder != 0)
{

unsigned int start = 4 * n_iterations;
for (i = start; i < start+remainder; ++i)
{

vector[i] = factor * vector[i];
}

}
}

34.3 CUDA Kernel
#include <starpu.h>

static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}

extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(n, val, *factor)
;

cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);

cudaStreamSynchronize(starpu_cuda_get_local_stream());
}

34.4 OpenCL Kernel

34.4.1 Invoking the Kernel
#include <starpu.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */

/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);

{ /* OpenCL specific code */
id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);

Generated by Doxygen

552 Full Source Code for the ’Scaling a Vector’ Example

err = starpu_opencl_load_kernel(&kernel, &queue, &programs,
"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}

{ /* OpenCL specific code */
size_t global=n;
size_t local;
size_t s;
cl_device_id device;

starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, &

s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

{ /* OpenCL specific code */
clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);

starpu_opencl_release_kernel(kernel);
}

}

34.4.2 Source of the Kernel
__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)
{

val[i] *= factor;
}

}

Generated by Doxygen

Chapter 35

The GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft'', which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document'', below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you''. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version'' of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section'' is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections'' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

http://fsf.org/

554 The GNU Free Documentation License

The “Cover Texts'' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most
5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent'' copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent'' is called “Opaque''.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page'' means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page'' means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

The “publisher'' means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ'' means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements'', “Dedications'', “Endorsements'', or
“History''.) To “Preserve the Title'' of such a section when you modify the Document means that it remains a
section “Entitled XYZ'' according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, num-
bering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

Generated by Doxygen

555

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

(a) Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

(b) List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

(c) State on the Title page the name of the publisher of the Modified Version, as the publisher.

(d) Preserve all the copyright notices of the Document.

(e) Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

(f) Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

(g) Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

(h) Include an unaltered copy of this License.

(i) Preserve the section Entitled “History'', Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History'' in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

(j) Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the “History'' section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of the version it
refers to gives permission.

(k) For any section Entitled “Acknowledgements'' or “Dedications'', Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

(l) Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

(m) Delete any section Entitled “Endorsements''. Such a section may not be included in the Modified Version.

(n) Do not retitle any existing section to be Entitled “Endorsements'' or to conflict in title with any Invariant
Section.

(o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

Generated by Doxygen

556 The GNU Free Documentation License

You may add a section Entitled “Endorsements'', provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-←↩
Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History'' in the various original documents,
forming one section Entitled “History''; likewise combine any sections Entitled “Acknowledgements'', and any
sections Entitled “Dedications''. You must delete all sections Entitled “Endorsements.''

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate'' if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements'', “Dedications'', or “History'', the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Generated by Doxygen

35.1 ADDENDUM: How to use this License for your documents 557

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give you any rights to use it.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License “or any later version'' applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

12. RELICENSING

“Massive Multiauthor Collaboration Site'' (or “MMC Site'') means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration'' (or “MMC'') contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA'' means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

“Incorporate'' means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing'' if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.

35.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.'' line with this:

Generated by Doxygen

http://www.gnu.org/copyleft/

558 The GNU Free Documentation License

with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the
Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alter-
natives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Generated by Doxygen

Index

__configure__--disable-asynchronous-copy, 178
__configure__--disable-asynchronous-cuda-copy, 178
__configure__--disable-asynchronous-mic-copy, 179
__configure__--disable-asynchronous-mpi-master-

slave-copy, 179
__configure__--disable-asynchronous-opencl-copy, 178
__configure__--disable-build-doc, 177
__configure__--disable-build-examples, 180
__configure__--disable-build-tests, 180
__configure__--disable-cpu, 178
__configure__--disable-cuda, 178
__configure__--disable-cuda-memcpy-peer, 178
__configure__--disable-fortran, 179
__configure__--disable-glpk, 180
__configure__--disable-icc, 177
__configure__--disable-mpi, 179
__configure__--disable-opencl, 178
__configure__--disable-socl, 179
__configure__--disable-starpufft, 180
__configure__--enable-allocation-cache, 180
__configure__--enable-blas-lib, 180
__configure__--enable-blocking-drivers, 178
__configure__--enable-build-doc-pdf, 177
__configure__--enable-calibration-heuristic, 181
__configure__--enable-cluster, 179
__configure__--enable-coverage, 177
__configure__--enable-debug, 177
__configure__--enable-fast, 177
__configure__--enable-fxt-lock, 179
__configure__--enable-hdf5, 180
__configure__--enable-leveldb, 180
__configure__--enable-long-check, 177
__configure__--enable-max-sched-ctxs, 178
__configure__--enable-maxbuffers, 179
__configure__--enable-maxcpus, 178
__configure__--enable-maxcudadev, 178
__configure__--enable-maximplementations, 178
__configure__--enable-maxmicthreads, 179
__configure__--enable-maxnodes, 179
__configure__--enable-maxnumanodes, 178
__configure__--enable-maxopencldev, 178
__configure__--enable-memory-stats, 180
__configure__--enable-mlr, 181
__configure__--enable-mlr-system-blas, 181
__configure__--enable-model-debug, 179
__configure__--enable-mpi, 179
__configure__--enable-mpi-master-slave, 179
__configure__--enable-mpi-pedantic-isend, 179
__configure__--enable-mpi-verbose, 179

__configure__--enable-new-check, 177
__configure__--enable-nmad, 179
__configure__--enable-opencl-simulator, 178
__configure__--enable-opengl-render, 180
__configure__--enable-openmp, 179
__configure__--enable-perf-debug, 179
__configure__--enable-quick-check, 177
__configure__--enable-sc-hypervisor, 180
__configure__--enable-simgrid, 180
__configure__--enable-simgrid-mc, 181
__configure__--enable-spinlock-check, 177
__configure__--enable-starpufft-examples, 180
__configure__--enable-verbose, 177
__configure__--enable-worker-callbacks, 178
__configure__--mic-host, 179
__configure__--with-atlas-dir, 180
__configure__--with-check-flags, 177
__configure__--with-coi-dir, 179
__configure__--with-cuda-dir, 178
__configure__--with-cuda-include-dir, 178
__configure__--with-cuda-lib-dir, 178
__configure__--with-fxt, 180
__configure__--with-goto-dir, 180
__configure__--with-hdf5-include-dir, 180
__configure__--with-hdf5-lib-dir, 180
__configure__--with-hwloc, 177
__configure__--with-hwloc-prefix, 177
__configure__--with-mkl-cflags, 180
__configure__--with-mkl-ldflags, 180
__configure__--with-mpi-master-slave-multiple-thread,

179
__configure__--with-mpicc, 179
__configure__--with-opencl-dir, 178
__configure__--with-opencl-include-dir, 178
__configure__--with-opencl-lib-dir, 178
__configure__--with-perf-model-dir, 180
__configure__--with-simgrid-dir, 181
__configure__--with-simgrid-include-dir, 181
__configure__--with-simgrid-lib-dir, 181
__configure__--with-smpirun, 181
__configure__--without-hwloc, 177
__env__OCL_ICD_VENDORS, 171
__env__SC_HYPERVISOR_LAZY_RESIZE, 176
__env__SC_HYPERVISOR_MAX_SPEED_GAP, 176
__env__SC_HYPERVISOR_POLICY, 176
__env__SC_HYPERVISOR_SAMPLE_CRITERIA, 176
__env__SC_HYPERVISOR_START_RESIZE, 176
__env__SC_HYPERVISOR_STOP_PRINT, 176
__env__SC_HYPERVISOR_TRIGGER_RESIZE, 176

560 INDEX

__env__SOCL_OCL_LIB_OPENCL, 171
__env__STARPU_BACKOFF_MAX, 170
__env__STARPU_BACKOFF_MIN, 170
__env__STARPU_BUS_CALIBRATE, 170
__env__STARPU_BUS_STATS, 174
__env__STARPU_BUS_STATS_FILE, 174
__env__STARPU_CALIBRATE, 170
__env__STARPU_CALIBRATE_MINIMUM, 170
__env__STARPU_CATCH_SIGNALS, 176
__env__STARPU_COMM_STATS, 171
__env__STARPU_CUDA_PIPELINE, 167
__env__STARPU_CUDA_THREAD_PER_DEV, 167
__env__STARPU_CUDA_THREAD_PER_WORKER,

167
__env__STARPU_DIDUSE_BARRIER, 174
__env__STARPU_DISABLE_ASYNCHRONOUS_C←↩

OPY, 169
__env__STARPU_DISABLE_ASYNCHRONOUS_C←↩

UDA_COPY, 169
__env__STARPU_DISABLE_ASYNCHRONOUS_MI←↩

C_COPY, 169
__env__STARPU_DISABLE_ASYNCHRONOUS_M←↩

PI_MS_COPY, 169
__env__STARPU_DISABLE_ASYNCHRONOUS_O←↩

PENCL_COPY, 169
__env__STARPU_DISABLE_KERNELS, 175
__env__STARPU_DISABLE_PINNING, 170
__env__STARPU_DISK_SWAP, 174
__env__STARPU_DISK_SWAP_BACKEND, 174
__env__STARPU_DISK_SWAP_SIZE, 174
__env__STARPU_DISPLAY_BINDINGS, 176
__env__STARPU_ENABLE_CUDA_GPU_GPU_DIR←↩

ECT, 170
__env__STARPU_ENABLE_STATS, 174
__env__STARPU_FXT_PREFIX, 173
__env__STARPU_FXT_SUFFIX, 173
__env__STARPU_FXT_TRACE, 173
__env__STARPU_GENERATE_TRACE, 174
__env__STARPU_GENERATE_TRACE_OPTIONS,

174
__env__STARPU_GLOBAL_ARBITER, 175
__env__STARPU_HISTORY_MAX_ERROR, 175
__env__STARPU_HOME, 172
__env__STARPU_HOSTNAME, 172
__env__STARPU_HWLOC_INPUT, 176
__env__STARPU_IDLE_FILE, 175
__env__STARPU_IDLE_POWER, 170
__env__STARPU_IDLE_TIME, 175
__env__STARPU_LIMIT_BANDWIDTH, 173
__env__STARPU_LIMIT_CPU_MEM, 173
__env__STARPU_LIMIT_CPU_NUMA_MEM, 173
__env__STARPU_LIMIT_CPU_NUMA_devid_MEM,

173
__env__STARPU_LIMIT_CUDA_MEM, 173
__env__STARPU_LIMIT_CUDA_devid_MEM, 173
__env__STARPU_LIMIT_MAX_SUBMITTED_TASKS,

174
__env__STARPU_LIMIT_MIN_SUBMITTED_TASKS,

174
__env__STARPU_LIMIT_OPENCL_MEM, 173
__env__STARPU_LIMIT_OPENCL_devid_MEM, 173
__env__STARPU_LOGFILENAME, 173
__env__STARPU_MAIN_THREAD_BIND, 168
__env__STARPU_MAIN_THREAD_COREID, 168
__env__STARPU_MAIN_THREAD_CPUID, 168
__env__STARPU_MALLOC_SIMULATION_FOLD, 172
__env__STARPU_MAX_MEMORY_USE, 174
__env__STARPU_MAX_PRIO, 170
__env__STARPU_MAX_WORKERSIZE, 169
__env__STARPU_MEMORY_STATS, 174
__env__STARPU_MIC_PROGRAM_PATH, 170
__env__STARPU_MIC_SINK_PROGRAM_NAME, 170
__env__STARPU_MIC_SINK_PROGRAM_PATH, 170
__env__STARPU_MINIMUM_AVAILABLE_MEM, 173
__env__STARPU_MINIMUM_CLEAN_BUFFERS, 174
__env__STARPU_MIN_PRIO, 170
__env__STARPU_MIN_WORKERSIZE, 169
__env__STARPU_MPI_CACHE, 171
__env__STARPU_MPI_CACHE_STATS, 171
__env__STARPU_MPI_COMM, 171
__env__STARPU_MPI_DEBUG_LEVEL_MAX, 173
__env__STARPU_MPI_DEBUG_LEVEL_MIN, 173
__env__STARPU_MPI_DRIVER_CALL_FREQUENCY,

171
__env__STARPU_MPI_DRIVER_TASK_FREQUEN←↩

CY, 171
__env__STARPU_MPI_FAKE_RANK, 171
__env__STARPU_MPI_FAKE_SIZE, 171
__env__STARPU_MPI_MASTER_NODE, 168
__env__STARPU_MPI_NDETACHED_SEND, 171
__env__STARPU_MPI_NOBIND, 169
__env__STARPU_MPI_NREADY_PROCESS, 171
__env__STARPU_MPI_PRIORITIES, 171
__env__STARPU_MPI_THREAD_COREID, 168
__env__STARPU_MPI_THREAD_CPUID, 168
__env__STARPU_NCPU, 167
__env__STARPU_NCPUS, 167
__env__STARPU_NCUDA, 167
__env__STARPU_NMIC, 168
__env__STARPU_NMICTHREADS, 168
__env__STARPU_NMPIMSTHREADS, 168
__env__STARPU_NMPI_MS, 168
__env__STARPU_NOPENCL, 167
__env__STARPU_NWORKER_PER_CUDA, 167
__env__STARPU_OPENCL_ONLY_ON_CPUS, 168
__env__STARPU_OPENCL_ON_CPUS, 168
__env__STARPU_OPENCL_PIPELINE, 167
__env__STARPU_OPENCL_PROGRAM_DIR, 172
__env__STARPU_PATH, 172
__env__STARPU_PCI_FLAT, 172
__env__STARPU_PERF_MODEL_DIR, 172
__env__STARPU_PERF_MODEL_HOMOGENEOU←↩

S_CPU, 172
__env__STARPU_PERF_MODEL_HOMOGENEOU←↩

S_CUDA, 172

Generated by Doxygen

INDEX 561

__env__STARPU_PERF_MODEL_HOMOGENEOU←↩
S_MIC, 172

__env__STARPU_PERF_MODEL_HOMOGENEOU←↩
S_MPI_MS, 172

__env__STARPU_PERF_MODEL_HOMOGENEOU←↩
S_OPENCL, 172

__env__STARPU_PREFETCH, 170
__env__STARPU_PROFILING, 170
__env__STARPU_RAND_SEED, 175
__env__STARPU_RESERVE_NCPU, 167
__env__STARPU_SCHED, 170
__env__STARPU_SCHED_ALPHA, 170
__env__STARPU_SCHED_BETA, 170
__env__STARPU_SCHED_GAMMA, 170
__env__STARPU_SCHED_READY, 170
__env__STARPU_SCHED_SORTED_ABOVE, 170
__env__STARPU_SCHED_SORTED_BELOW, 170
__env__STARPU_SILENT, 173
__env__STARPU_SIMGRID, 171
__env__STARPU_SIMGRID_CUDA_MALLOC_COST,

171
__env__STARPU_SIMGRID_CUDA_QUEUE_COST,

171
__env__STARPU_SIMGRID_FETCHING_INPUT_C←↩

OST, 172
__env__STARPU_SIMGRID_QUEUE_MALLOC_CO←↩

ST, 172
__env__STARPU_SIMGRID_SCHED_COST, 172
__env__STARPU_SIMGRID_TASK_SUBMIT_COST,

172
__env__STARPU_SIMGRID_TRANSFER_COST, 171
__env__STARPU_SINK, 172
__env__STARPU_SINGLE_COMBINED_WORKER,

169
__env__STARPU_STATS, 175
__env__STARPU_SYNTHESIZE_ARITY_COMBINE←↩

D_WORKER, 169
__env__STARPU_TARGET_AVAILABLE_MEM, 174
__env__STARPU_TARGET_CLEAN_BUFFERS, 174
__env__STARPU_TASK_BREAK_ON_EXEC, 175
__env__STARPU_TASK_BREAK_ON_POP, 175
__env__STARPU_TASK_BREAK_ON_PUSH, 175
__env__STARPU_TASK_BREAK_ON_SCHED, 175
__env__STARPU_TASK_PROGRESS, 175
__env__STARPU_TRACE_BUFFER_SIZE, 174
__env__STARPU_USE_NUMA, 175
__env__STARPU_WATCHDOG_CRASH, 175
__env__STARPU_WATCHDOG_DELAY, 175
__env__STARPU_WATCHDOG_TIMEOUT, 175
__env__STARPU_WORKERS_COREID, 168
__env__STARPU_WORKERS_CPUID, 168
__env__STARPU_WORKERS_CUDAID, 169
__env__STARPU_WORKERS_GETBIND, 168
__env__STARPU_WORKERS_MICID, 169
__env__STARPU_WORKERS_NOBIND, 168
__env__STARPU_WORKERS_OPENCLID, 169
__env__STARPU_WORKER_STATS, 174
__env__STARPU_WORKER_STATS_FILE, 175

__env__STARPU_WORKER_TREE, 169

act_hypervisor_mutex
Scheduling Context Hypervisor - Regular usage,

444
add

starpu_worker_collection, 219
add_child

starpu_sched_component, 454
add_workers

starpu_sched_policy, 423
alloc

starpu_disk_ops, 286
alloc_compare

starpu_data_interface_ops, 247
alloc_footprint

starpu_data_interface_ops, 247
allocate_data_on_node

starpu_data_interface_ops, 246
any_to_any

starpu_data_copy_methods, 245
arch_cost_function

starpu_perfmodel, 329
async_full_read

starpu_disk_ops, 286
async_full_write

starpu_disk_ops, 287
async_read

starpu_disk_ops, 286
async_write

starpu_disk_ops, 286

bandwidth
starpu_disk_ops, 286

Bitmap, 214
starpu_bitmap_and_get, 215
starpu_bitmap_cardinal, 215
starpu_bitmap_create, 214
starpu_bitmap_destroy, 214
starpu_bitmap_first, 215
starpu_bitmap_get, 215
starpu_bitmap_has_next, 215
starpu_bitmap_last, 215
starpu_bitmap_next, 215
starpu_bitmap_or, 215
starpu_bitmap_set, 214
starpu_bitmap_unset, 214
starpu_bitmap_unset_all, 214
starpu_bitmap_unset_and, 215

bundle
starpu_task, 302

bus_calibrate
starpu_conf, 191

CUDA Extensions, 341
STARPU_CUBLAS_REPORT_ERROR, 341
STARPU_CUDA_REPORT_ERROR, 342
STARPU_HAVE_LIBNVIDIA_ML, 341
STARPU_MAXCUDADEVS, 341

Generated by Doxygen

562 INDEX

STARPU_USE_CUDA, 341
starpu_cublas_get_local_handle, 342
starpu_cublas_init, 342
starpu_cublas_report_error, 342
starpu_cublas_set_stream, 344
starpu_cublas_shutdown, 344
starpu_cuda_copy2d_async_sync, 343
starpu_cuda_copy3d_async_sync, 343
starpu_cuda_copy_async_sync, 343
starpu_cuda_get_device_properties, 343
starpu_cuda_get_local_stream, 342
starpu_cuda_report_error, 342
starpu_cuda_set_device, 344
starpu_cusparse_get_local_handle, 344
starpu_cusparse_init, 342
starpu_cusparse_shutdown, 344

calibrate
starpu_conf, 191

callback_arg
starpu_task, 298

callback_arg_free
starpu_task, 299

callback_func
starpu_codelet, 294
starpu_task, 298

can_copy
starpu_data_copy_methods, 242

can_execute
starpu_codelet, 291

can_pull
starpu_sched_component, 454

can_push
starpu_sched_component, 454

catch_signals
starpu_conf, 192

checked
starpu_codelet, 294

children
starpu_sched_component, 454

cl
starpu_task, 296

cl_arg
starpu_task, 297

cl_arg_free
starpu_task, 298

cl_arg_size
starpu_task, 297

close
starpu_disk_ops, 286

Clustering Machine, 466
STARPU_CLUSTER_AWAKE_WORKERS, 467
STARPU_CLUSTER_CREATE_FUNC_ARG, 467
STARPU_CLUSTER_CREATE_FUNC, 467
STARPU_CLUSTER_KEEP_HOMOGENEOUS,

466
STARPU_CLUSTER_MAX_NB, 466
STARPU_CLUSTER_MIN_NB, 466
STARPU_CLUSTER_NCORES, 467

STARPU_CLUSTER_NEW, 467
STARPU_CLUSTER_NB, 466
STARPU_CLUSTER_PARTITION_ONE, 467
STARPU_CLUSTER_POLICY_NAME, 467
STARPU_CLUSTER_POLICY_STRUCT, 467
STARPU_CLUSTER_PREFERE_MIN, 466
STARPU_CLUSTER_TYPE, 467
STARPU_CLUSTER_GNU_OPENMP_MKL, 468
STARPU_CLUSTER_INTEL_OPENMP_MKL, 468
STARPU_CLUSTER_OPENMP, 468
starpu_cluster_types, 467
starpu_openmp_prologue, 468

Codelet And Tasks, 289
STARPU_CODELET_GET_MODE, 305
STARPU_CODELET_GET_NODE, 306
STARPU_CODELET_NOPLANS, 303
STARPU_CODELET_SET_MODE, 305
STARPU_CODELET_SET_NODE, 306
STARPU_CODELET_SIMGRID_EXECUTE_AN←↩

D_INJECT, 303
STARPU_CODELET_SIMGRID_EXECUTE, 303
STARPU_CPU, 303
STARPU_CUDA_ASYNC, 304
STARPU_CUDA, 303
STARPU_MAIN_RAM, 304
STARPU_MIC, 303
STARPU_MPI_MS, 303
STARPU_MULTIPLE_CPU_IMPLEMENTATIO←↩

NS, 304
STARPU_MULTIPLE_CUDA_IMPLEMENTATI←↩

ONS, 304
STARPU_MULTIPLE_OPENCL_IMPLEMENTA←↩

TIONS, 304
STARPU_NMAXBUFS, 303
STARPU_NOWHERE, 303
STARPU_OPENCL_ASYNC, 304
STARPU_OPENCL, 303
STARPU_SPECIFIC_NODE_LOCAL, 304
STARPU_TASK_GET_HANDLE, 305
STARPU_TASK_GET_MODE, 306
STARPU_TASK_GET_NBUFFERS, 305
STARPU_TASK_INITIALIZER, 305
STARPU_TASK_SET_HANDLE, 305
STARPU_TASK_SET_MODE, 306
STARPU_TASK_TYPE_DATA_ACQUIRE, 305
STARPU_TASK_TYPE_INTERNAL, 305
STARPU_TASK_TYPE_NORMAL, 304
STARPU_VARIABLE_NBUFFERS, 304
STARPU_FORKJOIN, 307
STARPU_SEQ, 307
STARPU_SPMD, 307
STARPU_TASK_BLOCKED_ON_DATA, 308
STARPU_TASK_BLOCKED_ON_TASK, 308
STARPU_TASK_BLOCKED_ON_TAG, 308
STARPU_TASK_BLOCKED, 307
STARPU_TASK_FINISHED, 307
STARPU_TASK_INIT, 307
STARPU_TASK_READY, 307

Generated by Doxygen

INDEX 563

STARPU_TASK_RUNNING, 307
STARPU_TASK_STOPPED, 308
starpu_codelet_display_stats, 310
starpu_codelet_init, 310
starpu_codelet_type, 307
starpu_cpu_func_t, 306
starpu_create_callback_task, 311
starpu_create_sync_task, 311
starpu_cuda_func_t, 306
starpu_iteration_pop, 310
starpu_iteration_push, 310
starpu_mic_func_t, 307
starpu_mic_kernel_t, 307
starpu_mpi_ms_func_t, 307
starpu_mpi_ms_kernel_t, 307
starpu_opencl_func_t, 306
starpu_task_clean, 308
starpu_task_create, 308
starpu_task_destroy, 308
starpu_task_dup, 311
starpu_task_get_current, 310
starpu_task_get_current_data_node, 310
starpu_task_get_implementation, 311
starpu_task_get_model_name, 310
starpu_task_get_name, 311
starpu_task_init, 308
starpu_task_nready, 309
starpu_task_nsubmitted, 310
starpu_task_set_implementation, 311
starpu_task_status, 307
starpu_task_submit, 308
starpu_task_submit_to_ctx, 309
starpu_task_wait, 309
starpu_task_wait_array, 309
starpu_task_wait_for_all, 309
starpu_task_wait_for_all_in_ctx, 309
starpu_task_wait_for_n_submitted, 309
starpu_task_wait_for_n_submitted_in_ctx, 309
starpu_task_wait_for_no_ready, 309
starpu_task_watchdog_set_hook, 311

color
starpu_codelet, 294
starpu_task, 301

combinations
starpu_perfmodel, 330

compare
starpu_data_interface_ops, 247

copy
starpu_disk_ops, 287

copy_methods
starpu_data_interface_ops, 246

cost_function
starpu_perfmodel, 329
starpu_perfmodel_per_arch, 328

cpu_func
starpu_codelet, 292

cpu_funcs
starpu_codelet, 292

cpu_funcs_name
starpu_codelet, 293

cuda_flags
starpu_codelet, 292

cuda_func
starpu_codelet, 292

cuda_funcs
starpu_codelet, 292

cuda_opengl_interoperability
starpu_conf, 192

cuda_to_cuda
starpu_data_copy_methods, 243

cuda_to_cuda_async
starpu_data_copy_methods, 244

cuda_to_opencl
starpu_data_copy_methods, 243

cuda_to_ram
starpu_data_copy_methods, 243

cuda_to_ram_async
starpu_data_copy_methods, 244

custom
sc_hypervisor_policy, 432

data
starpu_sched_component, 453

Data Interfaces, 237
STARPU_BCSR_GET_COLIND_DEV_HANDLE,

258
STARPU_BCSR_GET_COLIND, 258
STARPU_BCSR_GET_ELEMSIZE, 258
STARPU_BCSR_GET_FIRSTENTRY, 258
STARPU_BCSR_GET_NNZ, 257
STARPU_BCSR_GET_NROW, 257
STARPU_BCSR_GET_NZVAL_DEV_HANDLE,

257
STARPU_BCSR_GET_NZVAL, 257
STARPU_BCSR_GET_OFFSET, 258
STARPU_BCSR_GET_ROWPTR_DEV_HANDLE,

258
STARPU_BCSR_GET_ROWPTR, 258
STARPU_BCSR_GET_C, 258
STARPU_BCSR_GET_R, 258
STARPU_BLOCK_GET_DEV_HANDLE, 254
STARPU_BLOCK_GET_ELEMSIZE, 255
STARPU_BLOCK_GET_LDY, 254
STARPU_BLOCK_GET_LDZ, 254
STARPU_BLOCK_GET_NX, 254
STARPU_BLOCK_GET_NY, 254
STARPU_BLOCK_GET_NZ, 254
STARPU_BLOCK_GET_OFFSET, 254
STARPU_BLOCK_GET_PTR, 254
STARPU_COO_GET_COLUMNS_DEV_HAND←↩

LE, 253
STARPU_COO_GET_COLUMNS, 253
STARPU_COO_GET_ELEMSIZE, 254
STARPU_COO_GET_NVALUES, 253
STARPU_COO_GET_NX, 253
STARPU_COO_GET_NY, 253
STARPU_COO_GET_OFFSET, 253

Generated by Doxygen

564 INDEX

STARPU_COO_GET_ROWS_DEV_HANDLE,
253

STARPU_COO_GET_ROWS, 253
STARPU_COO_GET_VALUES_DEV_HANDLE,

253
STARPU_COO_GET_VALUES, 253
STARPU_CSR_GET_COLIND_DEV_HANDLE,

257
STARPU_CSR_GET_COLIND, 256
STARPU_CSR_GET_ELEMSIZE, 257
STARPU_CSR_GET_FIRSTENTRY, 257
STARPU_CSR_GET_NNZ, 256
STARPU_CSR_GET_NROW, 256
STARPU_CSR_GET_NZVAL_DEV_HANDLE, 256
STARPU_CSR_GET_NZVAL, 256
STARPU_CSR_GET_OFFSET, 257
STARPU_CSR_GET_ROWPTR_DEV_HANDLE,

257
STARPU_CSR_GET_ROWPTR, 257
STARPU_MATRIX_GET_ALLOCSIZE, 252
STARPU_MATRIX_GET_DEV_HANDLE, 251
STARPU_MATRIX_GET_ELEMSIZE, 252
STARPU_MATRIX_GET_LD, 252
STARPU_MATRIX_GET_NX, 252
STARPU_MATRIX_GET_NY, 252
STARPU_MATRIX_GET_OFFSET, 252
STARPU_MATRIX_GET_PTR, 251
STARPU_MATRIX_SET_LD, 252
STARPU_MATRIX_SET_NX, 252
STARPU_MATRIX_SET_NY, 252
STARPU_MULTIFORMAT_GET_CPU_PTR, 259
STARPU_MULTIFORMAT_GET_CUDA_PTR,

259
STARPU_MULTIFORMAT_GET_MIC_PTR, 259
STARPU_MULTIFORMAT_GET_NX, 259
STARPU_MULTIFORMAT_GET_OPENCL_PTR,

259
STARPU_VARIABLE_GET_DEV_HANDLE, 256
STARPU_VARIABLE_GET_ELEMSIZE, 256
STARPU_VARIABLE_GET_OFFSET, 256
STARPU_VARIABLE_GET_PTR, 256
STARPU_VECTOR_GET_ALLOCSIZE, 255
STARPU_VECTOR_GET_DEV_HANDLE, 255
STARPU_VECTOR_GET_ELEMSIZE, 255
STARPU_VECTOR_GET_NX, 255
STARPU_VECTOR_GET_OFFSET, 255
STARPU_VECTOR_GET_PTR, 255
STARPU_VECTOR_GET_SLICE_BASE, 255
STARPU_VECTOR_SET_NX, 255
STARPU_BCSR_INTERFACE_ID, 259
STARPU_BLOCK_INTERFACE_ID, 259
STARPU_COO_INTERFACE_ID, 259
STARPU_CSR_INTERFACE_ID, 259
STARPU_MATRIX_INTERFACE_ID, 259
STARPU_MAX_INTERFACE_ID, 259
STARPU_MULTIFORMAT_INTERFACE_ID, 259
STARPU_UNKNOWN_INTERFACE_ID, 259
STARPU_VARIABLE_INTERFACE_ID, 259

STARPU_VECTOR_INTERFACE_ID, 259
STARPU_VOID_INTERFACE_ID, 259
starpu_bcsr_data_register, 270
starpu_bcsr_get_c, 272
starpu_bcsr_get_elemsize, 272
starpu_bcsr_get_firstentry, 271
starpu_bcsr_get_local_colind, 272
starpu_bcsr_get_local_nzval, 272
starpu_bcsr_get_local_rowptr, 272
starpu_bcsr_get_nnz, 271
starpu_bcsr_get_nrow, 271
starpu_bcsr_get_r, 272
starpu_block_data_register, 266
starpu_block_get_elemsize, 267
starpu_block_get_local_ldy, 267
starpu_block_get_local_ldz, 267
starpu_block_get_local_ptr, 267
starpu_block_get_nx, 267
starpu_block_get_ny, 267
starpu_block_get_nz, 267
starpu_block_ptr_register, 266
starpu_coo_data_register, 266
starpu_csr_data_register, 269
starpu_csr_get_elemsize, 270
starpu_csr_get_firstentry, 270
starpu_csr_get_local_colind, 270
starpu_csr_get_local_nzval, 270
starpu_csr_get_local_rowptr, 270
starpu_csr_get_nnz, 270
starpu_csr_get_nrow, 270
starpu_data_get_alloc_size, 261
starpu_data_get_interface_id, 261
starpu_data_get_interface_on_node, 260
starpu_data_get_local_ptr, 260
starpu_data_get_size, 261
starpu_data_handle_to_pointer, 260
starpu_data_interface_get_next_id, 261
starpu_data_interface_id, 259
starpu_data_lookup, 261
starpu_data_pack, 261
starpu_data_pointer_is_inside, 260
starpu_data_ptr_register, 260
starpu_data_register, 260
starpu_data_register_same, 260
starpu_data_unpack, 261
starpu_free_on_node, 264
starpu_free_on_node_flags, 264
starpu_hash_crc32c_be, 273
starpu_hash_crc32c_be_n, 272
starpu_hash_crc32c_string, 273
starpu_interface_copy, 261
starpu_interface_copy2d, 262
starpu_interface_copy3d, 262
starpu_interface_copy4d, 263
starpu_interface_data_copy, 263
starpu_interface_end_driver_copy_async, 263
starpu_interface_start_driver_copy_async, 263
starpu_malloc_on_node, 264

Generated by Doxygen

INDEX 565

starpu_malloc_on_node_flags, 264
starpu_malloc_on_node_set_default_flags, 264
starpu_matrix_data_register, 264
starpu_matrix_data_register_allocsize, 265
starpu_matrix_get_allocsize, 266
starpu_matrix_get_elemsize, 266
starpu_matrix_get_local_ld, 265
starpu_matrix_get_local_ptr, 265
starpu_matrix_get_nx, 265
starpu_matrix_get_ny, 265
starpu_matrix_ptr_register, 265
starpu_multiformat_data_register, 272
starpu_variable_data_register, 268
starpu_variable_get_elemsize, 269
starpu_variable_get_local_ptr, 269
starpu_variable_ptr_register, 269
starpu_vector_data_register, 267
starpu_vector_data_register_allocsize, 268
starpu_vector_get_allocsize, 268
starpu_vector_get_elemsize, 268
starpu_vector_get_local_ptr, 268
starpu_vector_get_nx, 268
starpu_vector_ptr_register, 268
starpu_void_data_register, 269

Data Management, 227
STARPU_ACQUIRE_NO_NODE_LOCK_ALL, 228
STARPU_ACQUIRE_NO_NODE, 228
STARPU_DATA_ACQUIRE_CB, 229
STARPU_ACCESS_MODE_MAX, 230
STARPU_COMMUTE, 230
STARPU_LOCALITY, 230
STARPU_NONE, 229
STARPU_NOPLAN, 230
STARPU_REDUX, 230
STARPU_RW, 229
STARPU_SCRATCH, 230
STARPU_SSEND, 230
STARPU_R, 229
STARPU_W, 229
starpu_arbiter_create, 234
starpu_arbiter_destroy, 234
starpu_arbiter_t, 229
starpu_data_access_mode, 229
starpu_data_acquire, 231
starpu_data_acquire_cb, 232
starpu_data_acquire_cb_sequential_consistency,

232
starpu_data_acquire_on_node, 232
starpu_data_acquire_on_node_cb, 232
starpu_data_acquire_on_node_cb_sequential_←↩

consistency, 233
starpu_data_acquire_on_node_cb_sequential_←↩

consistency_sync_jobids, 233
starpu_data_acquire_on_node_try, 233
starpu_data_acquire_try, 233
starpu_data_advise_as_important, 231
starpu_data_assign_arbiter, 234
starpu_data_fetch_on_node, 234

starpu_data_get_coordinates_array, 231
starpu_data_get_default_sequential_consistency←↩

_flag, 235
starpu_data_get_ooc_flag, 236
starpu_data_get_sequential_consistency_flag, 235
starpu_data_get_user_data, 236
starpu_data_handle_t, 229
starpu_data_idle_prefetch_on_node, 235
starpu_data_invalidate, 231
starpu_data_invalidate_submit, 231
starpu_data_is_on_node, 235
starpu_data_prefetch_on_node, 234
starpu_data_query_status, 236
starpu_data_release, 233
starpu_data_release_on_node, 234
starpu_data_request_allocation, 234
starpu_data_set_coordinates, 230
starpu_data_set_coordinates_array, 230
starpu_data_set_default_sequential_consistency←↩

_flag, 235
starpu_data_set_name, 230
starpu_data_set_ooc_flag, 236
starpu_data_set_reduction_methods, 236
starpu_data_set_sequential_consistency_flag, 235
starpu_data_set_user_data, 236
starpu_data_set_wt_mask, 235
starpu_data_unregister, 231
starpu_data_unregister_no_coherency, 231
starpu_data_unregister_submit, 231
starpu_data_wont_use, 235

Data Partition, 274
starpu_bcsr_filter_canonical_block, 280
starpu_bcsr_filter_canonical_block_child_ops, 281
starpu_bcsr_filter_canonical_block_get_nchildren,

280
starpu_bcsr_filter_vertical_block, 281
starpu_block_filter_block, 283
starpu_block_filter_block_shadow, 283
starpu_block_filter_depth_block, 284
starpu_block_filter_depth_block_shadow, 284
starpu_block_filter_vertical_block, 283
starpu_block_filter_vertical_block_shadow, 284
starpu_csr_filter_vertical_block, 281
starpu_data_get_child, 277
starpu_data_get_nb_children, 277
starpu_data_get_sub_data, 277
starpu_data_map_filters, 278
starpu_data_partition, 277
starpu_data_partition_clean, 280
starpu_data_partition_plan, 278
starpu_data_partition_readonly_submit, 279
starpu_data_partition_readwrite_upgrade_submit,

279
starpu_data_partition_submit, 278
starpu_data_partition_submit_sequential_←↩

consistency, 280
starpu_data_unpartition, 277
starpu_data_unpartition_readonly_submit, 279

Generated by Doxygen

566 INDEX

starpu_data_unpartition_submit, 279
starpu_data_unpartition_submit_sequential_←↩

consistency, 280
starpu_data_unpartition_submit_sequential_←↩

consistency_cb, 280
starpu_data_vget_sub_data, 278
starpu_data_vmap_filters, 278
starpu_filter_nparts_compute_chunk_size_and_←↩

offset, 284
starpu_matrix_filter_block, 281
starpu_matrix_filter_block_shadow, 281
starpu_matrix_filter_vertical_block, 281
starpu_matrix_filter_vertical_block_shadow, 282
starpu_vector_filter_block, 282
starpu_vector_filter_block_shadow, 282
starpu_vector_filter_divide_in_2, 283
starpu_vector_filter_list, 283
starpu_vector_filter_list_long, 282

deinit
starpu_worker_collection, 220

deinit_data
starpu_sched_component, 455

deinit_sched
starpu_sched_policy, 422

describe
starpu_data_interface_ops, 248

destroy
starpu_task, 300

detach
starpu_task, 299

disable_asynchronous_copy
starpu_conf, 191

disable_asynchronous_cuda_copy
starpu_conf, 191

disable_asynchronous_mic_copy
starpu_conf, 192

disable_asynchronous_mpi_ms_copy
starpu_conf, 192

disable_asynchronous_opencl_copy
starpu_conf, 192

display
starpu_data_interface_ops, 247

do_schedule
starpu_sched_policy, 423

dontcache
starpu_data_interface_ops, 248

driver_spinning_backoff_max
starpu_conf, 193

driver_spinning_backoff_min
starpu_conf, 193

dyn_handles
starpu_task, 296

dyn_interfaces
starpu_task, 296

dyn_modes
starpu_codelet, 293
starpu_task, 297

dyn_nodes

starpu_codelet, 294

e_starpurm_drs_ret
Interoperability Support, 471

end_ctx
sc_hypervisor_policy, 432

energy_model
starpu_codelet, 294

estimated_end
starpu_sched_component, 455

estimated_load
starpu_sched_component, 454

execute_on_a_specific_worker
starpu_task, 299

Expert Mode, 411
starpu_progression_hook_deregister, 411
starpu_progression_hook_register, 411
starpu_wake_all_blocked_workers, 411

Explicit Dependencies, 321
starpu_tag_declare_deps, 323
starpu_tag_declare_deps_array, 323
starpu_tag_notify_from_apps, 324
starpu_tag_notify_restart_from_apps, 324
starpu_tag_remove, 324
starpu_tag_restart, 324
starpu_tag_t, 321
starpu_tag_wait, 323
starpu_tag_wait_array, 323
starpu_task_declare_deps, 322
starpu_task_declare_deps_array, 321
starpu_task_declare_end_deps, 322
starpu_task_declare_end_deps_array, 322
starpu_task_end_dep_add, 322
starpu_task_end_dep_release, 323
starpu_task_get_task_scheduled_succs, 322
starpu_task_get_task_succs, 322

FFT Support, 383
starpufft_cleanup, 384
starpufft_destroy_plan, 384
starpufft_execute, 384
starpufft_execute_handle, 384
starpufft_free, 383
starpufft_malloc, 383
starpufft_plan_dft_1d, 383
starpufft_plan_dft_2d, 383
starpufft_start, 383
starpufft_start_handle, 384

filter_arg
starpu_data_filter, 277

filter_arg_ptr
starpu_data_filter, 277

filter_func
starpu_data_filter, 276

flags
starpu_codelet, 294

flops
starpu_task, 302

footprint

Generated by Doxygen

INDEX 567

starpu_data_interface_ops, 247
starpu_perfmodel, 329

free
starpu_disk_ops, 286

free_data_on_node
starpu_data_interface_ops, 246

free_request
starpu_disk_ops, 287

full_read
starpu_disk_ops, 286

full_write
starpu_disk_ops, 286

FxT Support, 380
starpu_fxt_autostart_profiling, 381
starpu_fxt_is_enabled, 382
starpu_fxt_start_profiling, 381
starpu_fxt_stop_profiling, 381
starpu_fxt_trace_user_event, 382
starpu_fxt_trace_user_event_string, 382

get_alloc_size
starpu_data_interface_ops, 247

get_child_ops
starpu_data_filter, 276

get_nchildren
starpu_data_filter, 276

get_next
starpu_worker_collection, 219

get_size
starpu_data_interface_ops, 247

HAVE_MPI_COMM_F2C
starpu_config.h, 490

handle_idle_cycle
sc_hypervisor_policy, 432

handle_idle_end
sc_hypervisor_policy, 432

handle_poped_task
sc_hypervisor_policy, 432

handle_post_exec_hook
sc_hypervisor_policy, 432

handle_pushed_task
sc_hypervisor_policy, 432

handle_submitted_job
sc_hypervisor_policy, 432

handle_to_pointer
starpu_data_interface_ops, 247

handles
starpu_task, 297

handles_sequential_consistency
starpu_task, 297

has_next
starpu_worker_collection, 219

history
starpu_perfmodel_per_arch, 328

hwloc_cache_composed_sched_component
starpu_sched_component_specs, 457

hwloc_component_composed_sched_component
starpu_sched_component_specs, 456

hwloc_machine_composed_sched_component
starpu_sched_component_specs, 456

hwloc_socket_composed_sched_component
starpu_sched_component_specs, 456

hypervisor_tag
starpu_task, 301

init
starpu_data_interface_ops, 246
starpu_worker_collection, 219

init_iterator
starpu_worker_collection, 220

init_sched
starpu_sched_policy, 422

init_worker
sc_hypervisor_policy, 432

Initialization and Termination, 188
STARPU_THREAD_ACTIVE, 193
starpu_asynchronous_copy_disabled, 194
starpu_asynchronous_cuda_copy_disabled, 195
starpu_asynchronous_mic_copy_disabled, 195
starpu_asynchronous_mpi_ms_copy_disabled,

195
starpu_asynchronous_opencl_copy_disabled, 195
starpu_bind_thread_on, 194
starpu_conf_init, 193
starpu_get_next_bindid, 194
starpu_init, 193
starpu_initialize, 193
starpu_is_initialized, 193
starpu_pause, 194
starpu_resume, 194
starpu_shutdown, 194
starpu_topology_print, 194
starpu_wait_initialized, 193

interface_size
starpu_data_interface_ops, 248

interfaceid
starpu_data_interface_ops, 248

interfaces
starpu_task, 297

Interoperability Support, 469
e_starpurm_drs_ret, 471
starpurm_acquire, 474
starpurm_acquire_all_devices, 478
starpurm_acquire_cpu, 474
starpurm_acquire_cpu_mask, 474
starpurm_acquire_cpus, 474
starpurm_acquire_device, 477
starpurm_acquire_device_mask, 478
starpurm_acquire_devices, 477
starpurm_assign_all_cpus_to_starpu, 472
starpurm_assign_all_devices_to_starpu, 476
starpurm_assign_cpu_mask_to_starpu, 472
starpurm_assign_cpu_to_starpu, 472
starpurm_assign_cpus_to_starpu, 472
starpurm_assign_device_mask_to_starpu, 476
starpurm_assign_device_to_starpu, 475
starpurm_assign_devices_to_starpu, 475

Generated by Doxygen

568 INDEX

starpurm_drs_enabled_p, 472
starpurm_get_all_cpu_workers_cpuset, 478
starpurm_get_all_device_workers_cpuset, 479
starpurm_get_all_device_workers_cpuset_by_←↩

type, 479
starpurm_get_device_id, 475
starpurm_get_device_type_id, 475
starpurm_get_device_type_name, 475
starpurm_get_device_worker_cpuset, 478
starpurm_get_global_cpuset, 478
starpurm_get_nb_devices_by_type, 475
starpurm_get_selected_cpuset, 478
starpurm_initialize, 471
starpurm_initialize_with_cpuset, 471
starpurm_lend, 473
starpurm_lend_all_devices, 477
starpurm_lend_cpu, 473
starpurm_lend_cpu_mask, 473
starpurm_lend_cpus, 473
starpurm_lend_device, 476
starpurm_lend_device_mask, 477
starpurm_lend_devices, 476
starpurm_reclaim, 474
starpurm_reclaim_all_devices, 477
starpurm_reclaim_cpu, 474
starpurm_reclaim_cpu_mask, 474
starpurm_reclaim_cpus, 474
starpurm_reclaim_device, 477
starpurm_reclaim_device_mask, 477
starpurm_reclaim_devices, 477
starpurm_return_all, 474
starpurm_return_all_devices, 478
starpurm_return_cpu, 475
starpurm_return_device, 478
starpurm_set_drs_disable, 472
starpurm_set_drs_enable, 472
starpurm_set_max_parallelism, 472
starpurm_shutdown, 471
starpurm_spawn_kernel_on_cpus, 471
starpurm_spawn_kernel_on_cpus_callback, 471
starpurm_withdraw_all_cpus_from_starpu, 473
starpurm_withdraw_all_devices_from_starpu, 476
starpurm_withdraw_cpu_from_starpu, 473
starpurm_withdraw_cpu_mask_from_starpu, 473
starpurm_withdraw_cpus_from_starpu, 473
starpurm_withdraw_device_from_starpu, 476
starpurm_withdraw_device_mask_from_starpu,

476
starpurm_withdraw_devices_from_starpu, 476
starpurm_DRS_DISABLD, 471
starpurm_DRS_EINVAL, 471
starpurm_DRS_PERM, 471
starpurm_DRS_SUCCESS, 471

is_loaded
starpu_perfmodel, 329

list
starpu_perfmodel_per_arch, 328

MIC Extensions, 376
STARPU_MAXMICDEVS, 376
STARPU_USE_MIC, 376
starpu_mic_func_symbol_t, 376
starpu_mic_get_kernel, 376
starpu_mic_register_kernel, 376

MPI Support, 385
STARPU_EXECUTE_ON_DATA, 388
STARPU_EXECUTE_ON_NODE, 387
STARPU_MPI_NODE_SELECTION_CURRENT←↩

_POLICY, 389
STARPU_MPI_NODE_SELECTION_MOST_R_←↩

DATA, 389
STARPU_MPI_PER_NODE, 388
STARPU_MPI_TAG_UB, 388
STARPU_NODE_SELECTION_POLICY, 388
STARPU_USE_MPI_MASTER_SLAVE, 387
STARPU_USE_MPI, 387
starpu_data_get_rank, 388
starpu_data_get_tag, 388
starpu_data_set_rank, 388
starpu_data_set_tag, 388
starpu_mpi_barrier, 394
starpu_mpi_cache_flush, 396
starpu_mpi_cache_flush_all_data, 396
starpu_mpi_cache_is_enabled, 396
starpu_mpi_cache_set, 396
starpu_mpi_cached_receive, 396
starpu_mpi_cached_receive_clear, 397
starpu_mpi_cached_receive_set, 397
starpu_mpi_cached_send, 397
starpu_mpi_cached_send_clear, 397
starpu_mpi_cached_send_set, 397
starpu_mpi_comm_amounts_retrieve, 390
starpu_mpi_comm_get_attr, 391
starpu_mpi_comm_rank, 390
starpu_mpi_comm_size, 390
starpu_mpi_data_get_rank, 398
starpu_mpi_data_get_tag, 398
starpu_mpi_data_migrate, 399
starpu_mpi_data_register, 388
starpu_mpi_data_register_comm, 397
starpu_mpi_data_set_rank, 388
starpu_mpi_data_set_rank_comm, 397
starpu_mpi_data_set_tag, 397
starpu_mpi_datatype_register, 395
starpu_mpi_datatype_unregister, 396
starpu_mpi_gather_detached, 401
starpu_mpi_get_data_on_all_nodes_detached,

399
starpu_mpi_get_data_on_node, 399
starpu_mpi_get_data_on_node_detached, 399
starpu_mpi_init, 389
starpu_mpi_init_comm, 389
starpu_mpi_init_conf, 389
starpu_mpi_initialize, 390
starpu_mpi_initialize_extended, 390
starpu_mpi_insert_task, 398

Generated by Doxygen

INDEX 569

starpu_mpi_interface_datatype_register, 396
starpu_mpi_interface_datatype_unregister, 396
starpu_mpi_irecv, 391
starpu_mpi_irecv_array_detached_unlock_tag,

395
starpu_mpi_irecv_detached, 392
starpu_mpi_irecv_detached_sequential_consistency,

393
starpu_mpi_irecv_detached_unlock_tag, 395
starpu_mpi_isend, 391
starpu_mpi_isend_array_detached_unlock_tag,

395
starpu_mpi_isend_array_detached_unlock_tag_←↩

prio, 395
starpu_mpi_isend_detached, 392
starpu_mpi_isend_detached_prio, 392
starpu_mpi_isend_detached_unlock_tag, 394
starpu_mpi_isend_detached_unlock_tag_prio, 394
starpu_mpi_isend_prio, 391
starpu_mpi_issend, 393
starpu_mpi_issend_detached, 393
starpu_mpi_issend_detached_prio, 394
starpu_mpi_issend_prio, 393
starpu_mpi_node_selection_get_current_policy,

400
starpu_mpi_node_selection_register_policy, 400
starpu_mpi_node_selection_set_current_policy,

400
starpu_mpi_node_selection_unregister_policy,

400
starpu_mpi_recv, 392
starpu_mpi_redux_data, 400
starpu_mpi_redux_data_prio, 400
starpu_mpi_req, 389
starpu_mpi_scatter_detached, 401
starpu_mpi_send, 391
starpu_mpi_send_prio, 392
starpu_mpi_shutdown, 390
starpu_mpi_tag_t, 389
starpu_mpi_task_build, 398
starpu_mpi_task_insert, 398
starpu_mpi_task_post_build, 399
starpu_mpi_test, 394
starpu_mpi_wait, 394
starpu_mpi_wait_for_all, 394
starpu_mpi_world_rank, 390
starpu_mpi_world_size, 391

magic
starpu_conf, 189
starpu_task, 301

Master Slave Extension, 480
max_parallelism

starpu_codelet, 291
mf_skip

starpu_task, 300
mic_funcs

starpu_codelet, 293
mic_sink_program_path

starpu_conf, 191
mic_to_ram

starpu_data_copy_methods, 243
mic_to_ram_async

starpu_data_copy_methods, 245
Miscellaneous Helpers, 377

STARPU_MAX, 377
STARPU_MIN, 377
STARPU_POISON_PTR, 377
starpu_data_cpy, 379
starpu_display_bindings, 379
starpu_execute_on_each_worker, 378
starpu_execute_on_each_worker_ex, 378
starpu_execute_on_specific_workers, 378
starpu_get_env_number, 378
starpu_get_env_size_default, 378
starpu_get_env_string_var_default, 377
starpu_get_hwloc_topology, 379
starpu_get_pu_os_index, 379
starpu_timing_now, 378

mix_heterogeneous_workers
starpu_sched_component_specs, 457

model
starpu_codelet, 294

modes
starpu_codelet, 293
starpu_task, 297

Modularized Scheduler Interface, 449
STARPU_SCHED_COMPONENT_IS_HOMOG←↩

ENEOUS, 457
STARPU_SCHED_COMPONENT_IS_SINGLE_←↩

MEMORY_NODE, 457
STARPU_SCHED_SIMPLE_COMBINED_WOR←↩

KERS, 458
STARPU_SCHED_SIMPLE_DECIDE_ALWAYS,

457
STARPU_SCHED_SIMPLE_DECIDE_ARCHS,

457
STARPU_SCHED_SIMPLE_DECIDE_MEMNO←↩

DES, 457
STARPU_SCHED_SIMPLE_DECIDE_WORKE←↩

RS, 457
STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO,

458
STARPU_SCHED_SIMPLE_FIFO_ABOVE, 458
STARPU_SCHED_SIMPLE_FIFOS_BELOW_P←↩

RIO, 458
STARPU_SCHED_SIMPLE_FIFOS_BELOW_R←↩

EADY, 458
STARPU_SCHED_SIMPLE_FIFOS_BELOW, 458
STARPU_SCHED_SIMPLE_IMPL, 458
STARPU_SCHED_SIMPLE_PERFMODEL, 458
STARPU_SCHED_SIMPLE_PRE_DECISION, 458
STARPU_SCHED_SIMPLE_WS_BELOW, 458
STARPU_SCHED_COMPONENT_HOMOGEN←↩

EOUS, 459
STARPU_SCHED_COMPONENT_SINGLE_ME←↩

MORY_NODE, 459

Generated by Doxygen

570 INDEX

starpu_sched_component_best_implementation←↩
_create, 464

starpu_sched_component_can_execute_task, 461
starpu_sched_component_can_pull, 462
starpu_sched_component_can_pull_all, 462
starpu_sched_component_can_push, 462
starpu_sched_component_composed_component←↩

_create, 465
starpu_sched_component_composed_recipe_add,

464
starpu_sched_component_composed_recipe_←↩

create, 464
starpu_sched_component_composed_recipe_←↩

create_singleton, 464
starpu_sched_component_composed_recipe_←↩

destroy, 465
starpu_sched_component_connect, 460
starpu_sched_component_create, 460
starpu_sched_component_destroy, 461
starpu_sched_component_destroy_rec, 461
starpu_sched_component_estimated_end_←↩

average, 463
starpu_sched_component_estimated_end_min,

463
starpu_sched_component_estimated_end_min_←↩

add, 463
starpu_sched_component_estimated_load, 463
starpu_sched_component_execute_preds, 461
starpu_sched_component_fifo_create, 463
starpu_sched_component_initialize_simple_←↩

scheduler, 465
starpu_sched_component_initialize_simple_←↩

schedulers, 465
starpu_sched_component_is_combined_worker,

462
starpu_sched_component_is_fifo, 463
starpu_sched_component_is_random, 464
starpu_sched_component_is_simple_worker, 462
starpu_sched_component_is_work_stealing, 463
starpu_sched_component_is_worker, 462
starpu_sched_component_make_scheduler, 465
starpu_sched_component_mct_create, 464
starpu_sched_component_parallel_worker_create,

461
starpu_sched_component_parents_pull_task, 462
starpu_sched_component_properties, 459
starpu_sched_component_pull_task, 460
starpu_sched_component_push_task, 460
starpu_sched_component_random_create, 464
starpu_sched_component_transfer_length, 461
starpu_sched_component_work_stealing_create,

463
starpu_sched_component_worker_get, 461
starpu_sched_component_worker_get_workerid,

461
starpu_sched_component_worker_post_exec_←↩

hook, 462
starpu_sched_component_worker_pre_exec_←↩

hook, 462
starpu_sched_tree_add_workers, 460
starpu_sched_tree_create, 459
starpu_sched_tree_deinitialize, 459
starpu_sched_tree_destroy, 459
starpu_sched_tree_pop_task, 460
starpu_sched_tree_push_task, 459
starpu_sched_tree_remove_workers, 460
starpu_sched_tree_update_workers, 459
starpu_sched_tree_update_workers_in_ctx, 459
starpu_sched_tree_work_stealing_push_task, 464

mpi_ms_funcs
starpu_codelet, 293

mpi_ms_to_mpi_ms
starpu_data_copy_methods, 243

mpi_ms_to_mpi_ms_async
starpu_data_copy_methods, 245

mpi_ms_to_ram
starpu_data_copy_methods, 243

mpi_ms_to_ram_async
starpu_data_copy_methods, 245

n_cuda_opengl_interoperability
starpu_conf, 192

n_not_launched_drivers
starpu_conf, 192

name
sc_hypervisor_policy, 432
starpu_codelet, 294
starpu_data_interface_ops, 248
starpu_task, 296

nb_termination_call_required
starpu_task, 302

nbuffers
starpu_codelet, 293
starpu_task, 296

nchildren
starpu_data_filter, 276
starpu_sched_component, 454

ncombinations
starpu_perfmodel, 330

ncpus
starpu_conf, 189

ncuda
starpu_conf, 190

next
starpu_task, 302

nmic
starpu_conf, 190

nmpi_ms
starpu_conf, 190

no_submitorder
starpu_task, 300

nodes
starpu_codelet, 293

nopencl
starpu_conf, 190

not_launched_drivers
starpu_conf, 192

Generated by Doxygen

INDEX 571

notify_change_workers
starpu_sched_component, 455

nparameters
starpu_perfmodel, 330

nparents
starpu_sched_component, 454

nworkers
starpu_worker_collection, 219

obj
starpu_sched_component, 455

omp_task
starpu_task, 302

open
starpu_disk_ops, 286

OpenCL Extensions, 345
STARPU_MAXOPENCLDEVS, 346
STARPU_OPENCL_DATADIR, 346
STARPU_OPENCL_DISPLAY_ERROR, 346
STARPU_OPENCL_REPORT_ERROR_WITH_←↩

MSG, 347
STARPU_OPENCL_REPORT_ERROR, 346
STARPU_USE_OPENCL, 346
starpu_opencl_allocate_memory, 350
starpu_opencl_collect_stats, 349
starpu_opencl_compile_opencl_from_file, 348
starpu_opencl_compile_opencl_from_string, 348
starpu_opencl_copy_async_sync, 351
starpu_opencl_copy_opencl_to_opencl, 351
starpu_opencl_copy_opencl_to_ram, 350
starpu_opencl_copy_ram_to_opencl, 350
starpu_opencl_display_error, 350
starpu_opencl_error_string, 349
starpu_opencl_get_context, 347
starpu_opencl_get_current_context, 347
starpu_opencl_get_current_queue, 347
starpu_opencl_get_device, 347
starpu_opencl_get_queue, 347
starpu_opencl_load_binary_opencl, 348
starpu_opencl_load_kernel, 349
starpu_opencl_load_opencl_from_file, 349
starpu_opencl_load_opencl_from_string, 349
starpu_opencl_load_program_source, 348
starpu_opencl_load_program_source_malloc, 348
starpu_opencl_release_kernel, 349
starpu_opencl_report_error, 350
starpu_opencl_set_kernel_args, 347
starpu_opencl_unload_opencl, 349

OpenMP Runtime Support, 352
STARPU_OPENMP, 356
starpu_omp_atomic_fallback_inline_begin, 374
starpu_omp_atomic_fallback_inline_end, 374
starpu_omp_barrier, 358
starpu_omp_critical, 358
starpu_omp_critical_inline_begin, 358
starpu_omp_critical_inline_end, 358
starpu_omp_destroy_lock, 371
starpu_omp_destroy_nest_lock, 372
starpu_omp_for, 360

starpu_omp_for_alt, 361
starpu_omp_for_inline_first, 360
starpu_omp_for_inline_first_alt, 361
starpu_omp_for_inline_next, 361
starpu_omp_for_inline_next_alt, 362
starpu_omp_get_active_level, 369
starpu_omp_get_ancestor_thread_num, 368
starpu_omp_get_cancellation, 367
starpu_omp_get_default_device, 370
starpu_omp_get_dynamic, 366
starpu_omp_get_level, 368
starpu_omp_get_max_active_levels, 368
starpu_omp_get_max_task_priority, 371
starpu_omp_get_max_threads, 365
starpu_omp_get_nested, 366
starpu_omp_get_num_devices, 370
starpu_omp_get_num_procs, 365
starpu_omp_get_num_teams, 370
starpu_omp_get_num_threads, 364
starpu_omp_get_proc_bind, 369
starpu_omp_get_schedule, 367
starpu_omp_get_team_num, 370
starpu_omp_get_team_size, 369
starpu_omp_get_thread_limit, 367
starpu_omp_get_thread_num, 365
starpu_omp_get_wtick, 374
starpu_omp_get_wtime, 374
starpu_omp_in_final, 369
starpu_omp_in_parallel, 365
starpu_omp_init, 357
starpu_omp_init_lock, 371
starpu_omp_init_nest_lock, 372
starpu_omp_is_initial_device, 371
starpu_omp_master, 358
starpu_omp_master_inline, 358
starpu_omp_ordered, 362
starpu_omp_ordered_inline_begin, 362
starpu_omp_ordered_inline_end, 362
starpu_omp_parallel_region, 357
starpu_omp_proc_bind_value, 357
starpu_omp_sched_value, 356
starpu_omp_sections, 363
starpu_omp_sections_combined, 363
starpu_omp_set_default_device, 369
starpu_omp_set_dynamic, 366
starpu_omp_set_lock, 371
starpu_omp_set_max_active_levels, 368
starpu_omp_set_nest_lock, 373
starpu_omp_set_nested, 366
starpu_omp_set_num_threads, 364
starpu_omp_set_schedule, 367
starpu_omp_shutdown, 357
starpu_omp_single, 359
starpu_omp_single_copyprivate, 359
starpu_omp_single_copyprivate_inline_begin, 359
starpu_omp_single_copyprivate_inline_end, 360
starpu_omp_single_inline, 359
starpu_omp_task_region, 363

Generated by Doxygen

572 INDEX

starpu_omp_taskgroup, 363
starpu_omp_taskgroup_inline_begin, 364
starpu_omp_taskgroup_inline_end, 364
starpu_omp_taskwait, 363
starpu_omp_test_lock, 372
starpu_omp_test_nest_lock, 373
starpu_omp_unset_lock, 372
starpu_omp_unset_nest_lock, 373
starpu_omp_vector_annotate, 374

OpenMP Runtime Support
starpu_omp_proc_bind_close, 357
starpu_omp_proc_bind_false, 357
starpu_omp_proc_bind_master, 357
starpu_omp_proc_bind_spread, 357
starpu_omp_proc_bind_true, 357
starpu_omp_proc_bind_undefined, 357
starpu_omp_sched_auto, 357
starpu_omp_sched_dynamic, 357
starpu_omp_sched_guided, 357
starpu_omp_sched_runtime, 357
starpu_omp_sched_static, 357
starpu_omp_sched_undefined, 357

opencl_flags
starpu_codelet, 292

opencl_func
starpu_codelet, 292

opencl_funcs
starpu_codelet, 292

opencl_to_cuda
starpu_data_copy_methods, 243

opencl_to_opencl
starpu_data_copy_methods, 243

opencl_to_opencl_async
starpu_data_copy_methods, 244

opencl_to_ram
starpu_data_copy_methods, 243

opencl_to_ram_async
starpu_data_copy_methods, 244

Out Of Core, 285
STARPU_DISK_SIZE_MIN, 287
starpu_disk_close, 287
starpu_disk_hdf5_ops, 288
starpu_disk_leveldb_ops, 288
starpu_disk_open, 287
starpu_disk_register, 287
starpu_disk_stdio_ops, 288
starpu_disk_swap_node, 288
starpu_disk_unistd_o_direct_ops, 288
starpu_disk_unistd_ops, 288

pack_data
starpu_data_interface_ops, 248

Parallel Tasks, 407
starpu_combined_worker_assign_workerid, 407
starpu_combined_worker_can_execute_task, 408
starpu_combined_worker_get_count, 407
starpu_combined_worker_get_description, 407
starpu_combined_worker_get_id, 407
starpu_combined_worker_get_rank, 407

starpu_combined_worker_get_size, 407
starpu_parallel_task_barrier_init, 408
starpu_parallel_task_barrier_init_n, 408

parameters_names
starpu_perfmodel, 330

parents
starpu_sched_component, 454

per_worker_stats
starpu_codelet, 294

Performance Model, 325
STARPU_COMMON, 330
STARPU_HISTORY_BASED, 330
STARPU_MULTIPLE_REGRESSION_BASED,

330
STARPU_NL_REGRESSION_BASED, 330
STARPU_PER_ARCH, 330
STARPU_REGRESSION_BASED, 330
starpu_bus_print_affinity, 332
starpu_bus_print_bandwidth, 332
starpu_bus_print_filenames, 333
starpu_perfmodel_debugfilepath, 331
starpu_perfmodel_directory, 332
starpu_perfmodel_dump_xml, 331
starpu_perfmodel_free_sampling, 331
starpu_perfmodel_get_arch_name, 331
starpu_perfmodel_get_model_path, 331
starpu_perfmodel_history_based_expected_perf,

332
starpu_perfmodel_init, 330
starpu_perfmodel_initialize, 332
starpu_perfmodel_list, 332
starpu_perfmodel_load_file, 330
starpu_perfmodel_load_symbol, 331
starpu_perfmodel_nop, 333
starpu_perfmodel_type, 330
starpu_perfmodel_unload_model, 331
starpu_perfmodel_update_history, 332
starpu_transfer_bandwidth, 333
starpu_transfer_latency, 333
starpu_transfer_predict, 333
starpu_worker_get_perf_archtype, 331

plug
starpu_disk_ops, 285

pointer_is_inside
starpu_data_interface_ops, 247

policy_description
starpu_sched_policy, 423

policy_name
starpu_sched_policy, 423

pop_every_task
starpu_sched_policy, 422

pop_task
starpu_sched_policy, 422

possibly_parallel
starpu_task, 302

post_exec_hook
starpu_sched_policy, 423

pre_exec_hook

Generated by Doxygen

INDEX 573

starpu_sched_policy, 422
precedence_over_environment_variables

starpu_conf, 189
predicted

starpu_task, 302
predicted_transfer

starpu_task, 302
prefetched

starpu_task, 300
prev

starpu_task, 302
priority

starpu_task, 301
Profiling, 334

STARPU_PROFILING_DISABLE, 336
STARPU_PROFILING_ENABLE, 336
starpu_bus_get_count, 336
starpu_bus_get_dst, 337
starpu_bus_get_id, 337
starpu_bus_get_profiling_info, 337
starpu_bus_get_src, 337
starpu_data_display_memory_stats, 337
starpu_profiling_bus_helper_display_summary,

337
starpu_profiling_init, 336
starpu_profiling_set_id, 336
starpu_profiling_status_get, 336
starpu_profiling_status_set, 336
starpu_profiling_worker_get_info, 336
starpu_profiling_worker_helper_display_summary,

337
starpu_timing_timespec_delay_us, 337
starpu_timing_timespec_to_us, 337

profiling_info
starpu_task, 302

prologue_callback_arg
starpu_task, 298

prologue_callback_arg_free
starpu_task, 299

prologue_callback_func
starpu_task, 298

prologue_callback_pop_arg
starpu_task, 298

prologue_callback_pop_arg_free
starpu_task, 299

prologue_callback_pop_func
starpu_task, 298

pull_task
starpu_sched_component, 454

push_task
starpu_sched_component, 454
starpu_sched_policy, 422

push_task_notify
starpu_sched_policy, 422

ram_to_cuda
starpu_data_copy_methods, 242

ram_to_cuda_async
starpu_data_copy_methods, 244

ram_to_mic
starpu_data_copy_methods, 242

ram_to_mic_async
starpu_data_copy_methods, 245

ram_to_mpi_ms
starpu_data_copy_methods, 243

ram_to_mpi_ms_async
starpu_data_copy_methods, 244

ram_to_opencl
starpu_data_copy_methods, 242

ram_to_opencl_async
starpu_data_copy_methods, 244

ram_to_ram
starpu_data_copy_methods, 242

Random Functions, 481
read

starpu_disk_ops, 286
regenerate

starpu_task, 300
register_data_handle

starpu_data_interface_ops, 246
regression

starpu_perfmodel_per_arch, 328
remove

starpu_worker_collection, 219
remove_child

starpu_sched_component, 454
remove_workers

starpu_sched_policy, 423
reserve_ncpus

starpu_conf, 190
resize_ctxs

sc_hypervisor_policy, 432
Running Drivers, 409

starpu_driver_deinit, 410
starpu_driver_init, 410
starpu_driver_run, 409
starpu_driver_run_once, 410
starpu_drivers_request_termination, 409

SC_HYPERVISOR_FIXED_WORKERS
Scheduling Context Hypervisor - Building a new re-

sizing policy, 434
SC_HYPERVISOR_GRANULARITY

Scheduling Context Hypervisor - Building a new re-
sizing policy, 434

SC_HYPERVISOR_ISPEED_CTX_SAMPLE
Scheduling Context Hypervisor - Building a new re-

sizing policy, 434
SC_HYPERVISOR_ISPEED_W_SAMPLE

Scheduling Context Hypervisor - Building a new re-
sizing policy, 434

SC_HYPERVISOR_MAX_IDLE
Scheduling Context Hypervisor - Building a new re-

sizing policy, 433
SC_HYPERVISOR_MAX_WORKERS

Scheduling Context Hypervisor - Building a new re-
sizing policy, 434

SC_HYPERVISOR_MIN_TASKS

Generated by Doxygen

574 INDEX

Scheduling Context Hypervisor - Building a new re-
sizing policy, 434

SC_HYPERVISOR_MIN_WORKERS
Scheduling Context Hypervisor - Building a new re-

sizing policy, 433
SC_HYPERVISOR_NEW_WORKERS_MAX_IDLE

Scheduling Context Hypervisor - Building a new re-
sizing policy, 434

SC_HYPERVISOR_NULL
Scheduling Context Hypervisor - Building a new re-

sizing policy, 434
SC_HYPERVISOR_PRIORITY

Scheduling Context Hypervisor - Building a new re-
sizing policy, 433

SC_HYPERVISOR_TIME_TO_APPLY
Scheduling Context Hypervisor - Building a new re-

sizing policy, 434
STARPU_ABORT_MSG

Toolbox, 203
STARPU_ABORT

Toolbox, 203
STARPU_ACQUIRE_NO_NODE_LOCK_ALL

Data Management, 228
STARPU_ACQUIRE_NO_NODE

Data Management, 228
STARPU_ASSERT_MSG

Toolbox, 202
STARPU_ASSERT

Toolbox, 202
STARPU_ATTRIBUTE_ALIGNED

Toolbox, 202
STARPU_ATTRIBUTE_INTERNAL

Toolbox, 202
STARPU_ATTRIBUTE_MALLOC

Toolbox, 202
STARPU_ATTRIBUTE_NORETURN

Toolbox, 202
STARPU_ATTRIBUTE_PURE

Toolbox, 202
STARPU_ATTRIBUTE_UNUSED

Toolbox, 202
STARPU_ATTRIBUTE_WARN_UNUSED_RESULT

Toolbox, 202
STARPU_BCSR_GET_COLIND_DEV_HANDLE

Data Interfaces, 258
STARPU_BCSR_GET_COLIND

Data Interfaces, 258
STARPU_BCSR_GET_ELEMSIZE

Data Interfaces, 258
STARPU_BCSR_GET_FIRSTENTRY

Data Interfaces, 258
STARPU_BCSR_GET_NNZ

Data Interfaces, 257
STARPU_BCSR_GET_NROW

Data Interfaces, 257
STARPU_BCSR_GET_NZVAL_DEV_HANDLE

Data Interfaces, 257
STARPU_BCSR_GET_NZVAL

Data Interfaces, 257
STARPU_BCSR_GET_OFFSET

Data Interfaces, 258
STARPU_BCSR_GET_ROWPTR_DEV_HANDLE

Data Interfaces, 258
STARPU_BCSR_GET_ROWPTR

Data Interfaces, 258
STARPU_BCSR_GET_C

Data Interfaces, 258
STARPU_BCSR_GET_R

Data Interfaces, 258
STARPU_BLOCK_GET_DEV_HANDLE

Data Interfaces, 254
STARPU_BLOCK_GET_ELEMSIZE

Data Interfaces, 255
STARPU_BLOCK_GET_LDY

Data Interfaces, 254
STARPU_BLOCK_GET_LDZ

Data Interfaces, 254
STARPU_BLOCK_GET_NX

Data Interfaces, 254
STARPU_BLOCK_GET_NY

Data Interfaces, 254
STARPU_BLOCK_GET_NZ

Data Interfaces, 254
STARPU_BLOCK_GET_OFFSET

Data Interfaces, 254
STARPU_BLOCK_GET_PTR

Data Interfaces, 254
STARPU_CALLBACK_ARG_NFREE

Task Insert Utility, 316
STARPU_CALLBACK_ARG

Task Insert Utility, 313
STARPU_CALLBACK_WITH_ARG_NFREE

Task Insert Utility, 316
STARPU_CALLBACK_WITH_ARG

Task Insert Utility, 313
STARPU_CALLBACK

Task Insert Utility, 313
STARPU_CHECK_RETURN_VALUE_IS

Toolbox, 203
STARPU_CHECK_RETURN_VALUE

Toolbox, 203
STARPU_CL_ARGS_NFREE

Task Insert Utility, 315
STARPU_CL_ARGS

Task Insert Utility, 315
STARPU_CLUSTER_AWAKE_WORKERS

Clustering Machine, 467
STARPU_CLUSTER_CREATE_FUNC_ARG

Clustering Machine, 467
STARPU_CLUSTER_CREATE_FUNC

Clustering Machine, 467
STARPU_CLUSTER_KEEP_HOMOGENEOUS

Clustering Machine, 466
STARPU_CLUSTER_MAX_NB

Clustering Machine, 466
STARPU_CLUSTER_MIN_NB

Generated by Doxygen

INDEX 575

Clustering Machine, 466
STARPU_CLUSTER_NCORES

Clustering Machine, 467
STARPU_CLUSTER_NEW

Clustering Machine, 467
STARPU_CLUSTER_NB

Clustering Machine, 466
STARPU_CLUSTER_PARTITION_ONE

Clustering Machine, 467
STARPU_CLUSTER_POLICY_NAME

Clustering Machine, 467
STARPU_CLUSTER_POLICY_STRUCT

Clustering Machine, 467
STARPU_CLUSTER_PREFERE_MIN

Clustering Machine, 466
STARPU_CLUSTER_TYPE

Clustering Machine, 467
STARPU_CODELET_GET_MODE

Codelet And Tasks, 305
STARPU_CODELET_GET_NODE

Codelet And Tasks, 306
STARPU_CODELET_NOPLANS

Codelet And Tasks, 303
STARPU_CODELET_SET_MODE

Codelet And Tasks, 305
STARPU_CODELET_SET_NODE

Codelet And Tasks, 306
STARPU_CODELET_SIMGRID_EXECUTE_AND_IN←↩

JECT
Codelet And Tasks, 303

STARPU_CODELET_SIMGRID_EXECUTE
Codelet And Tasks, 303

STARPU_COO_GET_COLUMNS_DEV_HANDLE
Data Interfaces, 253

STARPU_COO_GET_COLUMNS
Data Interfaces, 253

STARPU_COO_GET_ELEMSIZE
Data Interfaces, 254

STARPU_COO_GET_NVALUES
Data Interfaces, 253

STARPU_COO_GET_NX
Data Interfaces, 253

STARPU_COO_GET_NY
Data Interfaces, 253

STARPU_COO_GET_OFFSET
Data Interfaces, 253

STARPU_COO_GET_ROWS_DEV_HANDLE
Data Interfaces, 253

STARPU_COO_GET_ROWS
Data Interfaces, 253

STARPU_COO_GET_VALUES_DEV_HANDLE
Data Interfaces, 253

STARPU_COO_GET_VALUES
Data Interfaces, 253

STARPU_CPU
Codelet And Tasks, 303

STARPU_CSR_GET_COLIND_DEV_HANDLE
Data Interfaces, 257

STARPU_CSR_GET_COLIND
Data Interfaces, 256

STARPU_CSR_GET_ELEMSIZE
Data Interfaces, 257

STARPU_CSR_GET_FIRSTENTRY
Data Interfaces, 257

STARPU_CSR_GET_NNZ
Data Interfaces, 256

STARPU_CSR_GET_NROW
Data Interfaces, 256

STARPU_CSR_GET_NZVAL_DEV_HANDLE
Data Interfaces, 256

STARPU_CSR_GET_NZVAL
Data Interfaces, 256

STARPU_CSR_GET_OFFSET
Data Interfaces, 257

STARPU_CSR_GET_ROWPTR_DEV_HANDLE
Data Interfaces, 257

STARPU_CSR_GET_ROWPTR
Data Interfaces, 257

STARPU_CUBLAS_REPORT_ERROR
CUDA Extensions, 341

STARPU_CUDA_ASYNC
Codelet And Tasks, 304

STARPU_CUDA_REPORT_ERROR
CUDA Extensions, 342

STARPU_CUDA
Codelet And Tasks, 303

STARPU_DATA_ACQUIRE_CB
Data Management, 229

STARPU_DATA_ARRAY
Task Insert Utility, 314

STARPU_DATA_MODE_ARRAY
Task Insert Utility, 314

STARPU_DEFAULT_PRIO
Scheduling Contexts, 414

STARPU_DISK_SIZE_MIN
Out Of Core, 287

STARPU_EXECUTE_ON_DATA
MPI Support, 388

STARPU_EXECUTE_ON_NODE
MPI Support, 387

STARPU_EXECUTE_ON_WORKER
Task Insert Utility, 315

STARPU_EXECUTE_WHERE
Task Insert Utility, 315

STARPU_FLOPS
Task Insert Utility, 314

STARPU_GNUC_PREREQ
Toolbox, 201

STARPU_HANDLES_SEQUENTIAL_CONSISTENCY
Task Insert Utility, 316

STARPU_HAVE_HELGRIND_H
starpu_config.h, 490

STARPU_HAVE_LIBNVIDIA_ML
CUDA Extensions, 341

STARPU_HYPERVISOR_TAG
Task Insert Utility, 314

Generated by Doxygen

576 INDEX

STARPU_LIKELY
Toolbox, 202

STARPU_MAIN_RAM
Codelet And Tasks, 304

STARPU_MAJOR_VERSION
Versioning, 187

STARPU_MALLOC_COUNT
Standard Memory Library, 196

STARPU_MALLOC_NORECLAIM
Standard Memory Library, 196

STARPU_MALLOC_PINNED
Standard Memory Library, 196

STARPU_MALLOC_SIMULATION_FOLDED
Standard Memory Library, 197

STARPU_MATRIX_GET_ALLOCSIZE
Data Interfaces, 252

STARPU_MATRIX_GET_DEV_HANDLE
Data Interfaces, 251

STARPU_MATRIX_GET_ELEMSIZE
Data Interfaces, 252

STARPU_MATRIX_GET_LD
Data Interfaces, 252

STARPU_MATRIX_GET_NX
Data Interfaces, 252

STARPU_MATRIX_GET_NY
Data Interfaces, 252

STARPU_MATRIX_GET_OFFSET
Data Interfaces, 252

STARPU_MATRIX_GET_PTR
Data Interfaces, 251

STARPU_MATRIX_SET_LD
Data Interfaces, 252

STARPU_MATRIX_SET_NX
Data Interfaces, 252

STARPU_MATRIX_SET_NY
Data Interfaces, 252

STARPU_MAX_PRIO
Scheduling Contexts, 414

STARPU_MAXCPUS
Workers’ Properties, 220

STARPU_MAXCUDADEVS
CUDA Extensions, 341

STARPU_MAXIMPLEMENTATIONS
Scheduling Policy, 423

STARPU_MAXMICDEVS
MIC Extensions, 376

STARPU_MAXNODES
Workers’ Properties, 220

STARPU_MAXNUMANODES
Workers’ Properties, 220

STARPU_MAXOPENCLDEVS
OpenCL Extensions, 346

STARPU_MAX
Miscellaneous Helpers, 377

STARPU_MEMORY_OVERFLOW
Standard Memory Library, 197

STARPU_MEMORY_WAIT
Standard Memory Library, 197

STARPU_MIN_PRIO
Scheduling Contexts, 414

STARPU_MINOR_VERSION
Versioning, 187

STARPU_MIC
Codelet And Tasks, 303

STARPU_MIN
Miscellaneous Helpers, 377

STARPU_MPI_MS
Codelet And Tasks, 303

STARPU_MPI_NODE_SELECTION_CURRENT_PO←↩
LICY

MPI Support, 389
STARPU_MPI_NODE_SELECTION_MOST_R_DATA

MPI Support, 389
STARPU_MPI_PER_NODE

MPI Support, 388
STARPU_MPI_TAG_UB

MPI Support, 388
STARPU_MULTIFORMAT_GET_CPU_PTR

Data Interfaces, 259
STARPU_MULTIFORMAT_GET_CUDA_PTR

Data Interfaces, 259
STARPU_MULTIFORMAT_GET_MIC_PTR

Data Interfaces, 259
STARPU_MULTIFORMAT_GET_NX

Data Interfaces, 259
STARPU_MULTIFORMAT_GET_OPENCL_PTR

Data Interfaces, 259
STARPU_MULTIPLE_CPU_IMPLEMENTATIONS

Codelet And Tasks, 304
STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS

Codelet And Tasks, 304
STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS

Codelet And Tasks, 304
STARPU_NAME

Task Insert Utility, 315
STARPU_NMAX_SCHED_CTXS

Scheduling Policy, 423
STARPU_NMAXBUFS

Codelet And Tasks, 303
STARPU_NMAXWORKERS

Workers’ Properties, 220
STARPU_NODE_SELECTION_POLICY

MPI Support, 388
STARPU_NOWHERE

Codelet And Tasks, 303
STARPU_OPENCL_ASYNC

Codelet And Tasks, 304
STARPU_OPENCL_DATADIR

OpenCL Extensions, 346
STARPU_OPENCL_DISPLAY_ERROR

OpenCL Extensions, 346
STARPU_OPENCL_REPORT_ERROR_WITH_MSG

OpenCL Extensions, 347
STARPU_OPENCL_REPORT_ERROR

OpenCL Extensions, 346
STARPU_OPENCL

Generated by Doxygen

INDEX 577

Codelet And Tasks, 303
STARPU_OPENMP

OpenMP Runtime Support, 356
STARPU_POISON_PTR

Miscellaneous Helpers, 377
STARPU_POSSIBLY_PARALLEL

Task Insert Utility, 315
STARPU_PRIORITY

Task Insert Utility, 314
STARPU_PROFILING_DISABLE

Profiling, 336
STARPU_PROFILING_ENABLE

Profiling, 336
STARPU_PROLOGUE_CALLBACK_ARG_NFREE

Task Insert Utility, 317
STARPU_PROLOGUE_CALLBACK_ARG

Task Insert Utility, 314
STARPU_PROLOGUE_CALLBACK_POP_ARG_NF←↩

REE
Task Insert Utility, 317

STARPU_PROLOGUE_CALLBACK_POP_ARG
Task Insert Utility, 314

STARPU_PROLOGUE_CALLBACK_POP
Task Insert Utility, 314

STARPU_PROLOGUE_CALLBACK
Task Insert Utility, 314

STARPU_PTHREAD_BARRIER_DESTROY
Threads, 208

STARPU_PTHREAD_BARRIER_INIT
Threads, 207

STARPU_PTHREAD_BARRIER_WAIT
Threads, 208

STARPU_PTHREAD_COND_BROADCAST
Threads, 207

STARPU_PTHREAD_COND_DESTROY
Threads, 207

STARPU_PTHREAD_COND_INITIALIZER
Threads, 208

STARPU_PTHREAD_COND_INIT
Threads, 207

STARPU_PTHREAD_COND_SIGNAL
Threads, 207

STARPU_PTHREAD_COND_WAIT
Threads, 207

STARPU_PTHREAD_CREATE_ON
Threads, 205

STARPU_PTHREAD_CREATE
Threads, 205

STARPU_PTHREAD_GETSPECIFIC
Threads, 206

STARPU_PTHREAD_KEY_CREATE
Threads, 206

STARPU_PTHREAD_KEY_DELETE
Threads, 206

STARPU_PTHREAD_MUTEX_DESTROY
Threads, 206

STARPU_PTHREAD_MUTEX_INITIALIZER
Threads, 208

STARPU_PTHREAD_MUTEX_INIT
Threads, 205

STARPU_PTHREAD_MUTEX_LOCK
Threads, 206

STARPU_PTHREAD_MUTEX_UNLOCK
Threads, 206

STARPU_PTHREAD_RWLOCK_DESTROY
Threads, 207

STARPU_PTHREAD_RWLOCK_INIT
Threads, 206

STARPU_PTHREAD_RWLOCK_RDLOCK
Threads, 206

STARPU_PTHREAD_RWLOCK_UNLOCK
Threads, 207

STARPU_PTHREAD_RWLOCK_WRLOCK
Threads, 207

STARPU_PTHREAD_SETSPECIFIC
Threads, 206

STARPU_RELEASE_VERSION
Versioning, 187

STARPU_RMB
Toolbox, 203

STARPU_SCHED_COMPONENT_IS_HOMOGENE←↩
OUS

Modularized Scheduler Interface, 457
STARPU_SCHED_COMPONENT_IS_SINGLE_ME←↩

MORY_NODE
Modularized Scheduler Interface, 457

STARPU_SCHED_CTX_AWAKE_WORKERS
Scheduling Contexts, 414

STARPU_SCHED_CTX_CUDA_NSMS
Scheduling Contexts, 414

STARPU_SCHED_CTX_POLICY_INIT
Scheduling Contexts, 414

STARPU_SCHED_CTX_POLICY_MAX_PRIO
Scheduling Contexts, 414

STARPU_SCHED_CTX_POLICY_MIN_PRIO
Scheduling Contexts, 414

STARPU_SCHED_CTX_POLICY_NAME
Scheduling Contexts, 413

STARPU_SCHED_CTX_POLICY_STRUCT
Scheduling Contexts, 414

STARPU_SCHED_CTX_SUB_CTXS
Scheduling Contexts, 414

STARPU_SCHED_CTX_USER_DATA
Scheduling Contexts, 414

STARPU_SCHED_CTX
Task Insert Utility, 314

STARPU_SCHED_SIMPLE_COMBINED_WORKERS
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_DECIDE_ALWAYS
Modularized Scheduler Interface, 457

STARPU_SCHED_SIMPLE_DECIDE_ARCHS
Modularized Scheduler Interface, 457

STARPU_SCHED_SIMPLE_DECIDE_MEMNODES
Modularized Scheduler Interface, 457

STARPU_SCHED_SIMPLE_DECIDE_WORKERS
Modularized Scheduler Interface, 457

Generated by Doxygen

578 INDEX

STARPU_SCHED_SIMPLE_FIFO_ABOVE_PRIO
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_FIFO_ABOVE
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_FIFOS_BELOW_PRIO
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_FIFOS_BELOW_READY
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_FIFOS_BELOW
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_IMPL
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_PERFMODEL
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_PRE_DECISION
Modularized Scheduler Interface, 458

STARPU_SCHED_SIMPLE_WS_BELOW
Modularized Scheduler Interface, 458

STARPU_SEQUENTIAL_CONSISTENCY
Task Insert Utility, 316

STARPU_SPECIFIC_NODE_LOCAL
Codelet And Tasks, 304

STARPU_TAG_ONLY
Task Insert Utility, 315

STARPU_TASK_COLOR
Task Insert Utility, 315

STARPU_TASK_DEPS_ARRAY
Task Insert Utility, 315

STARPU_TASK_END_DEPS_ARRAY
Task Insert Utility, 316

STARPU_TASK_END_DEP
Task Insert Utility, 316

STARPU_TASK_GET_HANDLE
Codelet And Tasks, 305

STARPU_TASK_GET_MODE
Codelet And Tasks, 306

STARPU_TASK_GET_NBUFFERS
Codelet And Tasks, 305

STARPU_TASK_INITIALIZER
Codelet And Tasks, 305

STARPU_TASK_INVALID
starpu_task.h, 524

STARPU_TASK_NO_SUBMITORDER
Task Insert Utility, 316

STARPU_TASK_PROFILING_INFO
Task Insert Utility, 316

STARPU_TASK_SCHED_DATA
Task Insert Utility, 317

STARPU_TASK_SET_HANDLE
Codelet And Tasks, 305

STARPU_TASK_SET_MODE
Codelet And Tasks, 306

STARPU_TASK_SYNCHRONOUS
Task Insert Utility, 316

STARPU_TASK_TYPE_DATA_ACQUIRE
Codelet And Tasks, 305

STARPU_TASK_TYPE_INTERNAL
Codelet And Tasks, 305

STARPU_TASK_TYPE_NORMAL
Codelet And Tasks, 304

STARPU_TASK_WORKERIDS
Task Insert Utility, 316

STARPU_TAG
Task Insert Utility, 314

STARPU_THREAD_ACTIVE
Initialization and Termination, 193

STARPU_UNLIKELY
Toolbox, 201

STARPU_USE_CUDA
CUDA Extensions, 341

STARPU_USE_MIC
MIC Extensions, 376

STARPU_USE_MPI_MASTER_SLAVE
MPI Support, 387

STARPU_USE_MPI
MPI Support, 387

STARPU_USE_OPENCL
OpenCL Extensions, 346

STARPU_VALUE
Task Insert Utility, 313

STARPU_VARIABLE_GET_DEV_HANDLE
Data Interfaces, 256

STARPU_VARIABLE_GET_ELEMSIZE
Data Interfaces, 256

STARPU_VARIABLE_GET_OFFSET
Data Interfaces, 256

STARPU_VARIABLE_GET_PTR
Data Interfaces, 256

STARPU_VARIABLE_NBUFFERS
Codelet And Tasks, 304

STARPU_VECTOR_GET_ALLOCSIZE
Data Interfaces, 255

STARPU_VECTOR_GET_DEV_HANDLE
Data Interfaces, 255

STARPU_VECTOR_GET_ELEMSIZE
Data Interfaces, 255

STARPU_VECTOR_GET_NX
Data Interfaces, 255

STARPU_VECTOR_GET_OFFSET
Data Interfaces, 255

STARPU_VECTOR_GET_PTR
Data Interfaces, 255

STARPU_VECTOR_GET_SLICE_BASE
Data Interfaces, 255

STARPU_VECTOR_SET_NX
Data Interfaces, 255

STARPU_WMB
Toolbox, 203

STARPU_WORKER_ORDER
Task Insert Utility, 315

STARPU_ACCESS_MODE_MAX
Data Management, 230

STARPU_ANY_WORKER
Workers’ Properties, 221

STARPU_BCSR_INTERFACE_ID
Data Interfaces, 259

Generated by Doxygen

INDEX 579

STARPU_BLOCK_INTERFACE_ID
Data Interfaces, 259

STARPU_CLUSTER_GNU_OPENMP_MKL
Clustering Machine, 468

STARPU_CLUSTER_INTEL_OPENMP_MKL
Clustering Machine, 468

STARPU_CLUSTER_OPENMP
Clustering Machine, 468

STARPU_COMMON
Performance Model, 330

STARPU_COMMUTE
Data Management, 230

STARPU_COO_INTERFACE_ID
Data Interfaces, 259

STARPU_CPU_WORKER
Workers’ Properties, 221

STARPU_CSR_INTERFACE_ID
Data Interfaces, 259

STARPU_CUDA_WORKER
Workers’ Properties, 221

STARPU_FORKJOIN
Codelet And Tasks, 307

STARPU_HISTORY_BASED
Performance Model, 330

STARPU_LOCALITY
Data Management, 230

STARPU_MATRIX_INTERFACE_ID
Data Interfaces, 259

STARPU_MAX_INTERFACE_ID
Data Interfaces, 259

STARPU_MIC_WORKER
Workers’ Properties, 221

STARPU_MPI_MS_WORKER
Workers’ Properties, 221

STARPU_MULTIFORMAT_INTERFACE_ID
Data Interfaces, 259

STARPU_MULTIPLE_REGRESSION_BASED
Performance Model, 330

STARPU_NL_REGRESSION_BASED
Performance Model, 330

STARPU_NONE
Data Management, 229

STARPU_NOPLAN
Data Management, 230

STARPU_OPENCL_WORKER
Workers’ Properties, 221

STARPU_PER_ARCH
Performance Model, 330

STARPU_REDUX
Data Management, 230

STARPU_REGRESSION_BASED
Performance Model, 330

STARPU_RW
Data Management, 229

STARPU_SCHED_COMPONENT_HOMOGENEOUS
Modularized Scheduler Interface, 459

STARPU_SCHED_COMPONENT_SINGLE_MEMO←↩
RY_NODE

Modularized Scheduler Interface, 459
STARPU_SCRATCH

Data Management, 230
STARPU_SEQ

Codelet And Tasks, 307
STARPU_SPMD

Codelet And Tasks, 307
STARPU_SSEND

Data Management, 230
STARPU_TASK_BLOCKED_ON_DATA

Codelet And Tasks, 308
STARPU_TASK_BLOCKED_ON_TASK

Codelet And Tasks, 308
STARPU_TASK_BLOCKED_ON_TAG

Codelet And Tasks, 308
STARPU_TASK_BLOCKED

Codelet And Tasks, 307
STARPU_TASK_FINISHED

Codelet And Tasks, 307
STARPU_TASK_INIT

Codelet And Tasks, 307
STARPU_TASK_READY

Codelet And Tasks, 307
STARPU_TASK_RUNNING

Codelet And Tasks, 307
STARPU_TASK_STOPPED

Codelet And Tasks, 308
STARPU_UNKNOWN_INTERFACE_ID

Data Interfaces, 259
STARPU_VARIABLE_INTERFACE_ID

Data Interfaces, 259
STARPU_VECTOR_INTERFACE_ID

Data Interfaces, 259
STARPU_VOID_INTERFACE_ID

Data Interfaces, 259
STARPU_WORKER_LIST

Workers’ Properties, 221
STARPU_WORKER_TREE

Workers’ Properties, 221
STARPU_R

Data Management, 229
STARPU_W

Data Management, 229
sc_hypervisor.h, 535
sc_hypervisor_add_workers_to_sched_ctx

Scheduling Context Hypervisor - Regular usage,
442

sc_hypervisor_can_resize
Scheduling Context Hypervisor - Regular usage,

443
sc_hypervisor_check_idle

Scheduling Context Hypervisor - Building a new re-
sizing policy, 438

sc_hypervisor_check_if_consider_max
Scheduling Context Hypervisor - Building a new re-

sizing policy, 437
sc_hypervisor_check_speed_gap_btw_ctxs

Generated by Doxygen

580 INDEX

Scheduling Context Hypervisor - Building a new re-
sizing policy, 438

sc_hypervisor_check_speed_gap_btw_ctxs_on_level
Scheduling Context Hypervisor - Building a new re-

sizing policy, 438
sc_hypervisor_compute_nworkers_to_move

Scheduling Context Hypervisor - Building a new re-
sizing policy, 436

sc_hypervisor_config.h, 536
sc_hypervisor_criteria_fulfilled

Scheduling Context Hypervisor - Building a new re-
sizing policy, 438

sc_hypervisor_ctl
Scheduling Context Hypervisor - Building a new re-

sizing policy, 439
sc_hypervisor_find_lowest_prio_sched_ctx

Scheduling Context Hypervisor - Building a new re-
sizing policy, 436

sc_hypervisor_free_size_req
Scheduling Context Hypervisor - Regular usage,

442
sc_hypervisor_get_arch_for_index

Scheduling Context Hypervisor - Building a new re-
sizing policy, 438

sc_hypervisor_get_avg_speed
Scheduling Context Hypervisor - Building a new re-

sizing policy, 437
sc_hypervisor_get_config

Scheduling Context Hypervisor - Building a new re-
sizing policy, 439

sc_hypervisor_get_ctx_speed
Scheduling Context Hypervisor - Building a new re-

sizing policy, 437
sc_hypervisor_get_ctxs_on_level

Scheduling Context Hypervisor - Regular usage,
443

sc_hypervisor_get_elapsed_flops_per_sched_ctx
Scheduling Context Hypervisor - Building a new re-

sizing policy, 435
sc_hypervisor_get_fastest_ctx_exec_time

Scheduling Context Hypervisor - Building a new re-
sizing policy, 437

sc_hypervisor_get_idlest_workers
Scheduling Context Hypervisor - Building a new re-

sizing policy, 436
sc_hypervisor_get_idlest_workers_in_list

Scheduling Context Hypervisor - Building a new re-
sizing policy, 436

sc_hypervisor_get_index_for_arch
Scheduling Context Hypervisor - Building a new re-

sizing policy, 438
sc_hypervisor_get_leaves

Scheduling Context Hypervisor - Regular usage,
443

sc_hypervisor_get_movable_nworkers
Scheduling Context Hypervisor - Building a new re-

sizing policy, 436
sc_hypervisor_get_nhierarchy_levels

Scheduling Context Hypervisor - Regular usage,
443

sc_hypervisor_get_nready_flops_of_all_sons_of_←↩
sched_ctx

Scheduling Context Hypervisor - Regular usage,
444

sc_hypervisor_get_nsched_ctxs
Scheduling Context Hypervisor - Building a new re-

sizing policy, 435
sc_hypervisor_get_nworkers_ctx

Scheduling Context Hypervisor - Building a new re-
sizing policy, 439

sc_hypervisor_get_policy
Scheduling Context Hypervisor - Regular usage,

441
sc_hypervisor_get_ref_speed_per_worker_type

Scheduling Context Hypervisor - Building a new re-
sizing policy, 437

sc_hypervisor_get_resize_criteria
Scheduling Context Hypervisor - Building a new re-

sizing policy, 438
sc_hypervisor_get_sched_ctxs

Scheduling Context Hypervisor - Building a new re-
sizing policy, 435

sc_hypervisor_get_size_req
Scheduling Context Hypervisor - Regular usage,

442
sc_hypervisor_get_slowest_ctx_exec_time

Scheduling Context Hypervisor - Building a new re-
sizing policy, 437

sc_hypervisor_get_speed
Scheduling Context Hypervisor - Building a new re-

sizing policy, 439
sc_hypervisor_get_speed_per_worker

Scheduling Context Hypervisor - Building a new re-
sizing policy, 437

sc_hypervisor_get_speed_per_worker_type
Scheduling Context Hypervisor - Building a new re-

sizing policy, 437
sc_hypervisor_get_tasks_times

Scheduling Context Hypervisor - Building a new re-
sizing policy, 435

sc_hypervisor_get_total_elapsed_flops_per_sched_ctx
Scheduling Context Hypervisor - Building a new re-

sizing policy, 439
sc_hypervisor_get_types_of_workers

Scheduling Context Hypervisor - Building a new re-
sizing policy, 438

sc_hypervisor_get_wrapper
Scheduling Context Hypervisor - Building a new re-

sizing policy, 435
sc_hypervisor_group_workers_by_type

Scheduling Context Hypervisor - Building a new re-
sizing policy, 437

sc_hypervisor_init
Scheduling Context Hypervisor - Regular usage,

441
sc_hypervisor_lp.h, 537

Generated by Doxygen

INDEX 581

sc_hypervisor_lp_distribute_floating_no_resources_←↩
in_ctxs

Scheduling Context Hypervisor - Linear Program-
ming, 446

sc_hypervisor_lp_distribute_resources_in_ctxs
Scheduling Context Hypervisor - Linear Program-

ming, 446
sc_hypervisor_lp_execute_dichotomy

Scheduling Context Hypervisor - Linear Program-
ming, 447

sc_hypervisor_lp_find_tmax
Scheduling Context Hypervisor - Linear Program-

ming, 447
sc_hypervisor_lp_get_nworkers_per_ctx

Scheduling Context Hypervisor - Linear Program-
ming, 445

sc_hypervisor_lp_get_tmax
Scheduling Context Hypervisor - Linear Program-

ming, 445
sc_hypervisor_lp_place_resources_in_ctx

Scheduling Context Hypervisor - Linear Program-
ming, 446

sc_hypervisor_lp_redistribute_resources_in_ctxs
Scheduling Context Hypervisor - Linear Program-

ming, 446
sc_hypervisor_lp_round_double_to_int

Scheduling Context Hypervisor - Linear Program-
ming, 445

sc_hypervisor_lp_share_remaining_resources
Scheduling Context Hypervisor - Linear Program-

ming, 446
sc_hypervisor_lp_simulate_distrib_flops

Scheduling Context Hypervisor - Linear Program-
ming, 447

sc_hypervisor_lp_simulate_distrib_flops_on_sample
Scheduling Context Hypervisor - Linear Program-

ming, 447
sc_hypervisor_lp_simulate_distrib_tasks

Scheduling Context Hypervisor - Linear Program-
ming, 447

sc_hypervisor_monitoring.h, 538
sc_hypervisor_move_workers

Scheduling Context Hypervisor - Regular usage,
442

sc_hypervisor_policy, 431
custom, 432
end_ctx, 432
handle_idle_cycle, 432
handle_idle_end, 432
handle_poped_task, 432
handle_post_exec_hook, 432
handle_pushed_task, 432
handle_submitted_job, 432
init_worker, 432
name, 432
resize_ctxs, 432
size_ctxs, 432
start_ctx, 432

sc_hypervisor_policy.h, 540
sc_hypervisor_policy_add_task_to_pool

Scheduling Context Hypervisor - Building a new re-
sizing policy, 435

sc_hypervisor_policy_clone_task_pool
Scheduling Context Hypervisor - Building a new re-

sizing policy, 435
sc_hypervisor_policy_config, 537
sc_hypervisor_policy_remove_task_from_pool

Scheduling Context Hypervisor - Building a new re-
sizing policy, 435

sc_hypervisor_policy_resize
Scheduling Context Hypervisor - Building a new re-

sizing policy, 436
sc_hypervisor_policy_resize_to_unknown_receiver

Scheduling Context Hypervisor - Building a new re-
sizing policy, 436

sc_hypervisor_policy_task_pool, 433
sc_hypervisor_post_resize_request

Scheduling Context Hypervisor - Regular usage,
441

sc_hypervisor_register_ctx
Scheduling Context Hypervisor - Regular usage,

441
sc_hypervisor_remove_workers_from_sched_ctx

Scheduling Context Hypervisor - Regular usage,
442

sc_hypervisor_resize_ack, 432
sc_hypervisor_resize_ctxs

Scheduling Context Hypervisor - Regular usage,
441

sc_hypervisor_save_size_req
Scheduling Context Hypervisor - Regular usage,

442
sc_hypervisor_set_config

Scheduling Context Hypervisor - Building a new re-
sizing policy, 439

sc_hypervisor_set_type_of_task
Scheduling Context Hypervisor - Regular usage,

443
sc_hypervisor_shutdown

Scheduling Context Hypervisor - Regular usage,
441

sc_hypervisor_size_ctxs
Scheduling Context Hypervisor - Regular usage,

442
sc_hypervisor_start_resize

Scheduling Context Hypervisor - Regular usage,
441

sc_hypervisor_stop_resize
Scheduling Context Hypervisor - Regular usage,

441
sc_hypervisor_unregister_ctx

Scheduling Context Hypervisor - Regular usage,
441

sc_hypervisor_update_diff_elapsed_flops
Scheduling Context Hypervisor - Regular usage,

443

Generated by Doxygen

582 INDEX

sc_hypervisor_update_diff_total_flops
Scheduling Context Hypervisor - Regular usage,

443
sc_hypervisor_update_resize_interval

Scheduling Context Hypervisor - Regular usage,
443

sc_hypervisor_wrapper, 538
sc_hypervisorsc_hypervisor_get_speed_per_worker_←↩

type
Scheduling Context Hypervisor - Building a new re-

sizing policy, 439
sched_ctx

starpu_task, 301
sched_data

starpu_task, 302
sched_policy

starpu_conf, 189
sched_policy_name

starpu_conf, 189
scheduled

starpu_task, 300
Scheduling Context Hypervisor - Building a new resizing

policy, 430
SC_HYPERVISOR_FIXED_WORKERS, 434
SC_HYPERVISOR_GRANULARITY, 434
SC_HYPERVISOR_ISPEED_CTX_SAMPLE, 434
SC_HYPERVISOR_ISPEED_W_SAMPLE, 434
SC_HYPERVISOR_MAX_IDLE, 433
SC_HYPERVISOR_MAX_WORKERS, 434
SC_HYPERVISOR_MIN_TASKS, 434
SC_HYPERVISOR_MIN_WORKERS, 433
SC_HYPERVISOR_NEW_WORKERS_MAX_ID←↩

LE, 434
SC_HYPERVISOR_NULL, 434
SC_HYPERVISOR_PRIORITY, 433
SC_HYPERVISOR_TIME_TO_APPLY, 434
sc_hypervisor_check_idle, 438
sc_hypervisor_check_if_consider_max, 437
sc_hypervisor_check_speed_gap_btw_ctxs, 438
sc_hypervisor_check_speed_gap_btw_ctxs_on_←↩

level, 438
sc_hypervisor_compute_nworkers_to_move, 436
sc_hypervisor_criteria_fulfilled, 438
sc_hypervisor_ctl, 439
sc_hypervisor_find_lowest_prio_sched_ctx, 436
sc_hypervisor_get_arch_for_index, 438
sc_hypervisor_get_avg_speed, 437
sc_hypervisor_get_config, 439
sc_hypervisor_get_ctx_speed, 437
sc_hypervisor_get_elapsed_flops_per_sched_ctx,

435
sc_hypervisor_get_fastest_ctx_exec_time, 437
sc_hypervisor_get_idlest_workers, 436
sc_hypervisor_get_idlest_workers_in_list, 436
sc_hypervisor_get_index_for_arch, 438
sc_hypervisor_get_movable_nworkers, 436
sc_hypervisor_get_nsched_ctxs, 435
sc_hypervisor_get_nworkers_ctx, 439

sc_hypervisor_get_ref_speed_per_worker_type,
437

sc_hypervisor_get_resize_criteria, 438
sc_hypervisor_get_sched_ctxs, 435
sc_hypervisor_get_slowest_ctx_exec_time, 437
sc_hypervisor_get_speed, 439
sc_hypervisor_get_speed_per_worker, 437
sc_hypervisor_get_speed_per_worker_type, 437
sc_hypervisor_get_tasks_times, 435
sc_hypervisor_get_total_elapsed_flops_per_←↩

sched_ctx, 439
sc_hypervisor_get_types_of_workers, 438
sc_hypervisor_get_wrapper, 435
sc_hypervisor_group_workers_by_type, 437
sc_hypervisor_policy_add_task_to_pool, 435
sc_hypervisor_policy_clone_task_pool, 435
sc_hypervisor_policy_remove_task_from_pool,

435
sc_hypervisor_policy_resize, 436
sc_hypervisor_policy_resize_to_unknown_←↩

receiver, 436
sc_hypervisor_set_config, 439
sc_hypervisorsc_hypervisor_get_speed_per_←↩

worker_type, 439
Scheduling Context Hypervisor - Linear Programming,

445
sc_hypervisor_lp_distribute_floating_no_resources←↩

_in_ctxs, 446
sc_hypervisor_lp_distribute_resources_in_ctxs,

446
sc_hypervisor_lp_execute_dichotomy, 447
sc_hypervisor_lp_find_tmax, 447
sc_hypervisor_lp_get_nworkers_per_ctx, 445
sc_hypervisor_lp_get_tmax, 445
sc_hypervisor_lp_place_resources_in_ctx, 446
sc_hypervisor_lp_redistribute_resources_in_ctxs,

446
sc_hypervisor_lp_round_double_to_int, 445
sc_hypervisor_lp_share_remaining_resources,

446
sc_hypervisor_lp_simulate_distrib_flops, 447
sc_hypervisor_lp_simulate_distrib_flops_on_←↩

sample, 447
sc_hypervisor_lp_simulate_distrib_tasks, 447

Scheduling Context Hypervisor - Regular usage, 440
act_hypervisor_mutex, 444
sc_hypervisor_add_workers_to_sched_ctx, 442
sc_hypervisor_can_resize, 443
sc_hypervisor_free_size_req, 442
sc_hypervisor_get_ctxs_on_level, 443
sc_hypervisor_get_leaves, 443
sc_hypervisor_get_nhierarchy_levels, 443
sc_hypervisor_get_nready_flops_of_all_sons_of←↩

_sched_ctx, 444
sc_hypervisor_get_policy, 441
sc_hypervisor_get_size_req, 442
sc_hypervisor_init, 441
sc_hypervisor_move_workers, 442

Generated by Doxygen

INDEX 583

sc_hypervisor_post_resize_request, 441
sc_hypervisor_register_ctx, 441
sc_hypervisor_remove_workers_from_sched_ctx,

442
sc_hypervisor_resize_ctxs, 441
sc_hypervisor_save_size_req, 442
sc_hypervisor_set_type_of_task, 443
sc_hypervisor_shutdown, 441
sc_hypervisor_size_ctxs, 442
sc_hypervisor_start_resize, 441
sc_hypervisor_stop_resize, 441
sc_hypervisor_unregister_ctx, 441
sc_hypervisor_update_diff_elapsed_flops, 443
sc_hypervisor_update_diff_total_flops, 443
sc_hypervisor_update_resize_interval, 443

Scheduling Contexts, 412
STARPU_DEFAULT_PRIO, 414
STARPU_MAX_PRIO, 414
STARPU_MIN_PRIO, 414
STARPU_SCHED_CTX_AWAKE_WORKERS,

414
STARPU_SCHED_CTX_CUDA_NSMS, 414
STARPU_SCHED_CTX_POLICY_INIT, 414
STARPU_SCHED_CTX_POLICY_MAX_PRIO,

414
STARPU_SCHED_CTX_POLICY_MIN_PRIO, 414
STARPU_SCHED_CTX_POLICY_NAME, 413
STARPU_SCHED_CTX_POLICY_STRUCT, 414
STARPU_SCHED_CTX_SUB_CTXS, 414
STARPU_SCHED_CTX_USER_DATA, 414
starpu_sched_ctx_add_workers, 415
starpu_sched_ctx_contains_worker, 417
starpu_sched_ctx_create, 415
starpu_sched_ctx_create_inside_interval, 415
starpu_sched_ctx_create_worker_collection, 419
starpu_sched_ctx_delete, 416
starpu_sched_ctx_delete_worker_collection, 419
starpu_sched_ctx_display_workers, 416
starpu_sched_ctx_exec_parallel_code, 418
starpu_sched_ctx_finished_submit, 416
starpu_sched_ctx_get_context, 416
starpu_sched_ctx_get_max_priority, 418
starpu_sched_ctx_get_min_priority, 418
starpu_sched_ctx_get_nshared_workers, 417
starpu_sched_ctx_get_nworkers, 417
starpu_sched_ctx_get_policy_data, 418
starpu_sched_ctx_get_user_data, 417
starpu_sched_ctx_get_worker_collection, 419
starpu_sched_ctx_get_workers_list, 417
starpu_sched_ctx_get_workers_list_raw, 417
starpu_sched_ctx_master_get_context, 418
starpu_sched_ctx_overlapping_ctxs_on_worker,

417
starpu_sched_ctx_register_close_callback, 415
starpu_sched_ctx_remove_workers, 416
starpu_sched_ctx_set_context, 416
starpu_sched_ctx_set_inheritor, 416
starpu_sched_ctx_set_max_priority, 419

starpu_sched_ctx_set_min_priority, 418
starpu_sched_ctx_set_policy_data, 418
starpu_sched_ctx_stop_task_submission, 416
starpu_sched_ctx_worker_get_id, 417
starpu_sched_ctx_worker_is_master_for_child_←↩

ctx, 418
Scheduling Policy, 420

STARPU_MAXIMPLEMENTATIONS, 423
STARPU_NMAX_SCHED_CTXS, 423
starpu_data_expected_transfer_time, 427
starpu_get_prefetch_flag, 425
starpu_idle_prefetch_task_input_for, 426
starpu_idle_prefetch_task_input_for_prio, 426
starpu_idle_prefetch_task_input_on_node, 425
starpu_idle_prefetch_task_input_on_node_prio,

425
starpu_prefetch_task_input_for, 426
starpu_prefetch_task_input_for_prio, 426
starpu_prefetch_task_input_on_node, 425
starpu_prefetch_task_input_on_node_prio, 425
starpu_push_local_task, 425
starpu_push_task_end, 425
starpu_sched_ctx_worker_shares_tasks_lists, 427
starpu_sched_get_max_priority, 424
starpu_sched_get_min_priority, 424
starpu_sched_get_predefined_policies, 423
starpu_sched_set_max_priority, 424
starpu_sched_set_min_priority, 424
starpu_task_data_footprint, 426
starpu_task_expected_conversion_time, 427
starpu_task_expected_data_transfer_time, 427
starpu_task_expected_data_transfer_time_for, 427
starpu_task_expected_energy, 427
starpu_task_expected_length, 426
starpu_task_footprint, 426
starpu_task_notify_ready_soon_register, 427
starpu_wake_worker_locked, 428
starpu_wake_worker_no_relax, 428
starpu_wake_worker_relax, 427
starpu_wake_worker_relax_light, 428
starpu_worker_can_execute_task, 424
starpu_worker_can_execute_task_first_impl, 424
starpu_worker_can_execute_task_impl, 424
starpu_worker_get_relative_speedup, 426
starpu_worker_get_sched_condition, 423

sequential_consistency
starpu_task, 299

single_combined_worker
starpu_conf, 191

Sink, 482
size_base

starpu_perfmodel, 329
starpu_perfmodel_per_arch, 328

size_ctxs
sc_hypervisor_policy, 432

specific_nodes
starpu_codelet, 293

Standard Memory Library, 196

Generated by Doxygen

584 INDEX

STARPU_MALLOC_COUNT, 196
STARPU_MALLOC_NORECLAIM, 196
STARPU_MALLOC_PINNED, 196
STARPU_MALLOC_SIMULATION_FOLDED, 197
STARPU_MEMORY_OVERFLOW, 197
STARPU_MEMORY_WAIT, 197
starpu_data_free_pinned_if_possible, 197
starpu_data_malloc_pinned_if_possible, 197
starpu_free, 198
starpu_free_flags, 198
starpu_malloc, 197
starpu_malloc_flags, 198
starpu_malloc_set_align, 197
starpu_malloc_set_hooks, 198
starpu_memory_allocate, 199
starpu_memory_deallocate, 199
starpu_memory_get_available, 199
starpu_memory_get_available_all_nodes, 199
starpu_memory_get_total, 199
starpu_memory_get_total_all_nodes, 199
starpu_memory_pin, 198
starpu_memory_unpin, 198
starpu_memory_wait_available, 199

starpu.h, 485
starpu_arbiter_create

Data Management, 234
starpu_arbiter_destroy

Data Management, 234
starpu_arbiter_t

Data Management, 229
starpu_asynchronous_copy_disabled

Initialization and Termination, 194
starpu_asynchronous_cuda_copy_disabled

Initialization and Termination, 195
starpu_asynchronous_mic_copy_disabled

Initialization and Termination, 195
starpu_asynchronous_mpi_ms_copy_disabled

Initialization and Termination, 195
starpu_asynchronous_opencl_copy_disabled

Initialization and Termination, 195
starpu_bcsr_data_register

Data Interfaces, 270
starpu_bcsr_filter_canonical_block

Data Partition, 280
starpu_bcsr_filter_canonical_block_child_ops

Data Partition, 281
starpu_bcsr_filter_canonical_block_get_nchildren

Data Partition, 280
starpu_bcsr_filter_vertical_block

Data Partition, 281
starpu_bcsr_get_c

Data Interfaces, 272
starpu_bcsr_get_elemsize

Data Interfaces, 272
starpu_bcsr_get_firstentry

Data Interfaces, 271
starpu_bcsr_get_local_colind

Data Interfaces, 272

starpu_bcsr_get_local_nzval
Data Interfaces, 272

starpu_bcsr_get_local_rowptr
Data Interfaces, 272

starpu_bcsr_get_nnz
Data Interfaces, 271

starpu_bcsr_get_nrow
Data Interfaces, 271

starpu_bcsr_get_r
Data Interfaces, 272

starpu_bcsr_interface, 250
starpu_bind_thread_on

Initialization and Termination, 194
starpu_bitmap.h, 486
starpu_bitmap_and_get

Bitmap, 215
starpu_bitmap_cardinal

Bitmap, 215
starpu_bitmap_create

Bitmap, 214
starpu_bitmap_destroy

Bitmap, 214
starpu_bitmap_first

Bitmap, 215
starpu_bitmap_get

Bitmap, 215
starpu_bitmap_has_next

Bitmap, 215
starpu_bitmap_last

Bitmap, 215
starpu_bitmap_next

Bitmap, 215
starpu_bitmap_or

Bitmap, 215
starpu_bitmap_set

Bitmap, 214
starpu_bitmap_unset

Bitmap, 214
starpu_bitmap_unset_all

Bitmap, 214
starpu_bitmap_unset_and

Bitmap, 215
starpu_block_data_register

Data Interfaces, 266
starpu_block_filter_block

Data Partition, 283
starpu_block_filter_block_shadow

Data Partition, 283
starpu_block_filter_depth_block

Data Partition, 284
starpu_block_filter_depth_block_shadow

Data Partition, 284
starpu_block_filter_vertical_block

Data Partition, 283
starpu_block_filter_vertical_block_shadow

Data Partition, 284
starpu_block_get_elemsize

Data Interfaces, 267

Generated by Doxygen

INDEX 585

starpu_block_get_local_ldy
Data Interfaces, 267

starpu_block_get_local_ldz
Data Interfaces, 267

starpu_block_get_local_ptr
Data Interfaces, 267

starpu_block_get_nx
Data Interfaces, 267

starpu_block_get_ny
Data Interfaces, 267

starpu_block_get_nz
Data Interfaces, 267

starpu_block_interface, 249
starpu_block_ptr_register

Data Interfaces, 266
starpu_bound.h, 486
starpu_bound_compute

Theoretical Lower Bound on Execution Time, 339
starpu_bound_print

Theoretical Lower Bound on Execution Time, 340
starpu_bound_print_dot

Theoretical Lower Bound on Execution Time, 339
starpu_bound_print_lp

Theoretical Lower Bound on Execution Time, 339
starpu_bound_print_mps

Theoretical Lower Bound on Execution Time, 339
starpu_bound_start

Theoretical Lower Bound on Execution Time, 339
starpu_bound_stop

Theoretical Lower Bound on Execution Time, 339
starpu_bus_get_count

Profiling, 336
starpu_bus_get_dst

Profiling, 337
starpu_bus_get_id

Profiling, 337
starpu_bus_get_profiling_info

Profiling, 337
starpu_bus_get_src

Profiling, 337
starpu_bus_print_affinity

Performance Model, 332
starpu_bus_print_bandwidth

Performance Model, 332
starpu_bus_print_filenames

Performance Model, 333
starpu_cluster_types

Clustering Machine, 467
starpu_clusters.h, 487
starpu_codelet, 290

callback_func, 294
can_execute, 291
checked, 294
color, 294
cpu_func, 292
cpu_funcs, 292
cpu_funcs_name, 293
cuda_flags, 292

cuda_func, 292
cuda_funcs, 292
dyn_modes, 293
dyn_nodes, 294
energy_model, 294
flags, 294
max_parallelism, 291
mic_funcs, 293
model, 294
modes, 293
mpi_ms_funcs, 293
name, 294
nbuffers, 293
nodes, 293
opencl_flags, 292
opencl_func, 292
opencl_funcs, 292
per_worker_stats, 294
specific_nodes, 293
type, 291
where, 291

starpu_codelet_display_stats
Codelet And Tasks, 310

starpu_codelet_init
Codelet And Tasks, 310

starpu_codelet_pack_arg
Task Insert Utility, 319

starpu_codelet_pack_arg_data, 313
starpu_codelet_pack_arg_fini

Task Insert Utility, 319
starpu_codelet_pack_arg_init

Task Insert Utility, 319
starpu_codelet_pack_args

Task Insert Utility, 319
starpu_codelet_type

Codelet And Tasks, 307
starpu_codelet_unpack_args

Task Insert Utility, 319
starpu_codelet_unpack_args_and_copyleft

Task Insert Utility, 320
starpu_combined_worker_assign_workerid

Parallel Tasks, 407
starpu_combined_worker_can_execute_task

Parallel Tasks, 408
starpu_combined_worker_get_count

Parallel Tasks, 407
starpu_combined_worker_get_description

Parallel Tasks, 407
starpu_combined_worker_get_id

Parallel Tasks, 407
starpu_combined_worker_get_rank

Parallel Tasks, 407
starpu_combined_worker_get_size

Parallel Tasks, 407
starpu_conf, 188

bus_calibrate, 191
calibrate, 191
catch_signals, 192

Generated by Doxygen

586 INDEX

cuda_opengl_interoperability, 192
disable_asynchronous_copy, 191
disable_asynchronous_cuda_copy, 191
disable_asynchronous_mic_copy, 192
disable_asynchronous_mpi_ms_copy, 192
disable_asynchronous_opencl_copy, 192
driver_spinning_backoff_max, 193
driver_spinning_backoff_min, 193
magic, 189
mic_sink_program_path, 191
n_cuda_opengl_interoperability, 192
n_not_launched_drivers, 192
ncpus, 189
ncuda, 190
nmic, 190
nmpi_ms, 190
nopencl, 190
not_launched_drivers, 192
precedence_over_environment_variables, 189
reserve_ncpus, 190
sched_policy, 189
sched_policy_name, 189
single_combined_worker, 191
trace_buffer_size, 192
use_explicit_workers_bindid, 190
use_explicit_workers_cuda_gpuid, 190
use_explicit_workers_mic_deviceid, 191
use_explicit_workers_mpi_ms_deviceid, 191
use_explicit_workers_opencl_gpuid, 190
will_use_mpi, 189
workers_bindid, 190
workers_cuda_gpuid, 190
workers_mic_deviceid, 191
workers_mpi_ms_deviceid, 191
workers_opencl_gpuid, 190

starpu_conf_init
Initialization and Termination, 193

starpu_config.h, 487
HAVE_MPI_COMM_F2C, 490
STARPU_HAVE_HELGRIND_H, 490

starpu_coo_data_register
Data Interfaces, 266

starpu_coo_interface, 249
starpu_cpu_func_t

Codelet And Tasks, 306
starpu_cpu_worker_get_count

Workers’ Properties, 221
starpu_create_callback_task

Codelet And Tasks, 311
starpu_create_sync_task

Codelet And Tasks, 311
starpu_csr_data_register

Data Interfaces, 269
starpu_csr_filter_vertical_block

Data Partition, 281
starpu_csr_get_elemsize

Data Interfaces, 270
starpu_csr_get_firstentry

Data Interfaces, 270
starpu_csr_get_local_colind

Data Interfaces, 270
starpu_csr_get_local_nzval

Data Interfaces, 270
starpu_csr_get_local_rowptr

Data Interfaces, 270
starpu_csr_get_nnz

Data Interfaces, 270
starpu_csr_get_nrow

Data Interfaces, 270
starpu_csr_interface, 250
starpu_cublas.h, 490
starpu_cublas_get_local_handle

CUDA Extensions, 342
starpu_cublas_init

CUDA Extensions, 342
starpu_cublas_report_error

CUDA Extensions, 342
starpu_cublas_set_stream

CUDA Extensions, 344
starpu_cublas_shutdown

CUDA Extensions, 344
starpu_cublas_v2.h, 490
starpu_cuda.h, 491
starpu_cuda_copy2d_async_sync

CUDA Extensions, 343
starpu_cuda_copy3d_async_sync

CUDA Extensions, 343
starpu_cuda_copy_async_sync

CUDA Extensions, 343
starpu_cuda_func_t

Codelet And Tasks, 306
starpu_cuda_get_device_properties

CUDA Extensions, 343
starpu_cuda_get_local_stream

CUDA Extensions, 342
starpu_cuda_report_error

CUDA Extensions, 342
starpu_cuda_set_device

CUDA Extensions, 344
starpu_cuda_worker_get_count

Workers’ Properties, 221
starpu_cusparse.h, 490
starpu_cusparse_get_local_handle

CUDA Extensions, 344
starpu_cusparse_init

CUDA Extensions, 342
starpu_cusparse_shutdown

CUDA Extensions, 344
starpu_data.h, 491
starpu_data_access_mode

Data Management, 229
starpu_data_acquire

Data Management, 231
starpu_data_acquire_cb

Data Management, 232
starpu_data_acquire_cb_sequential_consistency

Generated by Doxygen

INDEX 587

Data Management, 232
starpu_data_acquire_on_node

Data Management, 232
starpu_data_acquire_on_node_cb

Data Management, 232
starpu_data_acquire_on_node_cb_sequential_←↩

consistency
Data Management, 233

starpu_data_acquire_on_node_cb_sequential_←↩
consistency_sync_jobids

Data Management, 233
starpu_data_acquire_on_node_try

Data Management, 233
starpu_data_acquire_try

Data Management, 233
starpu_data_advise_as_important

Data Management, 231
starpu_data_assign_arbiter

Data Management, 234
starpu_data_copy_methods, 241

any_to_any, 245
can_copy, 242
cuda_to_cuda, 243
cuda_to_cuda_async, 244
cuda_to_opencl, 243
cuda_to_ram, 243
cuda_to_ram_async, 244
mic_to_ram, 243
mic_to_ram_async, 245
mpi_ms_to_mpi_ms, 243
mpi_ms_to_mpi_ms_async, 245
mpi_ms_to_ram, 243
mpi_ms_to_ram_async, 245
opencl_to_cuda, 243
opencl_to_opencl, 243
opencl_to_opencl_async, 244
opencl_to_ram, 243
opencl_to_ram_async, 244
ram_to_cuda, 242
ram_to_cuda_async, 244
ram_to_mic, 242
ram_to_mic_async, 245
ram_to_mpi_ms, 243
ram_to_mpi_ms_async, 244
ram_to_opencl, 242
ram_to_opencl_async, 244
ram_to_ram, 242

starpu_data_cpy
Miscellaneous Helpers, 379

starpu_data_descr, 294
starpu_data_display_memory_stats

Profiling, 337
starpu_data_expected_transfer_time

Scheduling Policy, 427
starpu_data_fetch_on_node

Data Management, 234
starpu_data_filter, 276

filter_arg, 277

filter_arg_ptr, 277
filter_func, 276
get_child_ops, 276
get_nchildren, 276
nchildren, 276

starpu_data_filters.h, 493
starpu_data_free_pinned_if_possible

Standard Memory Library, 197
starpu_data_get_alloc_size

Data Interfaces, 261
starpu_data_get_child

Data Partition, 277
starpu_data_get_coordinates_array

Data Management, 231
starpu_data_get_default_sequential_consistency_flag

Data Management, 235
starpu_data_get_interface_id

Data Interfaces, 261
starpu_data_get_interface_on_node

Data Interfaces, 260
starpu_data_get_local_ptr

Data Interfaces, 260
starpu_data_get_nb_children

Data Partition, 277
starpu_data_get_ooc_flag

Data Management, 236
starpu_data_get_rank

MPI Support, 388
starpu_data_get_sequential_consistency_flag

Data Management, 235
starpu_data_get_size

Data Interfaces, 261
starpu_data_get_sub_data

Data Partition, 277
starpu_data_get_tag

MPI Support, 388
starpu_data_get_user_data

Data Management, 236
starpu_data_handle_t

Data Management, 229
starpu_data_handle_to_pointer

Data Interfaces, 260
starpu_data_idle_prefetch_on_node

Data Management, 235
starpu_data_interface_get_next_id

Data Interfaces, 261
starpu_data_interface_id

Data Interfaces, 259
starpu_data_interface_ops, 245

alloc_compare, 247
alloc_footprint, 247
allocate_data_on_node, 246
compare, 247
copy_methods, 246
describe, 248
display, 247
dontcache, 248
footprint, 247

Generated by Doxygen

588 INDEX

free_data_on_node, 246
get_alloc_size, 247
get_size, 247
handle_to_pointer, 247
init, 246
interface_size, 248
interfaceid, 248
name, 248
pack_data, 248
pointer_is_inside, 247
register_data_handle, 246
to_pointer, 247
unpack_data, 248
unregister_data_handle, 246

starpu_data_interfaces.h, 495
starpu_data_invalidate

Data Management, 231
starpu_data_invalidate_submit

Data Management, 231
starpu_data_is_on_node

Data Management, 235
starpu_data_lookup

Data Interfaces, 261
starpu_data_malloc_pinned_if_possible

Standard Memory Library, 197
starpu_data_map_filters

Data Partition, 278
starpu_data_pack

Data Interfaces, 261
starpu_data_partition

Data Partition, 277
starpu_data_partition_clean

Data Partition, 280
starpu_data_partition_plan

Data Partition, 278
starpu_data_partition_readonly_submit

Data Partition, 279
starpu_data_partition_readwrite_upgrade_submit

Data Partition, 279
starpu_data_partition_submit

Data Partition, 278
starpu_data_partition_submit_sequential_consistency

Data Partition, 280
starpu_data_pointer_is_inside

Data Interfaces, 260
starpu_data_prefetch_on_node

Data Management, 234
starpu_data_ptr_register

Data Interfaces, 260
starpu_data_query_status

Data Management, 236
starpu_data_register

Data Interfaces, 260
starpu_data_register_same

Data Interfaces, 260
starpu_data_release

Data Management, 233
starpu_data_release_on_node

Data Management, 234
starpu_data_request_allocation

Data Management, 234
starpu_data_set_coordinates

Data Management, 230
starpu_data_set_coordinates_array

Data Management, 230
starpu_data_set_default_sequential_consistency_flag

Data Management, 235
starpu_data_set_name

Data Management, 230
starpu_data_set_ooc_flag

Data Management, 236
starpu_data_set_rank

MPI Support, 388
starpu_data_set_reduction_methods

Data Management, 236
starpu_data_set_sequential_consistency_flag

Data Management, 235
starpu_data_set_tag

MPI Support, 388
starpu_data_set_user_data

Data Management, 236
starpu_data_set_wt_mask

Data Management, 235
starpu_data_unpack

Data Interfaces, 261
starpu_data_unpartition

Data Partition, 277
starpu_data_unpartition_readonly_submit

Data Partition, 279
starpu_data_unpartition_submit

Data Partition, 279
starpu_data_unpartition_submit_sequential_consistency

Data Partition, 280
starpu_data_unpartition_submit_sequential_consistency←↩

_cb
Data Partition, 280

starpu_data_unregister
Data Management, 231

starpu_data_unregister_no_coherency
Data Management, 231

starpu_data_unregister_submit
Data Management, 231

starpu_data_vget_sub_data
Data Partition, 278

starpu_data_vmap_filters
Data Partition, 278

starpu_data_wont_use
Data Management, 235

starpu_deprecated_api.h, 499
starpu_disk.h, 499
starpu_disk_close

Out Of Core, 287
starpu_disk_hdf5_ops

Out Of Core, 288
starpu_disk_leveldb_ops

Out Of Core, 288

Generated by Doxygen

INDEX 589

starpu_disk_open
Out Of Core, 287

starpu_disk_ops, 285
alloc, 286
async_full_read, 286
async_full_write, 287
async_read, 286
async_write, 286
bandwidth, 286
close, 286
copy, 287
free, 286
free_request, 287
full_read, 286
full_write, 286
open, 286
plug, 285
read, 286
test_request, 287
unplug, 286
wait_request, 287
write, 286

starpu_disk_register
Out Of Core, 287

starpu_disk_stdio_ops
Out Of Core, 288

starpu_disk_swap_node
Out Of Core, 288

starpu_disk_unistd_o_direct_ops
Out Of Core, 288

starpu_disk_unistd_ops
Out Of Core, 288

starpu_display_bindings
Miscellaneous Helpers, 379

starpu_driver, 409
starpu_driver.h, 500
starpu_driver.id, 409
starpu_driver_deinit

Running Drivers, 410
starpu_driver_init

Running Drivers, 410
starpu_driver_run

Running Drivers, 409
starpu_driver_run_once

Running Drivers, 410
starpu_drivers_request_termination

Running Drivers, 409
starpu_execute_on_each_worker

Miscellaneous Helpers, 378
starpu_execute_on_each_worker_ex

Miscellaneous Helpers, 378
starpu_execute_on_specific_workers

Miscellaneous Helpers, 378
starpu_expert.h, 500
starpu_filter_nparts_compute_chunk_size_and_offset

Data Partition, 284
starpu_free

Standard Memory Library, 198

starpu_free_flags
Standard Memory Library, 198

starpu_free_on_node
Data Interfaces, 264

starpu_free_on_node_flags
Data Interfaces, 264

starpu_fxt.h, 500
starpu_fxt_autostart_profiling

FxT Support, 381
starpu_fxt_codelet_event, 380
starpu_fxt_is_enabled

FxT Support, 382
starpu_fxt_options, 380
starpu_fxt_start_profiling

FxT Support, 381
starpu_fxt_stop_profiling

FxT Support, 381
starpu_fxt_trace_user_event

FxT Support, 382
starpu_fxt_trace_user_event_string

FxT Support, 382
starpu_get_env_number

Miscellaneous Helpers, 378
starpu_get_env_size_default

Miscellaneous Helpers, 378
starpu_get_env_string_var_default

Miscellaneous Helpers, 377
starpu_get_hwloc_topology

Miscellaneous Helpers, 379
starpu_get_next_bindid

Initialization and Termination, 194
starpu_get_prefetch_flag

Scheduling Policy, 425
starpu_get_pu_os_index

Miscellaneous Helpers, 379
starpu_get_version

Versioning, 187
starpu_hash.h, 501
starpu_hash_crc32c_be

Data Interfaces, 273
starpu_hash_crc32c_be_n

Data Interfaces, 272
starpu_hash_crc32c_string

Data Interfaces, 273
starpu_helper.h, 501
starpu_heteroprio.h, 502

starpu_heteroprio_set_arch_slow_factor, 503
starpu_heteroprio_set_faster_arch, 503
starpu_heteroprio_set_mapping, 503
starpu_heteroprio_set_nb_prios, 502

starpu_heteroprio_set_arch_slow_factor
starpu_heteroprio.h, 503

starpu_heteroprio_set_faster_arch
starpu_heteroprio.h, 503

starpu_heteroprio_set_mapping
starpu_heteroprio.h, 503

starpu_heteroprio_set_nb_prios
starpu_heteroprio.h, 502

Generated by Doxygen

590 INDEX

starpu_idle_prefetch_task_input_for
Scheduling Policy, 426

starpu_idle_prefetch_task_input_for_prio
Scheduling Policy, 426

starpu_idle_prefetch_task_input_on_node
Scheduling Policy, 425

starpu_idle_prefetch_task_input_on_node_prio
Scheduling Policy, 425

starpu_init
Initialization and Termination, 193

starpu_initialize
Initialization and Termination, 193

starpu_insert_task
Task Insert Utility, 318

starpu_interface_copy
Data Interfaces, 261

starpu_interface_copy2d
Data Interfaces, 262

starpu_interface_copy3d
Data Interfaces, 262

starpu_interface_copy4d
Data Interfaces, 263

starpu_interface_data_copy
Data Interfaces, 263

starpu_interface_end_driver_copy_async
Data Interfaces, 263

starpu_interface_start_driver_copy_async
Data Interfaces, 263

starpu_is_initialized
Initialization and Termination, 193

starpu_iteration_pop
Codelet And Tasks, 310

starpu_iteration_push
Codelet And Tasks, 310

starpu_malloc
Standard Memory Library, 197

starpu_malloc_flags
Standard Memory Library, 198

starpu_malloc_on_node
Data Interfaces, 264

starpu_malloc_on_node_flags
Data Interfaces, 264

starpu_malloc_on_node_set_default_flags
Data Interfaces, 264

starpu_malloc_set_align
Standard Memory Library, 197

starpu_malloc_set_hooks
Standard Memory Library, 198

starpu_matrix_data_register
Data Interfaces, 264

starpu_matrix_data_register_allocsize
Data Interfaces, 265

starpu_matrix_filter_block
Data Partition, 281

starpu_matrix_filter_block_shadow
Data Partition, 281

starpu_matrix_filter_vertical_block
Data Partition, 281

starpu_matrix_filter_vertical_block_shadow
Data Partition, 282

starpu_matrix_get_allocsize
Data Interfaces, 266

starpu_matrix_get_elemsize
Data Interfaces, 266

starpu_matrix_get_local_ld
Data Interfaces, 265

starpu_matrix_get_local_ptr
Data Interfaces, 265

starpu_matrix_get_nx
Data Interfaces, 265

starpu_matrix_get_ny
Data Interfaces, 265

starpu_matrix_interface, 248
starpu_matrix_ptr_register

Data Interfaces, 265
starpu_memory_allocate

Standard Memory Library, 199
starpu_memory_deallocate

Standard Memory Library, 199
starpu_memory_get_available

Standard Memory Library, 199
starpu_memory_get_available_all_nodes

Standard Memory Library, 199
starpu_memory_get_total

Standard Memory Library, 199
starpu_memory_get_total_all_nodes

Standard Memory Library, 199
starpu_memory_node_get_name

Workers’ Properties, 224
starpu_memory_nodes_get_count

Workers’ Properties, 224
starpu_memory_nodes_get_numa_count

Workers’ Properties, 224
starpu_memory_nodes_numa_devid_to_id

Workers’ Properties, 224
starpu_memory_nodes_numa_id_to_devid

Workers’ Properties, 224
starpu_memory_pin

Standard Memory Library, 198
starpu_memory_unpin

Standard Memory Library, 198
starpu_memory_wait_available

Standard Memory Library, 199
starpu_mic.h, 503
starpu_mic_device_get_count

Workers’ Properties, 222
starpu_mic_func_symbol_t

MIC Extensions, 376
starpu_mic_func_t

Codelet And Tasks, 307
starpu_mic_get_kernel

MIC Extensions, 376
starpu_mic_kernel_t

Codelet And Tasks, 307
starpu_mic_register_kernel

MIC Extensions, 376

Generated by Doxygen

INDEX 591

starpu_mic_worker_get_count
Workers’ Properties, 222

starpu_mod.f90, 503
starpu_mpi.h, 504
starpu_mpi_barrier

MPI Support, 394
starpu_mpi_cache_flush

MPI Support, 396
starpu_mpi_cache_flush_all_data

MPI Support, 396
starpu_mpi_cache_is_enabled

MPI Support, 396
starpu_mpi_cache_set

MPI Support, 396
starpu_mpi_cached_receive

MPI Support, 396
starpu_mpi_cached_receive_clear

MPI Support, 397
starpu_mpi_cached_receive_set

MPI Support, 397
starpu_mpi_cached_send

MPI Support, 397
starpu_mpi_cached_send_clear

MPI Support, 397
starpu_mpi_cached_send_set

MPI Support, 397
starpu_mpi_comm_amounts_retrieve

MPI Support, 390
starpu_mpi_comm_get_attr

MPI Support, 391
starpu_mpi_comm_rank

MPI Support, 390
starpu_mpi_comm_size

MPI Support, 390
starpu_mpi_data_get_rank

MPI Support, 398
starpu_mpi_data_get_tag

MPI Support, 398
starpu_mpi_data_migrate

MPI Support, 399
starpu_mpi_data_register

MPI Support, 388
starpu_mpi_data_register_comm

MPI Support, 397
starpu_mpi_data_set_rank

MPI Support, 388
starpu_mpi_data_set_rank_comm

MPI Support, 397
starpu_mpi_data_set_tag

MPI Support, 397
starpu_mpi_datatype_register

MPI Support, 395
starpu_mpi_datatype_unregister

MPI Support, 396
starpu_mpi_gather_detached

MPI Support, 401
starpu_mpi_get_data_on_all_nodes_detached

MPI Support, 399

starpu_mpi_get_data_on_node
MPI Support, 399

starpu_mpi_get_data_on_node_detached
MPI Support, 399

starpu_mpi_init
MPI Support, 389

starpu_mpi_init_comm
MPI Support, 389

starpu_mpi_init_conf
MPI Support, 389

starpu_mpi_initialize
MPI Support, 390

starpu_mpi_initialize_extended
MPI Support, 390

starpu_mpi_insert_task
MPI Support, 398

starpu_mpi_interface_datatype_register
MPI Support, 396

starpu_mpi_interface_datatype_unregister
MPI Support, 396

starpu_mpi_irecv
MPI Support, 391

starpu_mpi_irecv_array_detached_unlock_tag
MPI Support, 395

starpu_mpi_irecv_detached
MPI Support, 392

starpu_mpi_irecv_detached_sequential_consistency
MPI Support, 393

starpu_mpi_irecv_detached_unlock_tag
MPI Support, 395

starpu_mpi_isend
MPI Support, 391

starpu_mpi_isend_array_detached_unlock_tag
MPI Support, 395

starpu_mpi_isend_array_detached_unlock_tag_prio
MPI Support, 395

starpu_mpi_isend_detached
MPI Support, 392

starpu_mpi_isend_detached_prio
MPI Support, 392

starpu_mpi_isend_detached_unlock_tag
MPI Support, 394

starpu_mpi_isend_detached_unlock_tag_prio
MPI Support, 394

starpu_mpi_isend_prio
MPI Support, 391

starpu_mpi_issend
MPI Support, 393

starpu_mpi_issend_detached
MPI Support, 393

starpu_mpi_issend_detached_prio
MPI Support, 394

starpu_mpi_issend_prio
MPI Support, 393

starpu_mpi_lb.h, 506
starpu_mpi_ms.h, 506
starpu_mpi_ms_func_t

Codelet And Tasks, 307

Generated by Doxygen

592 INDEX

starpu_mpi_ms_kernel_t
Codelet And Tasks, 307

starpu_mpi_ms_worker_get_count
Workers’ Properties, 222

starpu_mpi_node_selection_get_current_policy
MPI Support, 400

starpu_mpi_node_selection_register_policy
MPI Support, 400

starpu_mpi_node_selection_set_current_policy
MPI Support, 400

starpu_mpi_node_selection_unregister_policy
MPI Support, 400

starpu_mpi_recv
MPI Support, 392

starpu_mpi_redux_data
MPI Support, 400

starpu_mpi_redux_data_prio
MPI Support, 400

starpu_mpi_req
MPI Support, 389

starpu_mpi_scatter_detached
MPI Support, 401

starpu_mpi_send
MPI Support, 391

starpu_mpi_send_prio
MPI Support, 392

starpu_mpi_shutdown
MPI Support, 390

starpu_mpi_tag_t
MPI Support, 389

starpu_mpi_task_build
MPI Support, 398

starpu_mpi_task_insert
MPI Support, 398

starpu_mpi_task_post_build
MPI Support, 399

starpu_mpi_test
MPI Support, 394

starpu_mpi_wait
MPI Support, 394

starpu_mpi_wait_for_all
MPI Support, 394

starpu_mpi_world_rank
MPI Support, 390

starpu_mpi_world_size
MPI Support, 391

starpu_multiformat_data_interface_ops, 251
starpu_multiformat_data_register

Data Interfaces, 272
starpu_multiformat_interface, 251
starpu_node_get_kind

Workers’ Properties, 224
starpu_node_kind

Workers’ Properties, 220
starpu_omp_atomic_fallback_inline_begin

OpenMP Runtime Support, 374
starpu_omp_atomic_fallback_inline_end

OpenMP Runtime Support, 374

starpu_omp_barrier
OpenMP Runtime Support, 358

starpu_omp_critical
OpenMP Runtime Support, 358

starpu_omp_critical_inline_begin
OpenMP Runtime Support, 358

starpu_omp_critical_inline_end
OpenMP Runtime Support, 358

starpu_omp_destroy_lock
OpenMP Runtime Support, 371

starpu_omp_destroy_nest_lock
OpenMP Runtime Support, 372

starpu_omp_for
OpenMP Runtime Support, 360

starpu_omp_for_alt
OpenMP Runtime Support, 361

starpu_omp_for_inline_first
OpenMP Runtime Support, 360

starpu_omp_for_inline_first_alt
OpenMP Runtime Support, 361

starpu_omp_for_inline_next
OpenMP Runtime Support, 361

starpu_omp_for_inline_next_alt
OpenMP Runtime Support, 362

starpu_omp_get_active_level
OpenMP Runtime Support, 369

starpu_omp_get_ancestor_thread_num
OpenMP Runtime Support, 368

starpu_omp_get_cancellation
OpenMP Runtime Support, 367

starpu_omp_get_default_device
OpenMP Runtime Support, 370

starpu_omp_get_dynamic
OpenMP Runtime Support, 366

starpu_omp_get_level
OpenMP Runtime Support, 368

starpu_omp_get_max_active_levels
OpenMP Runtime Support, 368

starpu_omp_get_max_task_priority
OpenMP Runtime Support, 371

starpu_omp_get_max_threads
OpenMP Runtime Support, 365

starpu_omp_get_nested
OpenMP Runtime Support, 366

starpu_omp_get_num_devices
OpenMP Runtime Support, 370

starpu_omp_get_num_procs
OpenMP Runtime Support, 365

starpu_omp_get_num_teams
OpenMP Runtime Support, 370

starpu_omp_get_num_threads
OpenMP Runtime Support, 364

starpu_omp_get_proc_bind
OpenMP Runtime Support, 369

starpu_omp_get_schedule
OpenMP Runtime Support, 367

starpu_omp_get_team_num
OpenMP Runtime Support, 370

Generated by Doxygen

INDEX 593

starpu_omp_get_team_size
OpenMP Runtime Support, 369

starpu_omp_get_thread_limit
OpenMP Runtime Support, 367

starpu_omp_get_thread_num
OpenMP Runtime Support, 365

starpu_omp_get_wtick
OpenMP Runtime Support, 374

starpu_omp_get_wtime
OpenMP Runtime Support, 374

starpu_omp_in_final
OpenMP Runtime Support, 369

starpu_omp_in_parallel
OpenMP Runtime Support, 365

starpu_omp_init
OpenMP Runtime Support, 357

starpu_omp_init_lock
OpenMP Runtime Support, 371

starpu_omp_init_nest_lock
OpenMP Runtime Support, 372

starpu_omp_is_initial_device
OpenMP Runtime Support, 371

starpu_omp_lock_t, 354
starpu_omp_master

OpenMP Runtime Support, 358
starpu_omp_master_inline

OpenMP Runtime Support, 358
starpu_omp_nest_lock_t, 354
starpu_omp_ordered

OpenMP Runtime Support, 362
starpu_omp_ordered_inline_begin

OpenMP Runtime Support, 362
starpu_omp_ordered_inline_end

OpenMP Runtime Support, 362
starpu_omp_parallel_region

OpenMP Runtime Support, 357
starpu_omp_parallel_region_attr, 355
starpu_omp_proc_bind_value

OpenMP Runtime Support, 357
starpu_omp_sched_value

OpenMP Runtime Support, 356
starpu_omp_sections

OpenMP Runtime Support, 363
starpu_omp_sections_combined

OpenMP Runtime Support, 363
starpu_omp_set_default_device

OpenMP Runtime Support, 369
starpu_omp_set_dynamic

OpenMP Runtime Support, 366
starpu_omp_set_lock

OpenMP Runtime Support, 371
starpu_omp_set_max_active_levels

OpenMP Runtime Support, 368
starpu_omp_set_nest_lock

OpenMP Runtime Support, 373
starpu_omp_set_nested

OpenMP Runtime Support, 366
starpu_omp_set_num_threads

OpenMP Runtime Support, 364
starpu_omp_set_schedule

OpenMP Runtime Support, 367
starpu_omp_shutdown

OpenMP Runtime Support, 357
starpu_omp_single

OpenMP Runtime Support, 359
starpu_omp_single_copyprivate

OpenMP Runtime Support, 359
starpu_omp_single_copyprivate_inline_begin

OpenMP Runtime Support, 359
starpu_omp_single_copyprivate_inline_end

OpenMP Runtime Support, 360
starpu_omp_single_inline

OpenMP Runtime Support, 359
starpu_omp_task_region

OpenMP Runtime Support, 363
starpu_omp_task_region_attr, 355
starpu_omp_taskgroup

OpenMP Runtime Support, 363
starpu_omp_taskgroup_inline_begin

OpenMP Runtime Support, 364
starpu_omp_taskgroup_inline_end

OpenMP Runtime Support, 364
starpu_omp_taskwait

OpenMP Runtime Support, 363
starpu_omp_test_lock

OpenMP Runtime Support, 372
starpu_omp_test_nest_lock

OpenMP Runtime Support, 373
starpu_omp_unset_lock

OpenMP Runtime Support, 372
starpu_omp_unset_nest_lock

OpenMP Runtime Support, 373
starpu_omp_vector_annotate

OpenMP Runtime Support, 374
starpu_opencl.h, 507
starpu_opencl_allocate_memory

OpenCL Extensions, 350
starpu_opencl_collect_stats

OpenCL Extensions, 349
starpu_opencl_compile_opencl_from_file

OpenCL Extensions, 348
starpu_opencl_compile_opencl_from_string

OpenCL Extensions, 348
starpu_opencl_copy_async_sync

OpenCL Extensions, 351
starpu_opencl_copy_opencl_to_opencl

OpenCL Extensions, 351
starpu_opencl_copy_opencl_to_ram

OpenCL Extensions, 350
starpu_opencl_copy_ram_to_opencl

OpenCL Extensions, 350
starpu_opencl_display_error

OpenCL Extensions, 350
starpu_opencl_error_string

OpenCL Extensions, 349
starpu_opencl_func_t

Generated by Doxygen

594 INDEX

Codelet And Tasks, 306
starpu_opencl_get_context

OpenCL Extensions, 347
starpu_opencl_get_current_context

OpenCL Extensions, 347
starpu_opencl_get_current_queue

OpenCL Extensions, 347
starpu_opencl_get_device

OpenCL Extensions, 347
starpu_opencl_get_queue

OpenCL Extensions, 347
starpu_opencl_load_binary_opencl

OpenCL Extensions, 348
starpu_opencl_load_kernel

OpenCL Extensions, 349
starpu_opencl_load_opencl_from_file

OpenCL Extensions, 349
starpu_opencl_load_opencl_from_string

OpenCL Extensions, 349
starpu_opencl_load_program_source

OpenCL Extensions, 348
starpu_opencl_load_program_source_malloc

OpenCL Extensions, 348
starpu_opencl_program, 346
starpu_opencl_release_kernel

OpenCL Extensions, 349
starpu_opencl_report_error

OpenCL Extensions, 350
starpu_opencl_set_kernel_args

OpenCL Extensions, 347
starpu_opencl_unload_opencl

OpenCL Extensions, 349
starpu_opencl_worker_get_count

Workers’ Properties, 221
starpu_openmp.h, 508
starpu_openmp_prologue

Clustering Machine, 468
starpu_parallel_task_barrier_init

Parallel Tasks, 408
starpu_parallel_task_barrier_init_n

Parallel Tasks, 408
starpu_pause

Initialization and Termination, 194
starpu_perfmodel, 328

arch_cost_function, 329
combinations, 330
cost_function, 329
footprint, 329
is_loaded, 329
ncombinations, 330
nparameters, 330
parameters_names, 330
size_base, 329
symbol, 329
type, 329

starpu_perfmodel.h, 511
starpu_perfmodel_arch, 326
starpu_perfmodel_debugfilepath

Performance Model, 331
starpu_perfmodel_device, 326
starpu_perfmodel_directory

Performance Model, 332
starpu_perfmodel_dump_xml

Performance Model, 331
starpu_perfmodel_free_sampling

Performance Model, 331
starpu_perfmodel_get_arch_name

Performance Model, 331
starpu_perfmodel_get_model_path

Performance Model, 331
starpu_perfmodel_history_based_expected_perf

Performance Model, 332
starpu_perfmodel_history_entry, 326
starpu_perfmodel_history_list, 327
starpu_perfmodel_init

Performance Model, 330
starpu_perfmodel_initialize

Performance Model, 332
starpu_perfmodel_list

Performance Model, 332
starpu_perfmodel_load_file

Performance Model, 330
starpu_perfmodel_load_symbol

Performance Model, 331
starpu_perfmodel_nop

Performance Model, 333
starpu_perfmodel_per_arch, 327

cost_function, 328
history, 328
list, 328
regression, 328
size_base, 328

starpu_perfmodel_regression_model, 327
starpu_perfmodel_type

Performance Model, 330
starpu_perfmodel_unload_model

Performance Model, 331
starpu_perfmodel_update_history

Performance Model, 332
starpu_prefetch_task_input_for

Scheduling Policy, 426
starpu_prefetch_task_input_for_prio

Scheduling Policy, 426
starpu_prefetch_task_input_on_node

Scheduling Policy, 425
starpu_prefetch_task_input_on_node_prio

Scheduling Policy, 425
starpu_private

starpu_task, 302
starpu_profiling.h, 512
starpu_profiling_bus_helper_display_summary

Profiling, 337
starpu_profiling_bus_info, 335
starpu_profiling_init

Profiling, 336
starpu_profiling_set_id

Generated by Doxygen

INDEX 595

Profiling, 336
starpu_profiling_status_get

Profiling, 336
starpu_profiling_status_set

Profiling, 336
starpu_profiling_task_info, 334
starpu_profiling_worker_get_info

Profiling, 336
starpu_profiling_worker_helper_display_summary

Profiling, 337
starpu_profiling_worker_info, 335
starpu_progression_hook_deregister

Expert Mode, 411
starpu_progression_hook_register

Expert Mode, 411
starpu_pthread_attr_destroy

Threads, 209
starpu_pthread_attr_init

Threads, 208
starpu_pthread_attr_setdetachstate

Threads, 209
starpu_pthread_barrier_destroy

Threads, 212
starpu_pthread_barrier_init

Threads, 212
starpu_pthread_barrier_t, 529
starpu_pthread_barrier_wait

Threads, 212
starpu_pthread_cond_broadcast

Threads, 211
starpu_pthread_cond_destroy

Threads, 211
starpu_pthread_cond_init

Threads, 210
starpu_pthread_cond_signal

Threads, 211
starpu_pthread_cond_timedwait

Threads, 211
starpu_pthread_cond_wait

Threads, 211
starpu_pthread_create

Threads, 208
starpu_pthread_exit

Threads, 208
starpu_pthread_getspecific

Threads, 210
starpu_pthread_join

Threads, 208
starpu_pthread_key_create

Threads, 210
starpu_pthread_key_delete

Threads, 210
starpu_pthread_mutex_destroy

Threads, 209
starpu_pthread_mutex_init

Threads, 209
starpu_pthread_mutex_lock

Threads, 209

starpu_pthread_mutex_trylock
Threads, 209

starpu_pthread_mutex_unlock
Threads, 209

starpu_pthread_mutexattr_destroy
Threads, 210

starpu_pthread_mutexattr_gettype
Threads, 210

starpu_pthread_mutexattr_init
Threads, 210

starpu_pthread_mutexattr_settype
Threads, 210

starpu_pthread_queue_t, 529
starpu_pthread_rwlock_destroy

Threads, 211
starpu_pthread_rwlock_init

Threads, 211
starpu_pthread_rwlock_rdlock

Threads, 212
starpu_pthread_rwlock_tryrdlock

Threads, 212
starpu_pthread_rwlock_trywrlock

Threads, 212
starpu_pthread_rwlock_unlock

Threads, 212
starpu_pthread_rwlock_wrlock

Threads, 212
starpu_pthread_setspecific

Threads, 210
starpu_pthread_spin_destroy

Threads, 212
starpu_pthread_spin_init

Threads, 212
starpu_pthread_spin_lock

Threads, 213
starpu_pthread_spin_trylock

Threads, 213
starpu_pthread_spin_unlock

Threads, 213
starpu_pthread_spinlock_t, 529
starpu_pthread_wait_t, 529
starpu_push_local_task

Scheduling Policy, 425
starpu_push_task_end

Scheduling Policy, 425
starpu_rand.h, 513
starpu_resume

Initialization and Termination, 194
starpu_sched_component, 453

add_child, 454
can_pull, 454
can_push, 454
children, 454
data, 453
deinit_data, 455
estimated_end, 455
estimated_load, 454
nchildren, 454

Generated by Doxygen

596 INDEX

notify_change_workers, 455
nparents, 454
obj, 455
parents, 454
pull_task, 454
push_task, 454
remove_child, 454
tree, 453
workers, 453
workers_in_ctx, 453

starpu_sched_component.h, 513
starpu_sched_component_best_implementation_create

Modularized Scheduler Interface, 464
starpu_sched_component_can_execute_task

Modularized Scheduler Interface, 461
starpu_sched_component_can_pull

Modularized Scheduler Interface, 462
starpu_sched_component_can_pull_all

Modularized Scheduler Interface, 462
starpu_sched_component_can_push

Modularized Scheduler Interface, 462
starpu_sched_component_composed_component_←↩

create
Modularized Scheduler Interface, 465

starpu_sched_component_composed_recipe_add
Modularized Scheduler Interface, 464

starpu_sched_component_composed_recipe_create
Modularized Scheduler Interface, 464

starpu_sched_component_composed_recipe_create←↩
_singleton

Modularized Scheduler Interface, 464
starpu_sched_component_composed_recipe_destroy

Modularized Scheduler Interface, 465
starpu_sched_component_connect

Modularized Scheduler Interface, 460
starpu_sched_component_create

Modularized Scheduler Interface, 460
starpu_sched_component_destroy

Modularized Scheduler Interface, 461
starpu_sched_component_destroy_rec

Modularized Scheduler Interface, 461
starpu_sched_component_estimated_end_average

Modularized Scheduler Interface, 463
starpu_sched_component_estimated_end_min

Modularized Scheduler Interface, 463
starpu_sched_component_estimated_end_min_add

Modularized Scheduler Interface, 463
starpu_sched_component_estimated_load

Modularized Scheduler Interface, 463
starpu_sched_component_execute_preds

Modularized Scheduler Interface, 461
starpu_sched_component_fifo_create

Modularized Scheduler Interface, 463
starpu_sched_component_fifo_data, 455
starpu_sched_component_heteroprio_data, 456
starpu_sched_component_initialize_simple_scheduler

Modularized Scheduler Interface, 465
starpu_sched_component_initialize_simple_schedulers

Modularized Scheduler Interface, 465
starpu_sched_component_is_combined_worker

Modularized Scheduler Interface, 462
starpu_sched_component_is_fifo

Modularized Scheduler Interface, 463
starpu_sched_component_is_random

Modularized Scheduler Interface, 464
starpu_sched_component_is_simple_worker

Modularized Scheduler Interface, 462
starpu_sched_component_is_work_stealing

Modularized Scheduler Interface, 463
starpu_sched_component_is_worker

Modularized Scheduler Interface, 462
starpu_sched_component_make_scheduler

Modularized Scheduler Interface, 465
starpu_sched_component_mct_create

Modularized Scheduler Interface, 464
starpu_sched_component_mct_data, 455
starpu_sched_component_parallel_worker_create

Modularized Scheduler Interface, 461
starpu_sched_component_parents_pull_task

Modularized Scheduler Interface, 462
starpu_sched_component_perfmodel_select_data, 456
starpu_sched_component_prio_data, 455
starpu_sched_component_properties

Modularized Scheduler Interface, 459
starpu_sched_component_pull_task

Modularized Scheduler Interface, 460
starpu_sched_component_push_task

Modularized Scheduler Interface, 460
starpu_sched_component_random_create

Modularized Scheduler Interface, 464
starpu_sched_component_specs, 456

hwloc_cache_composed_sched_component, 457
hwloc_component_composed_sched_component,

456
hwloc_machine_composed_sched_component,

456
hwloc_socket_composed_sched_component, 456
mix_heterogeneous_workers, 457
worker_composed_sched_component, 457

starpu_sched_component_transfer_length
Modularized Scheduler Interface, 461

starpu_sched_component_work_stealing_create
Modularized Scheduler Interface, 463

starpu_sched_component_worker_get
Modularized Scheduler Interface, 461

starpu_sched_component_worker_get_workerid
Modularized Scheduler Interface, 461

starpu_sched_component_worker_post_exec_hook
Modularized Scheduler Interface, 462

starpu_sched_component_worker_pre_exec_hook
Modularized Scheduler Interface, 462

starpu_sched_ctx.h, 517
starpu_sched_ctx_add_workers

Scheduling Contexts, 415
starpu_sched_ctx_call_pushed_task_cb

starpu_sched_ctx_hypervisor.h, 519

Generated by Doxygen

INDEX 597

starpu_sched_ctx_check_if_hypervisor_exists
starpu_sched_ctx_hypervisor.h, 520

starpu_sched_ctx_contains_worker
Scheduling Contexts, 417

starpu_sched_ctx_create
Scheduling Contexts, 415

starpu_sched_ctx_create_inside_interval
Scheduling Contexts, 415

starpu_sched_ctx_create_worker_collection
Scheduling Contexts, 419

starpu_sched_ctx_delete
Scheduling Contexts, 416

starpu_sched_ctx_delete_worker_collection
Scheduling Contexts, 419

starpu_sched_ctx_display_workers
Scheduling Contexts, 416

starpu_sched_ctx_exec_parallel_code
Scheduling Contexts, 418

starpu_sched_ctx_finished_submit
Scheduling Contexts, 416

starpu_sched_ctx_get_context
Scheduling Contexts, 416

starpu_sched_ctx_get_max_priority
Scheduling Contexts, 418

starpu_sched_ctx_get_min_priority
Scheduling Contexts, 418

starpu_sched_ctx_get_nshared_workers
Scheduling Contexts, 417

starpu_sched_ctx_get_nworkers
Scheduling Contexts, 417

starpu_sched_ctx_get_policy_data
Scheduling Contexts, 418

starpu_sched_ctx_get_user_data
Scheduling Contexts, 417

starpu_sched_ctx_get_worker_collection
Scheduling Contexts, 419

starpu_sched_ctx_get_workers_list
Scheduling Contexts, 417

starpu_sched_ctx_get_workers_list_raw
Scheduling Contexts, 417

starpu_sched_ctx_hypervisor.h, 519
starpu_sched_ctx_call_pushed_task_cb, 519
starpu_sched_ctx_check_if_hypervisor_exists, 520
starpu_sched_ctx_notify_hypervisor_exists, 520
starpu_sched_ctx_set_perf_counters, 519

starpu_sched_ctx_iterator, 218
starpu_sched_ctx_master_get_context

Scheduling Contexts, 418
starpu_sched_ctx_notify_hypervisor_exists

starpu_sched_ctx_hypervisor.h, 520
starpu_sched_ctx_overlapping_ctxs_on_worker

Scheduling Contexts, 417
starpu_sched_ctx_register_close_callback

Scheduling Contexts, 415
starpu_sched_ctx_remove_workers

Scheduling Contexts, 416
starpu_sched_ctx_set_context

Scheduling Contexts, 416

starpu_sched_ctx_set_inheritor
Scheduling Contexts, 416

starpu_sched_ctx_set_max_priority
Scheduling Contexts, 419

starpu_sched_ctx_set_min_priority
Scheduling Contexts, 418

starpu_sched_ctx_set_perf_counters
starpu_sched_ctx_hypervisor.h, 519

starpu_sched_ctx_set_policy_data
Scheduling Contexts, 418

starpu_sched_ctx_stop_task_submission
Scheduling Contexts, 416

starpu_sched_ctx_worker_get_id
Scheduling Contexts, 417

starpu_sched_ctx_worker_is_master_for_child_ctx
Scheduling Contexts, 418

starpu_sched_ctx_worker_shares_tasks_lists
Scheduling Policy, 427

starpu_sched_get_max_priority
Scheduling Policy, 424

starpu_sched_get_min_priority
Scheduling Policy, 424

starpu_sched_get_predefined_policies
Scheduling Policy, 423

starpu_sched_policy, 421
add_workers, 423
deinit_sched, 422
do_schedule, 423
init_sched, 422
policy_description, 423
policy_name, 423
pop_every_task, 422
pop_task, 422
post_exec_hook, 423
pre_exec_hook, 422
push_task, 422
push_task_notify, 422
remove_workers, 423
submit_hook, 422

starpu_sched_set_max_priority
Scheduling Policy, 424

starpu_sched_set_min_priority
Scheduling Policy, 424

starpu_sched_tree, 455
starpu_sched_tree_add_workers

Modularized Scheduler Interface, 460
starpu_sched_tree_create

Modularized Scheduler Interface, 459
starpu_sched_tree_deinitialize

Modularized Scheduler Interface, 459
starpu_sched_tree_destroy

Modularized Scheduler Interface, 459
starpu_sched_tree_pop_task

Modularized Scheduler Interface, 460
starpu_sched_tree_push_task

Modularized Scheduler Interface, 459
starpu_sched_tree_remove_workers

Modularized Scheduler Interface, 460

Generated by Doxygen

598 INDEX

starpu_sched_tree_update_workers
Modularized Scheduler Interface, 459

starpu_sched_tree_update_workers_in_ctx
Modularized Scheduler Interface, 459

starpu_sched_tree_work_stealing_push_task
Modularized Scheduler Interface, 464

starpu_scheduler.h, 520
starpu_shutdown

Initialization and Termination, 194
starpu_simgrid_wrap.h, 521
starpu_sink.h, 521
starpu_sleep

Threads, 213
starpu_stdlib.h, 521
starpu_tag_declare_deps

Explicit Dependencies, 323
starpu_tag_declare_deps_array

Explicit Dependencies, 323
starpu_tag_notify_from_apps

Explicit Dependencies, 324
starpu_tag_notify_restart_from_apps

Explicit Dependencies, 324
starpu_tag_remove

Explicit Dependencies, 324
starpu_tag_restart

Explicit Dependencies, 324
starpu_tag_t

Explicit Dependencies, 321
starpu_tag_wait

Explicit Dependencies, 323
starpu_tag_wait_array

Explicit Dependencies, 323
starpu_task, 295

bundle, 302
callback_arg, 298
callback_arg_free, 299
callback_func, 298
cl, 296
cl_arg, 297
cl_arg_free, 298
cl_arg_size, 297
color, 301
destroy, 300
detach, 299
dyn_handles, 296
dyn_interfaces, 296
dyn_modes, 297
execute_on_a_specific_worker, 299
flops, 302
handles, 297
handles_sequential_consistency, 297
hypervisor_tag, 301
interfaces, 297
magic, 301
mf_skip, 300
modes, 297
name, 296
nb_termination_call_required, 302

nbuffers, 296
next, 302
no_submitorder, 300
omp_task, 302
possibly_parallel, 302
predicted, 302
predicted_transfer, 302
prefetched, 300
prev, 302
priority, 301
profiling_info, 302
prologue_callback_arg, 298
prologue_callback_arg_free, 299
prologue_callback_func, 298
prologue_callback_pop_arg, 298
prologue_callback_pop_arg_free, 299
prologue_callback_pop_func, 298
regenerate, 300
sched_ctx, 301
sched_data, 302
scheduled, 300
sequential_consistency, 299
starpu_private, 302
status, 301
synchronous, 299
tag_id, 298
type, 301
use_tag, 299
where, 296
workerid, 300
workerids, 300
workerids_len, 301
workerorder, 300

starpu_task.h, 522
STARPU_TASK_INVALID, 524

starpu_task_build
Task Insert Utility, 317

starpu_task_bundle.h, 524
starpu_task_bundle_close

Task Bundles, 403
starpu_task_bundle_create

Task Bundles, 402
starpu_task_bundle_expected_data_transfer_time

Task Bundles, 403
starpu_task_bundle_expected_energy

Task Bundles, 403
starpu_task_bundle_expected_length

Task Bundles, 403
starpu_task_bundle_insert

Task Bundles, 402
starpu_task_bundle_remove

Task Bundles, 402
starpu_task_bundle_t

Task Bundles, 402
starpu_task_clean

Codelet And Tasks, 308
starpu_task_create

Codelet And Tasks, 308

Generated by Doxygen

INDEX 599

starpu_task_data_footprint
Scheduling Policy, 426

starpu_task_declare_deps
Explicit Dependencies, 322

starpu_task_declare_deps_array
Explicit Dependencies, 321

starpu_task_declare_end_deps
Explicit Dependencies, 322

starpu_task_declare_end_deps_array
Explicit Dependencies, 322

starpu_task_dep.h, 524
starpu_task_destroy

Codelet And Tasks, 308
starpu_task_dup

Codelet And Tasks, 311
starpu_task_end_dep_add

Explicit Dependencies, 322
starpu_task_end_dep_release

Explicit Dependencies, 323
starpu_task_expected_conversion_time

Scheduling Policy, 427
starpu_task_expected_data_transfer_time

Scheduling Policy, 427
starpu_task_expected_data_transfer_time_for

Scheduling Policy, 427
starpu_task_expected_energy

Scheduling Policy, 427
starpu_task_expected_length

Scheduling Policy, 426
starpu_task_footprint

Scheduling Policy, 426
starpu_task_get_current

Codelet And Tasks, 310
starpu_task_get_current_data_node

Codelet And Tasks, 310
starpu_task_get_implementation

Codelet And Tasks, 311
starpu_task_get_model_name

Codelet And Tasks, 310
starpu_task_get_name

Codelet And Tasks, 311
starpu_task_get_task_scheduled_succs

Explicit Dependencies, 322
starpu_task_get_task_succs

Explicit Dependencies, 322
starpu_task_init

Codelet And Tasks, 308
starpu_task_insert

Task Insert Utility, 317
starpu_task_insert_data_make_room

Task Insert Utility, 318
starpu_task_insert_data_process_arg

Task Insert Utility, 318
starpu_task_insert_data_process_array_arg

Task Insert Utility, 318
starpu_task_insert_data_process_mode_array_arg

Task Insert Utility, 319
starpu_task_list, 404

starpu_task_list.h, 525
starpu_task_list_back

Task Lists, 405
starpu_task_list_begin

Task Lists, 405
starpu_task_list_empty

Task Lists, 405
starpu_task_list_end

Task Lists, 405
starpu_task_list_erase

Task Lists, 405
starpu_task_list_front

Task Lists, 405
starpu_task_list_init

Task Lists, 404
starpu_task_list_ismember

Task Lists, 405
starpu_task_list_next

Task Lists, 405
starpu_task_list_pop_back

Task Lists, 405
starpu_task_list_pop_front

Task Lists, 405
starpu_task_list_push_back

Task Lists, 404
starpu_task_list_push_front

Task Lists, 404
starpu_task_notify_ready_soon_register

Scheduling Policy, 427
starpu_task_nready

Codelet And Tasks, 309
starpu_task_nsubmitted

Codelet And Tasks, 310
starpu_task_set

Task Insert Utility, 317
starpu_task_set_implementation

Codelet And Tasks, 311
starpu_task_status

Codelet And Tasks, 307
starpu_task_submit

Codelet And Tasks, 308
starpu_task_submit_to_ctx

Codelet And Tasks, 309
starpu_task_util.h, 526
starpu_task_wait

Codelet And Tasks, 309
starpu_task_wait_array

Codelet And Tasks, 309
starpu_task_wait_for_all

Codelet And Tasks, 309
starpu_task_wait_for_all_in_ctx

Codelet And Tasks, 309
starpu_task_wait_for_n_submitted

Codelet And Tasks, 309
starpu_task_wait_for_n_submitted_in_ctx

Codelet And Tasks, 309
starpu_task_wait_for_no_ready

Codelet And Tasks, 309

Generated by Doxygen

600 INDEX

starpu_task_watchdog_set_hook
Codelet And Tasks, 311

starpu_thread.h, 527
starpu_thread_util.h, 530
starpu_timing_now

Miscellaneous Helpers, 378
starpu_timing_timespec_delay_us

Profiling, 337
starpu_timing_timespec_to_us

Profiling, 337
starpu_topology_print

Initialization and Termination, 194
starpu_transfer_bandwidth

Performance Model, 333
starpu_transfer_latency

Performance Model, 333
starpu_transfer_predict

Performance Model, 333
starpu_tree, 429
starpu_tree.h, 531
starpu_util.h, 531
starpu_variable_data_register

Data Interfaces, 268
starpu_variable_get_elemsize

Data Interfaces, 269
starpu_variable_get_local_ptr

Data Interfaces, 269
starpu_variable_interface, 250
starpu_variable_ptr_register

Data Interfaces, 269
starpu_vector_data_register

Data Interfaces, 267
starpu_vector_data_register_allocsize

Data Interfaces, 268
starpu_vector_filter_block

Data Partition, 282
starpu_vector_filter_block_shadow

Data Partition, 282
starpu_vector_filter_divide_in_2

Data Partition, 283
starpu_vector_filter_list

Data Partition, 283
starpu_vector_filter_list_long

Data Partition, 282
starpu_vector_get_allocsize

Data Interfaces, 268
starpu_vector_get_elemsize

Data Interfaces, 268
starpu_vector_get_local_ptr

Data Interfaces, 268
starpu_vector_get_nx

Data Interfaces, 268
starpu_vector_interface, 249
starpu_vector_ptr_register

Data Interfaces, 268
starpu_void_data_register

Data Interfaces, 269
starpu_wait_initialized

Initialization and Termination, 193
starpu_wake_all_blocked_workers

Expert Mode, 411
starpu_wake_worker_locked

Scheduling Policy, 428
starpu_wake_worker_no_relax

Scheduling Policy, 428
starpu_wake_worker_relax

Scheduling Policy, 427
starpu_wake_worker_relax_light

Scheduling Policy, 428
starpu_worker.h, 532
starpu_worker_archtype

Workers’ Properties, 220
starpu_worker_can_execute_task

Scheduling Policy, 424
starpu_worker_can_execute_task_first_impl

Scheduling Policy, 424
starpu_worker_can_execute_task_impl

Scheduling Policy, 424
starpu_worker_collection, 218

add, 219
deinit, 220
get_next, 219
has_next, 219
init, 219
init_iterator, 220
nworkers, 219
remove, 219
type, 219
workerids, 219

starpu_worker_collection_type
Workers’ Properties, 221

starpu_worker_display_names
Workers’ Properties, 223

starpu_worker_get_by_devid
Workers’ Properties, 223

starpu_worker_get_by_type
Workers’ Properties, 222

starpu_worker_get_count
Workers’ Properties, 221

starpu_worker_get_count_by_type
Workers’ Properties, 222

starpu_worker_get_devid
Workers’ Properties, 223

starpu_worker_get_hwloc_cpuset
Workers’ Properties, 223

starpu_worker_get_hwloc_obj
Workers’ Properties, 223

starpu_worker_get_id
Workers’ Properties, 222

starpu_worker_get_id_check
Workers’ Properties, 220

starpu_worker_get_ids_by_type
Workers’ Properties, 222

starpu_worker_get_local_memory_node
Workers’ Properties, 224

starpu_worker_get_memory_node

Generated by Doxygen

INDEX 601

Workers’ Properties, 224
starpu_worker_get_name

Workers’ Properties, 223
starpu_worker_get_perf_archtype

Performance Model, 331
starpu_worker_get_relative_speedup

Scheduling Policy, 426
starpu_worker_get_relax_state

Workers’ Properties, 225
starpu_worker_get_sched_condition

Scheduling Policy, 423
starpu_worker_get_type

Workers’ Properties, 222
starpu_worker_get_type_as_string

Workers’ Properties, 223
starpu_worker_lock

Workers’ Properties, 225
starpu_worker_lock_self

Workers’ Properties, 225
starpu_worker_relax_off

Workers’ Properties, 225
starpu_worker_relax_on

Workers’ Properties, 225
starpu_worker_sched_op_pending

Workers’ Properties, 224
starpu_worker_set_going_to_sleep_callback

Workers’ Properties, 226
starpu_worker_set_waking_up_callback

Workers’ Properties, 226
starpu_worker_trylock

Workers’ Properties, 225
starpu_worker_unlock

Workers’ Properties, 225
starpu_worker_unlock_self

Workers’ Properties, 225
starpu_omp_proc_bind_close

OpenMP Runtime Support, 357
starpu_omp_proc_bind_false

OpenMP Runtime Support, 357
starpu_omp_proc_bind_master

OpenMP Runtime Support, 357
starpu_omp_proc_bind_spread

OpenMP Runtime Support, 357
starpu_omp_proc_bind_true

OpenMP Runtime Support, 357
starpu_omp_proc_bind_undefined

OpenMP Runtime Support, 357
starpu_omp_sched_auto

OpenMP Runtime Support, 357
starpu_omp_sched_dynamic

OpenMP Runtime Support, 357
starpu_omp_sched_guided

OpenMP Runtime Support, 357
starpu_omp_sched_runtime

OpenMP Runtime Support, 357
starpu_omp_sched_static

OpenMP Runtime Support, 357
starpu_omp_sched_undefined

OpenMP Runtime Support, 357
starpufft.h, 534
starpufft_cleanup

FFT Support, 384
starpufft_destroy_plan

FFT Support, 384
starpufft_execute

FFT Support, 384
starpufft_execute_handle

FFT Support, 384
starpufft_free

FFT Support, 383
starpufft_malloc

FFT Support, 383
starpufft_plan_dft_1d

FFT Support, 383
starpufft_plan_dft_2d

FFT Support, 383
starpufft_start

FFT Support, 383
starpufft_start_handle

FFT Support, 384
starpurm.h, 541
starpurm_acquire

Interoperability Support, 474
starpurm_acquire_all_devices

Interoperability Support, 478
starpurm_acquire_cpu

Interoperability Support, 474
starpurm_acquire_cpu_mask

Interoperability Support, 474
starpurm_acquire_cpus

Interoperability Support, 474
starpurm_acquire_device

Interoperability Support, 477
starpurm_acquire_device_mask

Interoperability Support, 478
starpurm_acquire_devices

Interoperability Support, 477
starpurm_assign_all_cpus_to_starpu

Interoperability Support, 472
starpurm_assign_all_devices_to_starpu

Interoperability Support, 476
starpurm_assign_cpu_mask_to_starpu

Interoperability Support, 472
starpurm_assign_cpu_to_starpu

Interoperability Support, 472
starpurm_assign_cpus_to_starpu

Interoperability Support, 472
starpurm_assign_device_mask_to_starpu

Interoperability Support, 476
starpurm_assign_device_to_starpu

Interoperability Support, 475
starpurm_assign_devices_to_starpu

Interoperability Support, 475
starpurm_drs_enabled_p

Interoperability Support, 472
starpurm_get_all_cpu_workers_cpuset

Generated by Doxygen

602 INDEX

Interoperability Support, 478
starpurm_get_all_device_workers_cpuset

Interoperability Support, 479
starpurm_get_all_device_workers_cpuset_by_type

Interoperability Support, 479
starpurm_get_device_id

Interoperability Support, 475
starpurm_get_device_type_id

Interoperability Support, 475
starpurm_get_device_type_name

Interoperability Support, 475
starpurm_get_device_worker_cpuset

Interoperability Support, 478
starpurm_get_global_cpuset

Interoperability Support, 478
starpurm_get_nb_devices_by_type

Interoperability Support, 475
starpurm_get_selected_cpuset

Interoperability Support, 478
starpurm_initialize

Interoperability Support, 471
starpurm_initialize_with_cpuset

Interoperability Support, 471
starpurm_lend

Interoperability Support, 473
starpurm_lend_all_devices

Interoperability Support, 477
starpurm_lend_cpu

Interoperability Support, 473
starpurm_lend_cpu_mask

Interoperability Support, 473
starpurm_lend_cpus

Interoperability Support, 473
starpurm_lend_device

Interoperability Support, 476
starpurm_lend_device_mask

Interoperability Support, 477
starpurm_lend_devices

Interoperability Support, 476
starpurm_reclaim

Interoperability Support, 474
starpurm_reclaim_all_devices

Interoperability Support, 477
starpurm_reclaim_cpu

Interoperability Support, 474
starpurm_reclaim_cpu_mask

Interoperability Support, 474
starpurm_reclaim_cpus

Interoperability Support, 474
starpurm_reclaim_device

Interoperability Support, 477
starpurm_reclaim_device_mask

Interoperability Support, 477
starpurm_reclaim_devices

Interoperability Support, 477
starpurm_return_all

Interoperability Support, 474
starpurm_return_all_devices

Interoperability Support, 478
starpurm_return_cpu

Interoperability Support, 475
starpurm_return_device

Interoperability Support, 478
starpurm_set_drs_disable

Interoperability Support, 472
starpurm_set_drs_enable

Interoperability Support, 472
starpurm_set_max_parallelism

Interoperability Support, 472
starpurm_shutdown

Interoperability Support, 471
starpurm_spawn_kernel_on_cpus

Interoperability Support, 471
starpurm_spawn_kernel_on_cpus_callback

Interoperability Support, 471
starpurm_withdraw_all_cpus_from_starpu

Interoperability Support, 473
starpurm_withdraw_all_devices_from_starpu

Interoperability Support, 476
starpurm_withdraw_cpu_from_starpu

Interoperability Support, 473
starpurm_withdraw_cpu_mask_from_starpu

Interoperability Support, 473
starpurm_withdraw_cpus_from_starpu

Interoperability Support, 473
starpurm_withdraw_device_from_starpu

Interoperability Support, 476
starpurm_withdraw_device_mask_from_starpu

Interoperability Support, 476
starpurm_withdraw_devices_from_starpu

Interoperability Support, 476
starpurm_DRS_DISABLD

Interoperability Support, 471
starpurm_DRS_EINVAL

Interoperability Support, 471
starpurm_DRS_PERM

Interoperability Support, 471
starpurm_DRS_SUCCESS

Interoperability Support, 471
start_ctx

sc_hypervisor_policy, 432
status

starpu_task, 301
submit_hook

starpu_sched_policy, 422
symbol

starpu_perfmodel, 329
synchronous

starpu_task, 299

tag_id
starpu_task, 298

Task Bundles, 402
starpu_task_bundle_close, 403
starpu_task_bundle_create, 402
starpu_task_bundle_expected_data_transfer_time,

403

Generated by Doxygen

INDEX 603

starpu_task_bundle_expected_energy, 403
starpu_task_bundle_expected_length, 403
starpu_task_bundle_insert, 402
starpu_task_bundle_remove, 402
starpu_task_bundle_t, 402

Task Insert Utility, 312
STARPU_CALLBACK_ARG_NFREE, 316
STARPU_CALLBACK_ARG, 313
STARPU_CALLBACK_WITH_ARG_NFREE, 316
STARPU_CALLBACK_WITH_ARG, 313
STARPU_CALLBACK, 313
STARPU_CL_ARGS_NFREE, 315
STARPU_CL_ARGS, 315
STARPU_DATA_ARRAY, 314
STARPU_DATA_MODE_ARRAY, 314
STARPU_EXECUTE_ON_WORKER, 315
STARPU_EXECUTE_WHERE, 315
STARPU_FLOPS, 314
STARPU_HANDLES_SEQUENTIAL_CONSIST←↩

ENCY, 316
STARPU_HYPERVISOR_TAG, 314
STARPU_NAME, 315
STARPU_POSSIBLY_PARALLEL, 315
STARPU_PRIORITY, 314
STARPU_PROLOGUE_CALLBACK_ARG_NFR←↩

EE, 317
STARPU_PROLOGUE_CALLBACK_ARG, 314
STARPU_PROLOGUE_CALLBACK_POP_ARG←↩

_NFREE, 317
STARPU_PROLOGUE_CALLBACK_POP_ARG,

314
STARPU_PROLOGUE_CALLBACK_POP, 314
STARPU_PROLOGUE_CALLBACK, 314
STARPU_SCHED_CTX, 314
STARPU_SEQUENTIAL_CONSISTENCY, 316
STARPU_TAG_ONLY, 315
STARPU_TASK_COLOR, 315
STARPU_TASK_DEPS_ARRAY, 315
STARPU_TASK_END_DEPS_ARRAY, 316
STARPU_TASK_END_DEP, 316
STARPU_TASK_NO_SUBMITORDER, 316
STARPU_TASK_PROFILING_INFO, 316
STARPU_TASK_SCHED_DATA, 317
STARPU_TASK_SYNCHRONOUS, 316
STARPU_TASK_WORKERIDS, 316
STARPU_TAG, 314
STARPU_VALUE, 313
STARPU_WORKER_ORDER, 315
starpu_codelet_pack_arg, 319
starpu_codelet_pack_arg_fini, 319
starpu_codelet_pack_arg_init, 319
starpu_codelet_pack_args, 319
starpu_codelet_unpack_args, 319
starpu_codelet_unpack_args_and_copyleft, 320
starpu_insert_task, 318
starpu_task_build, 317
starpu_task_insert, 317
starpu_task_insert_data_make_room, 318

starpu_task_insert_data_process_arg, 318
starpu_task_insert_data_process_array_arg, 318
starpu_task_insert_data_process_mode_array_←↩

arg, 319
starpu_task_set, 317

Task Lists, 404
starpu_task_list_back, 405
starpu_task_list_begin, 405
starpu_task_list_empty, 405
starpu_task_list_end, 405
starpu_task_list_erase, 405
starpu_task_list_front, 405
starpu_task_list_init, 404
starpu_task_list_ismember, 405
starpu_task_list_next, 405
starpu_task_list_pop_back, 405
starpu_task_list_pop_front, 405
starpu_task_list_push_back, 404
starpu_task_list_push_front, 404

test_request
starpu_disk_ops, 287

Theoretical Lower Bound on Execution Time, 339
starpu_bound_compute, 339
starpu_bound_print, 340
starpu_bound_print_dot, 339
starpu_bound_print_lp, 339
starpu_bound_print_mps, 339
starpu_bound_start, 339
starpu_bound_stop, 339

Threads, 204
STARPU_PTHREAD_BARRIER_DESTROY, 208
STARPU_PTHREAD_BARRIER_INIT, 207
STARPU_PTHREAD_BARRIER_WAIT, 208
STARPU_PTHREAD_COND_BROADCAST, 207
STARPU_PTHREAD_COND_DESTROY, 207
STARPU_PTHREAD_COND_INITIALIZER, 208
STARPU_PTHREAD_COND_INIT, 207
STARPU_PTHREAD_COND_SIGNAL, 207
STARPU_PTHREAD_COND_WAIT, 207
STARPU_PTHREAD_CREATE_ON, 205
STARPU_PTHREAD_CREATE, 205
STARPU_PTHREAD_GETSPECIFIC, 206
STARPU_PTHREAD_KEY_CREATE, 206
STARPU_PTHREAD_KEY_DELETE, 206
STARPU_PTHREAD_MUTEX_DESTROY, 206
STARPU_PTHREAD_MUTEX_INITIALIZER, 208
STARPU_PTHREAD_MUTEX_INIT, 205
STARPU_PTHREAD_MUTEX_LOCK, 206
STARPU_PTHREAD_MUTEX_UNLOCK, 206
STARPU_PTHREAD_RWLOCK_DESTROY, 207
STARPU_PTHREAD_RWLOCK_INIT, 206
STARPU_PTHREAD_RWLOCK_RDLOCK, 206
STARPU_PTHREAD_RWLOCK_UNLOCK, 207
STARPU_PTHREAD_RWLOCK_WRLOCK, 207
STARPU_PTHREAD_SETSPECIFIC, 206
starpu_pthread_attr_destroy, 209
starpu_pthread_attr_init, 208
starpu_pthread_attr_setdetachstate, 209

Generated by Doxygen

604 INDEX

starpu_pthread_barrier_destroy, 212
starpu_pthread_barrier_init, 212
starpu_pthread_barrier_wait, 212
starpu_pthread_cond_broadcast, 211
starpu_pthread_cond_destroy, 211
starpu_pthread_cond_init, 210
starpu_pthread_cond_signal, 211
starpu_pthread_cond_timedwait, 211
starpu_pthread_cond_wait, 211
starpu_pthread_create, 208
starpu_pthread_exit, 208
starpu_pthread_getspecific, 210
starpu_pthread_join, 208
starpu_pthread_key_create, 210
starpu_pthread_key_delete, 210
starpu_pthread_mutex_destroy, 209
starpu_pthread_mutex_init, 209
starpu_pthread_mutex_lock, 209
starpu_pthread_mutex_trylock, 209
starpu_pthread_mutex_unlock, 209
starpu_pthread_mutexattr_destroy, 210
starpu_pthread_mutexattr_gettype, 210
starpu_pthread_mutexattr_init, 210
starpu_pthread_mutexattr_settype, 210
starpu_pthread_rwlock_destroy, 211
starpu_pthread_rwlock_init, 211
starpu_pthread_rwlock_rdlock, 212
starpu_pthread_rwlock_tryrdlock, 212
starpu_pthread_rwlock_trywrlock, 212
starpu_pthread_rwlock_unlock, 212
starpu_pthread_rwlock_wrlock, 212
starpu_pthread_setspecific, 210
starpu_pthread_spin_destroy, 212
starpu_pthread_spin_init, 212
starpu_pthread_spin_lock, 213
starpu_pthread_spin_trylock, 213
starpu_pthread_spin_unlock, 213
starpu_sleep, 213

to_pointer
starpu_data_interface_ops, 247

Toolbox, 201
STARPU_ABORT_MSG, 203
STARPU_ABORT, 203
STARPU_ASSERT_MSG, 202
STARPU_ASSERT, 202
STARPU_ATTRIBUTE_ALIGNED, 202
STARPU_ATTRIBUTE_INTERNAL, 202
STARPU_ATTRIBUTE_MALLOC, 202
STARPU_ATTRIBUTE_NORETURN, 202
STARPU_ATTRIBUTE_PURE, 202
STARPU_ATTRIBUTE_UNUSED, 202
STARPU_ATTRIBUTE_WARN_UNUSED_RES←↩

ULT, 202
STARPU_CHECK_RETURN_VALUE_IS, 203
STARPU_CHECK_RETURN_VALUE, 203
STARPU_GNUC_PREREQ, 201
STARPU_LIKELY, 202
STARPU_RMB, 203

STARPU_UNLIKELY, 201
STARPU_WMB, 203

trace_buffer_size
starpu_conf, 192

Tree, 429
tree

starpu_sched_component, 453
type

starpu_codelet, 291
starpu_perfmodel, 329
starpu_task, 301
starpu_worker_collection, 219

types_of_workers, 433

unpack_data
starpu_data_interface_ops, 248

unplug
starpu_disk_ops, 286

unregister_data_handle
starpu_data_interface_ops, 246

use_explicit_workers_bindid
starpu_conf, 190

use_explicit_workers_cuda_gpuid
starpu_conf, 190

use_explicit_workers_mic_deviceid
starpu_conf, 191

use_explicit_workers_mpi_ms_deviceid
starpu_conf, 191

use_explicit_workers_opencl_gpuid
starpu_conf, 190

use_tag
starpu_task, 299

Versioning, 187
STARPU_MAJOR_VERSION, 187
STARPU_MINOR_VERSION, 187
STARPU_RELEASE_VERSION, 187
starpu_get_version, 187

wait_request
starpu_disk_ops, 287

where
starpu_codelet, 291
starpu_task, 296

will_use_mpi
starpu_conf, 189

worker_composed_sched_component
starpu_sched_component_specs, 457

workerid
starpu_task, 300

workerids
starpu_task, 300
starpu_worker_collection, 219

workerids_len
starpu_task, 301

workerorder
starpu_task, 300

workers
starpu_sched_component, 453

Generated by Doxygen

INDEX 605

workers_bindid
starpu_conf, 190

workers_cuda_gpuid
starpu_conf, 190

workers_in_ctx
starpu_sched_component, 453

workers_mic_deviceid
starpu_conf, 191

workers_mpi_ms_deviceid
starpu_conf, 191

workers_opencl_gpuid
starpu_conf, 190

Workers’ Properties, 217
STARPU_MAXCPUS, 220
STARPU_MAXNODES, 220
STARPU_MAXNUMANODES, 220
STARPU_NMAXWORKERS, 220
STARPU_ANY_WORKER, 221
STARPU_CPU_WORKER, 221
STARPU_CUDA_WORKER, 221
STARPU_MIC_WORKER, 221
STARPU_MPI_MS_WORKER, 221
STARPU_OPENCL_WORKER, 221
STARPU_WORKER_LIST, 221
STARPU_WORKER_TREE, 221
starpu_cpu_worker_get_count, 221
starpu_cuda_worker_get_count, 221
starpu_memory_node_get_name, 224
starpu_memory_nodes_get_count, 224
starpu_memory_nodes_get_numa_count, 224
starpu_memory_nodes_numa_devid_to_id, 224
starpu_memory_nodes_numa_id_to_devid, 224
starpu_mic_device_get_count, 222
starpu_mic_worker_get_count, 222
starpu_mpi_ms_worker_get_count, 222
starpu_node_get_kind, 224
starpu_node_kind, 220
starpu_opencl_worker_get_count, 221
starpu_worker_archtype, 220
starpu_worker_collection_type, 221
starpu_worker_display_names, 223
starpu_worker_get_by_devid, 223
starpu_worker_get_by_type, 222
starpu_worker_get_count, 221
starpu_worker_get_count_by_type, 222
starpu_worker_get_devid, 223
starpu_worker_get_hwloc_cpuset, 223
starpu_worker_get_hwloc_obj, 223
starpu_worker_get_id, 222
starpu_worker_get_id_check, 220
starpu_worker_get_ids_by_type, 222
starpu_worker_get_local_memory_node, 224
starpu_worker_get_memory_node, 224
starpu_worker_get_name, 223
starpu_worker_get_relax_state, 225
starpu_worker_get_type, 222
starpu_worker_get_type_as_string, 223
starpu_worker_lock, 225

starpu_worker_lock_self, 225
starpu_worker_relax_off, 225
starpu_worker_relax_on, 225
starpu_worker_sched_op_pending, 224
starpu_worker_set_going_to_sleep_callback, 226
starpu_worker_set_waking_up_callback, 226
starpu_worker_trylock, 225
starpu_worker_unlock, 225
starpu_worker_unlock_self, 225

write
starpu_disk_ops, 286

Generated by Doxygen

	1 Introduction
	1.1 Motivation
	1.2 StarPU in a Nutshell
	1.2.1 Codelet and Tasks
	1.2.2 StarPU Data Management Library

	1.3 Application Taskification
	1.4 Glossary
	1.5 Research Papers
	1.6 StarPU Applications
	1.7 Further Reading

	I StarPU Basics
	2 Building and Installing StarPU
	2.1 Installing a Binary Package
	2.2 Installing from Source
	2.2.1 Optional Dependencies
	2.2.2 Getting Sources
	2.2.3 Configuring StarPU
	2.2.4 Building StarPU
	2.2.5 Installing StarPU

	2.3 Setting up Your Own Code
	2.3.1 Setting Flags for Compiling, Linking and Running Applications
	2.3.2 Integrating StarPU in a Build System
	2.3.3 Running a Basic StarPU Application
	2.3.4 Running a Basic StarPU Application on Microsoft Visual C
	2.3.5 Kernel Threads Started by StarPU
	2.3.6 Enabling OpenCL

	2.4 Benchmarking StarPU
	2.4.1 Task Size Overhead
	2.4.2 Data Transfer Latency
	2.4.3 Matrix-Matrix Multiplication
	2.4.4 Cholesky Factorization
	2.4.5 LU Factorization
	2.4.6 Simulated Benchmarks

	3 Basic Examples
	3.1 Hello World
	3.1.1 Required Headers
	3.1.2 Defining A Codelet
	3.1.3 Submitting A Task
	3.1.4 Execution Of Hello World
	3.1.5 Passing Arguments To The Codelet
	3.1.6 Defining A Callback
	3.1.7 Where To Execute A Codelet

	3.2 Vector Scaling
	3.2.1 Source Code of Vector Scaling
	3.2.2 Execution of Vector Scaling

	3.3 Vector Scaling on an Hybrid CPU/GPU Machine
	3.3.1 Definition of the CUDA Kernel
	3.3.2 Definition of the OpenCL Kernel
	3.3.3 Definition of the Main Code
	3.3.4 Execution of Hybrid Vector Scaling

	II StarPU Quick Programming Guide
	4 Advanced Examples
	5 Check List When Performance Are Not There
	5.1 Check Task Size
	5.2 Configuration Which May Improve Performance
	5.3 Data Related Features Which May Improve Performance
	5.4 Task Related Features Which May Improve Performance
	5.5 Scheduling Related Features Which May Improve Performance
	5.6 CUDA-specific Optimizations
	5.7 OpenCL-specific Optimizations
	5.8 Detecting Stuck Conditions
	5.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations
	5.10 How To Reduce The Memory Footprint Of Internal Data Structures
	5.11 How To Reuse Memory
	5.12 Performance Model Calibration
	5.13 Profiling
	5.14 Overhead Profiling

	III StarPU Inside
	6 Tasks In StarPU
	6.1 Task Granularity
	6.2 Task Submission
	6.3 Task Priorities
	6.4 Task Dependencies
	6.4.1 Sequential Consistency
	6.4.2 Tasks And Tags Dependencies

	6.5 Setting Many Data Handles For a Task
	6.6 Setting a Variable Number Of Data Handles For a Task
	6.7 Using Multiple Implementations Of A Codelet
	6.8 Enabling Implementation According To Capabilities
	6.9 Insert Task Utility
	6.10 Getting Task Children
	6.11 Parallel Tasks
	6.11.1 Fork-mode Parallel Tasks
	6.11.2 SPMD-mode Parallel Tasks
	6.11.3 Parallel Tasks Performance
	6.11.4 Combined Workers
	6.11.5 Concurrent Parallel Tasks
	6.11.6 Synchronization Tasks

	7 Data Management
	7.1 Data Interface
	7.1.1 Variable Data Interface
	7.1.2 Vector Data Interface
	7.1.3 Matrix Data Interface
	7.1.4 Block Data Interface
	7.1.5 BCSR Data Interface
	7.1.6 CSR Data Interface
	7.1.7 Data Interface with Variable Size

	7.2 Data Management
	7.3 Data Prefetch
	7.4 Partitioning Data
	7.5 Asynchronous Partitioning
	7.6 Manual Partitioning
	7.7 Handles data buffer pointers
	7.8 Defining A New Data Filter
	7.9 Data Reduction
	7.10 Commute Data Access
	7.11 Concurrent Data Accesses
	7.12 Temporary Buffers
	7.12.1 Temporary Data
	7.12.2 Scratch Data

	7.13 The Multiformat Interface
	7.14 Defining A New Data Interface
	7.14.1 Data registration
	7.14.2 Data allocation
	7.14.3 Data copy
	7.14.4 Data pack/unpack

	7.15 Specifying A Target Node For Task Data

	8 Scheduling
	8.1 Task Scheduling Policies
	8.1.1 Non Performance Modelling Policies
	8.1.2 Performance Model-Based Task Scheduling Policies
	8.1.3 Modularized Schedulers

	8.2 Task Distribution Vs Data Transfer
	8.3 Energy-based Scheduling
	8.4 Static Scheduling
	8.5 Heteroprio

	9 Scheduling Contexts
	9.1 General Ideas
	9.2 Creating A Context
	9.2.1 Creating A Context With The Default Behavior

	9.3 Creating A Context To Partition a GPU
	9.4 Modifying A Context
	9.5 Submitting Tasks To A Context
	9.6 Deleting A Context
	9.7 Emptying A Context

	10 Scheduling Context Hypervisor
	10.1 What Is The Hypervisor
	10.2 Start the Hypervisor
	10.3 Interrogate The Runtime
	10.4 Trigger the Hypervisor
	10.5 Resizing Strategies
	10.6 Defining A New Hypervisor Policy

	11 How To Define a New Scheduling Policy
	11.1 Introduction
	11.2 Helper functions for defining a scheduling policy (Basic or modular)
	11.3 Defining A New Basic Scheduling Policy
	11.4 Defining A New Modular Scheduling Policy
	11.4.1 Interface
	11.4.2 Building a Modularized Scheduler
	11.4.3 Management of parallel task
	11.4.4 Writing a Scheduling Component

	11.5 Graph-based Scheduling
	11.6 Debugging Scheduling

	12 Debugging Tools
	12.1 TroubleShooting In General
	12.2 Using The Gdb Debugger
	12.3 Using Other Debugging Tools
	12.4 Using The Temanejo Task Debugger

	13 Online Performance Tools
	13.1 On-line Performance Feedback
	13.1.1 Enabling On-line Performance Monitoring
	13.1.2 Per-task Feedback
	13.1.3 Per-codelet Feedback
	13.1.4 Per-worker Feedback
	13.1.5 Bus-related Feedback
	13.1.6 MPI-related Feedback

	13.2 Task And Worker Profiling
	13.3 Performance Model Example

	14 Offline Performance Tools
	14.1 Off-line Performance Feedback
	14.1.1 Generating Traces With FxT
	14.1.2 Limiting The Scope Of The Trace

	14.2 Performance Of Codelets
	14.3 Data trace and tasks length
	14.4 Trace Statistics
	14.5 Theoretical Lower Bound On Execution Time
	14.6 Theoretical Lower Bound On Execution Time Example
	14.7 Trace visualization with StarVZ
	14.8 Memory Feedback
	14.9 Data Statistics

	15 Frequently Asked Questions
	15.1 How To Initialize A Computation Library Once For Each Worker?
	15.2 Using The Driver API
	15.3 On-GPU Rendering
	15.4 Using StarPU With MKL 11 (Intel Composer XE 2013)
	15.5 Thread Binding on NetBSD
	15.6 StarPU permanently eats 100% of all CPUs
	15.7 Interleaving StarPU and non-StarPU code
	15.8 When running with CUDA or OpenCL devices, I am seeing less CPU cores
	15.9 StarPU does not see my CUDA device
	15.10 StarPU does not see my OpenCL device
	15.11 I keep getting a `¨Incorrect performance model file`¨ error

	IV StarPU Extensions
	16 Out Of Core
	16.1 Introduction
	16.2 Use a new disk memory
	16.3 Data Registration
	16.4 Using Wont Use
	16.5 Examples: disk_copy
	16.6 Examples: disk_compute
	16.7 Performances
	16.8 Feedback Figures
	16.9 Disk functions

	17 MPI Support
	17.1 Building with MPI support
	17.2 Example Used In This Documentation
	17.3 About Not Using The MPI Support
	17.4 Simple Example
	17.5 How to Initialize StarPU-MPI
	17.6 Point To Point Communication
	17.7 Exchanging User Defined Data Interface
	17.8 MPI Insert Task Utility
	17.9 Pruning MPI Task Insertion
	17.10 Temporary Data
	17.11 Per-node Data
	17.12 Priorities
	17.13 MPI Cache Support
	17.14 MPI Data Migration
	17.15 MPI Collective Operations
	17.16 Make StarPU-MPI Progression Thread Execute Tasks
	17.17 Debugging MPI
	17.18 More MPI examples
	17.19 Using the NewMadeleine communication library
	17.20 MPI Master Slave Support

	18 FFT Support
	18.1 Compilation

	19 MIC Xeon Phi Support
	19.1 Compilation
	19.2 Porting Applications To MIC Xeon Phi
	19.3 Launching Programs

	20 Native Fortran Support
	20.1 Implementation Details and Specificities
	20.1.1 Prerequisites
	20.1.2 Configuration
	20.1.3 Examples
	20.1.4 Compiling a Native Fortran Application

	20.2 Fortran Translation for Common StarPU API Idioms
	20.3 Uses, Initialization and Shutdown
	20.4 Fortran Flavor of StarPU's Variadic Insert_task
	20.5 Functions and Subroutines Expecting Data Structures Arguments
	20.6 Additional Notes about the Native Fortran Support
	20.6.1 Using StarPU with Older Fortran Compilers
	20.6.2 Valid API Mixes and Language Mixes

	21 SOCL OpenCL Extensions
	22 SimGrid Support
	22.1 Preparing Your Application For Simulation
	22.2 Calibration
	22.3 Simulation
	22.4 Simulation On Another Machine
	22.5 Simulation Examples
	22.6 Simulations On Fake Machines
	22.7 Tweaking Simulation
	22.8 MPI Applications
	22.9 Debugging Applications
	22.10 Memory Usage

	23 The StarPU OpenMP Runtime Support (SORS)
	23.1 Implementation Details and Specificities
	23.1.1 Main Thread
	23.1.2 Extended Task Semantics

	23.2 Configuration
	23.3 Initialization and Shutdown
	23.4 Parallel Regions and Worksharing
	23.4.1 Parallel Regions
	23.4.2 Parallel For
	23.4.3 Sections
	23.4.4 Single

	23.5 Tasks
	23.5.1 Explicit Tasks
	23.5.2 Data Dependencies
	23.5.3 TaskWait and TaskGroup

	23.6 Synchronization Support
	23.6.1 Simple Locks
	23.6.2 Nestable Locks
	23.6.3 Critical Sections
	23.6.4 Barriers

	24 Clustering a Machine
	24.1 General Ideas
	24.2 Creating Clusters
	24.3 Example Of Constraining OpenMP
	24.4 Creating Custom Clusters
	24.5 Clusters With Scheduling

	25 Interoperability Support
	25.1 StarPU Resource Management
	25.1.1 Linking a program with the starpurm module
	25.1.2 Initialization and Shutdown
	25.1.3 Default Context
	25.1.4 Temporary Contexts

	V StarPU Reference API
	26 Execution Configuration Through Environment Variables
	26.1 Configuring Workers
	26.2 Configuring The Scheduling Engine
	26.3 Extensions
	26.4 Miscellaneous And Debug
	26.5 Configuring The Hypervisor

	27 Compilation Configuration
	27.1 Common Configuration
	27.2 Configuring Workers
	27.3 Extension Configuration
	27.4 Advanced Configuration

	28 Module Index
	28.1 Modules

	29 Deprecated List
	30 Module Documentation a.k.a StarPU's API
	30.1 Versioning
	30.1.1 Detailed Description
	30.1.2 Macro Definition Documentation
	30.1.3 Function Documentation

	30.2 Initialization and Termination
	30.2.1 Detailed Description
	30.2.2 Data Structure Documentation
	30.2.3 Macro Definition Documentation
	30.2.4 Function Documentation

	30.3 Standard Memory Library
	30.3.1 Detailed Description
	30.3.2 Macro Definition Documentation
	30.3.3 Function Documentation

	30.4 Toolbox
	30.4.1 Detailed Description
	30.4.2 Macro Definition Documentation

	30.5 Threads
	30.5.1 Detailed Description
	30.5.2 Macro Definition Documentation
	30.5.3 Function Documentation

	30.6 Bitmap
	30.6.1 Detailed Description
	30.6.2 Function Documentation

	30.7 Workers’ Properties
	30.7.1 Detailed Description
	30.7.2 Data Structure Documentation
	30.7.3 Macro Definition Documentation
	30.7.4 Enumeration Type Documentation
	30.7.5 Function Documentation

	30.8 Data Management
	30.8.1 Detailed Description
	30.8.2 Macro Definition Documentation
	30.8.3 Typedef Documentation
	30.8.4 Enumeration Type Documentation
	30.8.5 Function Documentation

	30.9 Data Interfaces
	30.9.1 Detailed Description
	30.9.2 Data Structure Documentation
	30.9.3 Macro Definition Documentation
	30.9.4 Enumeration Type Documentation
	30.9.5 Function Documentation

	30.10 Data Partition
	30.10.1 Detailed Description
	30.10.2 Data Structure Documentation
	30.10.3 Function Documentation

	30.11 Out Of Core
	30.11.1 Detailed Description
	30.11.2 Data Structure Documentation
	30.11.3 Macro Definition Documentation
	30.11.4 Function Documentation
	30.11.5 Variable Documentation

	30.12 Codelet And Tasks
	30.12.1 Detailed Description
	30.12.2 Data Structure Documentation
	30.12.3 Macro Definition Documentation
	30.12.4 Typedef Documentation
	30.12.5 Enumeration Type Documentation
	30.12.6 Function Documentation

	30.13 Task Insert Utility
	30.13.1 Detailed Description
	30.13.2 Data Structure Documentation
	30.13.3 Macro Definition Documentation
	30.13.4 Function Documentation

	30.14 Explicit Dependencies
	30.14.1 Detailed Description
	30.14.2 Typedef Documentation
	30.14.3 Function Documentation

	30.15 Performance Model
	30.15.1 Detailed Description
	30.15.2 Data Structure Documentation
	30.15.3 Enumeration Type Documentation
	30.15.4 Function Documentation
	30.15.5 Variable Documentation

	30.16 Profiling
	30.16.1 Detailed Description
	30.16.2 Data Structure Documentation
	30.16.3 Macro Definition Documentation
	30.16.4 Function Documentation

	30.17 Theoretical Lower Bound on Execution Time
	30.17.1 Detailed Description
	30.17.2 Function Documentation

	30.18 CUDA Extensions
	30.18.1 Detailed Description
	30.18.2 Macro Definition Documentation
	30.18.3 Function Documentation

	30.19 OpenCL Extensions
	30.19.1 Detailed Description
	30.19.2 Data Structure Documentation
	30.19.3 Macro Definition Documentation
	30.19.4 Function Documentation

	30.20 OpenMP Runtime Support
	30.20.1 Detailed Description
	30.20.2 Data Structure Documentation
	30.20.3 Macro Definition Documentation
	30.20.4 Enumeration Type Documentation
	30.20.5 Function Documentation

	30.21 MIC Extensions
	30.21.1 Detailed Description
	30.21.2 Macro Definition Documentation
	30.21.3 Typedef Documentation
	30.21.4 Function Documentation

	30.22 Miscellaneous Helpers
	30.22.1 Detailed Description
	30.22.2 Macro Definition Documentation
	30.22.3 Function Documentation

	30.23 FxT Support
	30.23.1 Detailed Description
	30.23.2 Data Structure Documentation
	30.23.3 Function Documentation

	30.24 FFT Support
	30.24.1 Detailed Description
	30.24.2 Function Documentation

	30.25 MPI Support
	30.25.1 Detailed Description
	30.25.2 Macro Definition Documentation
	30.25.3 Typedef Documentation
	30.25.4 Function Documentation

	30.26 Task Bundles
	30.26.1 Detailed Description
	30.26.2 Typedef Documentation
	30.26.3 Function Documentation

	30.27 Task Lists
	30.27.1 Detailed Description
	30.27.2 Data Structure Documentation
	30.27.3 Function Documentation

	30.28 Parallel Tasks
	30.28.1 Detailed Description
	30.28.2 Function Documentation

	30.29 Running Drivers
	30.29.1 Detailed Description
	30.29.2 Data Structure Documentation
	30.29.3 Function Documentation

	30.30 Expert Mode
	30.30.1 Detailed Description
	30.30.2 Function Documentation

	30.31 Scheduling Contexts
	30.31.1 Detailed Description
	30.31.2 Macro Definition Documentation
	30.31.3 Function Documentation

	30.32 Scheduling Policy
	30.32.1 Detailed Description
	30.32.2 Data Structure Documentation
	30.32.3 Macro Definition Documentation
	30.32.4 Function Documentation

	30.33 Tree
	30.33.1 Detailed Description
	30.33.2 Data Structure Documentation

	30.34 Scheduling Context Hypervisor - Building a new resizing policy
	30.34.1 Detailed Description
	30.34.2 Data Structure Documentation
	30.34.3 Macro Definition Documentation
	30.34.4 Function Documentation

	30.35 Scheduling Context Hypervisor - Regular usage
	30.35.1 Detailed Description
	30.35.2 Function Documentation
	30.35.3 Variable Documentation

	30.36 Scheduling Context Hypervisor - Linear Programming
	30.36.1 Detailed Description
	30.36.2 Function Documentation

	30.37 Modularized Scheduler Interface
	30.37.1 Detailed Description
	30.37.2 Data Structure Documentation
	30.37.3 Macro Definition Documentation
	30.37.4 Enumeration Type Documentation
	30.37.5 Function Documentation

	30.38 Clustering Machine
	30.38.1 Detailed Description
	30.38.2 Macro Definition Documentation
	30.38.3 Enumeration Type Documentation
	30.38.4 Function Documentation

	30.39 Interoperability Support
	30.39.1 Detailed Description
	30.39.2 Enumeration Type Documentation
	30.39.3 Function Documentation

	30.40 Master Slave Extension
	30.40.1 Detailed Description

	30.41 Random Functions
	30.41.1 Detailed Description

	30.42 Sink
	30.42.1 Detailed Description

	31 File Index
	31.1 File List

	32 File Documentation
	32.1 starpu.h File Reference
	32.2 starpu_bitmap.h File Reference
	32.3 starpu_bound.h File Reference
	32.4 starpu_clusters.h File Reference
	32.5 starpu_config.h File Reference
	32.5.1 Macro Definition Documentation

	32.6 starpu_cublas.h File Reference
	32.7 starpu_cublas_v2.h File Reference
	32.8 starpu_cusparse.h File Reference
	32.9 starpu_cuda.h File Reference
	32.10 starpu_data.h File Reference
	32.11 starpu_data_filters.h File Reference
	32.12 starpu_data_interfaces.h File Reference
	32.13 starpu_deprecated_api.h File Reference
	32.14 starpu_disk.h File Reference
	32.15 starpu_driver.h File Reference
	32.16 starpu_expert.h File Reference
	32.17 starpu_fxt.h File Reference
	32.18 starpu_hash.h File Reference
	32.19 starpu_helper.h File Reference
	32.20 starpu_heteroprio.h File Reference
	32.20.1 Function Documentation

	32.21 starpu_mic.h File Reference
	32.22 starpu_mod.f90 File Reference
	32.23 starpu_mpi.h File Reference
	32.24 starpu_mpi_lb.h File Reference
	32.25 starpu_mpi_ms.h File Reference
	32.26 starpu_opencl.h File Reference
	32.27 starpu_openmp.h File Reference
	32.28 starpu_perfmodel.h File Reference
	32.29 starpu_profiling.h File Reference
	32.30 starpu_rand.h File Reference
	32.31 starpu_sched_component.h File Reference
	32.32 starpu_sched_ctx.h File Reference
	32.33 starpu_sched_ctx_hypervisor.h File Reference
	32.33.1 Function Documentation

	32.34 starpu_scheduler.h File Reference
	32.35 starpu_simgrid_wrap.h File Reference
	32.36 starpu_sink.h File Reference
	32.37 starpu_stdlib.h File Reference
	32.38 starpu_task.h File Reference
	32.38.1 Macro Definition Documentation

	32.39 starpu_task_bundle.h File Reference
	32.40 starpu_task_dep.h File Reference
	32.41 starpu_task_list.h File Reference
	32.42 starpu_task_util.h File Reference
	32.43 starpu_thread.h File Reference
	32.43.1 Data Structure Documentation

	32.44 starpu_thread_util.h File Reference
	32.45 starpu_tree.h File Reference
	32.46 starpu_util.h File Reference
	32.47 starpu_worker.h File Reference
	32.48 starpufft.h File Reference
	32.49 sc_hypervisor.h File Reference
	32.50 sc_hypervisor_config.h File Reference
	32.50.1 Data Structure Documentation

	32.51 sc_hypervisor_lp.h File Reference
	32.52 sc_hypervisor_monitoring.h File Reference
	32.52.1 Data Structure Documentation

	32.53 sc_hypervisor_policy.h File Reference
	32.54 starpurm.h File Reference

	33 Deprecated List

	VI Appendix
	34 Full Source Code for the ’Scaling a Vector’ Example
	34.1 Main Application
	34.2 CPU Kernel
	34.3 CUDA Kernel
	34.4 OpenCL Kernel
	34.4.1 Invoking the Kernel
	34.4.2 Source of the Kernel

	35 The GNU Free Documentation License
	35.1 ADDENDUM: How to use this License for your documents

	Index

