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1 Introduction

This report is intended to serve as a companion document to the User Documentation of
ida [6]. It provides details, with listings, on the example programs supplied with the ida
distribution package.

The ida distribution contains examples of four types: serial C examples, parallel C
examples, Fortran examples, petsc examples, and Trilinos examples. With the exception
of “demo”-type example files, the names of all the examples distributed with sundials are
of the form [slv][PbName]_[ls]_[prec]_[p], where

[slv] identifies the solver (for ida examples this is ida, while for fida examples, this is fida);

[PbName] identifies the problem;

[ls] identifies the linear solver module used;

[prec] indicates the ida preconditioner module used (if applicable — for examples using a
Krylov linear solver and the idabbdpre module, this will be bbd);

[p] indicates an example using the parallel vector module nvector parallel.

The following lists summarize all examples distributed with ida.

The ida distribution contains, in the srcdir/examples/ida/serial directory, the following
nine serial examples (using the nvector serial module):

• idaRoberts dns solves the Robertson chemical kinetics problem [8], which consists of
two differential equations and one algebraic constraint. It also uses the rootfinding
feature of ida.

The problem is solved with the sunlinsol dense linear solver using a user-supplied
Jacobian.

• idaRoberts klu is the same as idaRoberts dns but uses the KLU sparse direct linear
solver.

• idaRoberts sps is the same as idaRoberts dns but uses the SuperLUMT sparse direct
linear solver (with one thread).

• idaSlCrank dns solves a system of index-2 DAEs, modeling a planar slider-crank mech-
anism.

The problem is obtained through a stabilized index reduction (Gear-Gupta-Leimkuhler)
starting from the index-3 DAE equations of motion derived using three generalized
coordinates and two algebraic position constraints.

• idaHeat2D bnd solves a 2-D heat equation, semidiscretized to a DAE on the unit square.

This program solves the problem with the sunlinsol band linear solver and the default
difference-quotient Jacobian approximation. For purposes of illustration, IDACalcIC is
called to compute correct values at the boundary, given incorrect values as input initial
guesses. The constraint u > 0.0 is imposed for all components.
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• idaHeat2D kry solves the same 2-D heat equation problem as idaHeat2D bnd, with
the Krylov linear solver sunlinsol spgmr. The preconditioner uses only the diagonal
elements of the Jacobian.

• idaHeat2D klu solves the same 2-D heat equation problem as idaHeat2D bnd, with
sparse linear solver sunlinsol klu.

• idaHeat2D sps solves the same 2-D heat equation problem as idaHeat2D bnd, with
sparse linear solver SuperLUMT.

• idaFoodWeb bnd solves a system of PDEs modelling a food web problem, with predator-
prey interaction and diffusion, on the unit square in 2-D, using the band linear solver.

• idaFoodWeb kry solves the same problem as idaFoodWeb bnd, but with sunlinsol spgmr
and a user-supplied preconditioner.

The PDEs are discretized in space to a system of DAEs which are solved using the
sunlinsol band linear solver with the default difference-quotient Jacobian approxi-
mation.

• idaKrylovDemo ls solves the same problem as idaHeat2D kry, with three Krylov linear
solvers sunlinsol spgmr, sunlinsol spbcgs, and sunlinsol sptfqmr. The precon-
ditioner uses only the diagonal elements of the Jacobian.

In the srcdir/examples/ida/parallel directory, the ida distribution contains the following
four parallel examples (using the nvector parallel module):

• idaHeat2D kry p solves the same 2-D heat equation problem as idaHeat2D kry, with
sunlinsol spgmr in parallel, and with a user-supplied diagonal preconditioner,

• idaHeat2D kry bbd p solves the same problem as idaHeat2D kry p.

This program uses the Krylov linear solver sunlinsol spgmr in parallel, and the band-
block-diagonal preconditioner idabbdpre with half-bandwidths equal to 1.

• idaFoodWeb kry p solves the same food web problem as idaFoodWeb bnd, but with
sunlinsol spgmr and a user-supplied preconditioner.

The preconditioner supplied to sunlinsol spgmr is the block-diagonal part of the
Jacobian with ns × ns blocks arising from the reaction terms only (ns = number of
species).

• idaFoodWeb kry bbd p solves the same food web problem as idaFoodWeb kry p.

This program solves the problem using sunlinsol spgmr in parallel and the idabbd-
pre preconditioner.

As part of the fida module, in the four subdirectories fcmix serial, fcmix parallel,
fcmix openmp, and fcmix pthreads, within the directory srcdir/examples/ida, are the fol-
lowing four examples for the Fortran-C interface:

• fidaRoberts dns is a serial chemical kinetics example (dense) with rootfinding, equiv-
alent to idaRoberts dns.

2



• fidaHeat2D kry bbd p is a parallel example (spgmr/idabbdpre) equivalent to the
example idaHeat2D kry bbd p.

• fidaRoberts dns openmp is the same as fidaRoberts dns but uses the NVECTOR
module NVECTOR OPENMP.

• fidaRoberts dns pthreads is the same as fidaRoberts dns but uses the NVECTOR
module NVECTOR PTHREADS.

Finally, in the subdirectory petsc of examples/ida are the following examples:

• idaHeat2D kry petsc solves the same problem as idaHeat2D kry (with SPGMR) but
using the petsc vector module.

• idaHeat2D jac petsc solves the same problem as idaHeat2D kry but using the default
petsc Krylov solver and the petsc vector module.

In the following sections, we give detailed descriptions of some (but not all) of these examples.
We also give our output files for each of these examples, but users should be cautioned that
their results may differ slightly from these. Solution values may differ within tolerances, and
differences in cumulative counters, such as numbers of steps or Newton iterations, may differ
from one machine environment to another by as much as 10% to 20%.

In the descriptions below, we make frequent references to the ida User Document [6]. All
citations to specific sections (e.g. §??) are references to parts of that User Document, unless
explicitly stated otherwise.

Note. The examples in the ida distribution are written in such a way as to compile and
run for any combination of configuration options during the installation of sundials (see
Appendix ?? in the User Guide). As a consequence, they contain portions of code that will
not be typically present in a user program. For example, all example programs make use of
the variables SUNDIALS EXTENDED PRECISION and SUNDIALS DOUBLE PRECISION to test if the
solver libraries were built in extended or double precision, and use the appropriate conversion
specifiers in printf functions.
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2 Serial example problems

2.1 A dense example: idaRoberts dns

This example, due to Robertson [8], is a model of a three-species chemical kinetics system
written in DAE form. Differential equations are given for species y1 and y2 while an algebraic
equation determines y3. The equations for the species concentrations yi(t) are:

y′1 = −.04y1 + 104y2y3

y′2 = +.04y1 − 104y2y3 − 3 · 107y22
0 = y1 + y2 + y3 − 1 .

(1)

The initial values are taken as y1 = 1, y2 = 0, and y3 = 0 This example computes the three
concentration components on the interval from t = 0 through t = 4 · 1010. While integrating
the system, the program also use the rootfinding feature to find the points at which y1 = 10−4

or at which y3 = 0.01.
We give a rather detailed explanation of the parts of the program and their interaction

with ida.
Following the initial comment block, this program has a number of #include lines, which

allow access to useful items in ida header files. The sundials types.h file provides the
definition of the type realtype (see §?? in the user guide [6] for details). For now, it suffices
to read realtype as double. The ida.h file provides prototypes for the ida functions to
be called (excluding the linear solver selection function), and also a number of constants
that are to be used in setting input arguments and testing the return value of IDASolve.
The nvector serial.h file is the header file for the serial implementation of the nvector
module and includes definitions of the N Vector type, a macro to access vector components,
and prototypes for the serial implementation specific machine environment memory allo-
cation and freeing functions. Finally, note that the include files sunmatrix dense.h and
sunlinsol dense.h include definition of the dense matrix and linear solver modules, as well
as a macro for accessing matrix elements.

This program includes the user-defined accessor macro IJth that is useful in writing
the problem functions in a form closely matching the mathematical description of the DAE
system, i.e. with components numbered from 1 instead of from 0. The IJth macro is used
to access elements of a dense matrix of type sunmatdense. It is defined using the accessor
macro SM ELEMENT D which numbers matrix rows and columns starting with 0. The macro
SM ELEMENT D is fully described in §??.

The program prologue ends with prototypes of the three user-supplied functions that are
called by ida and the prototypes of five private functions. Of the latter, the four Print***
functions perform printing operations, and check flag tests the return flag from the ida
user-callable functions.

After various declarations, the main program begins by allocating memory for the yy,
yp, and avtol vectors using N VNew Serial with a length argument of NEQ (= 3). The lines
following that load the initial values of the dependendent variable vectors into yy and yp, and
set the relative tolerance rtol and absolute tolerance vector avtol. Serial N Vector values
are set by first accessing the pointer to their underlying data using the macro NV DATA S

defined by nvector serial in nvector serial.h.
The calls to N VNew Serial, and also later calls to IDA*** functions, make use of a private

function, check flag, which examines the return value and prints a message if there was a
failure. This check flag function was written to be used for any serial sundials application.
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The call to IDACreate creates the ida solver memory block. The return value of this
function is a pointer to the memory block for this problem. In the case of failure, the return
value is NULL. This pointer must be passed in the remaining calls to ida functions.

The call to IDAInit allocates the solver memory block. Its arguments include the name
of the C function resrob defining the residual function F (t, y, y′), and the initial values of
t, y, and y′. The call to IDASVtolerances specifies a vector of absolute tolerances, and this
call includes the relative tolerance rtol and the absolute tolerance vector avtol. See §??
and §?? for full details of these calls. (The avtol vector is then freed, because ida keeps a
separate copy of it.)

The call to IDARootInit specifies that a rootfinding problem is to be solved along with
the integration of the DAE system, that the root functions are specified in the function grob,
and that there are two such functions. Specifically, they are set to y1 − 0.0001 and y3 − 0.01,
respectively. See §?? for a detailed description of this call.

The calls to SUNDenseMatrix (see §??), SUNLinSol Dense (see §??), IDASetLinearSolver
(see §??) and IDASetJacFn (see §??) specify the sunlinsol dense linear solver with an an-
alytic Jacobian supplied by the user-supplied function jacrob.

The actual solution of the DAE initial value problem is accomplished in the loop over
values of the output time tout. In each pass of the loop, the program calls IDASolve in the
IDA NORMAL mode, meaning that the integrator is to take steps until it overshoots tout and
then interpolate to t =tout, putting the computed value of y(tout) and y′(tout) into yy and
yp, respectively, with tret = tout. The return value in this case is IDA SUCCESS. However,
if IDASolve finds a root before reaching the next value of tout, it returns IDA ROOT RETURN

and stores the root location in tret and the solution there in yy and yp. In either case,
the program prints t (= tret) and yy, and also the cumulative number of steps taken so
far, and the current method order and step size. In the case of a root, the program calls
IDAGetRootInfo to get a length-2 array rootsfound of bits showing which root function was
found to have a root. If IDASolve returned any negative value (indicating a failure), the
program breaks out of the loop. In the case of a IDA SUCCESS return, the value of tout is
advanced (multiplied by 10) and a counter (iout) is advanced, so that the loop can be ended
when that counter reaches the preset number of output times, NOUT = 12. See §?? for full
details of the call to IDASolve.

Finally, the main program calls PrintFinalStats to extract and print several relevant
statistical quantities, such as the total number of steps, the number of residual and Jacobian
evaluations, and the number of error test and convergence test failures. It then calls IDAFree
to free the ida memory block and N VDestroy Serial to free the vectors yy and yp.

The function PrintFinalStats used here is actually suitable for general use in appli-
cations of ida to any problem with a dense Jacobian. It calls various IDAGet*** functions
to obtain the relevant counters, and then prints them. Specifically, these are: the cumula-
tive number of steps (nst), the number of residual evaluations (nre) (excluding those for
difference-quotient Jacobian evaluations), the number of residual evaluations for Jacobian
evaluations (nreLS), the number of Jacobian evaluations (nje), the number of nonlinear
(Newton) iterations (nni), the number of local error test failures (netf), the number of non-
linear convergence failures (ncfn), and the number of grob (root function) evaluations (nge).
These optional outputs are described in §??.

The functions resrob (of type IDAResFn) and jacrob (of type IDALsJacFn) are straight-
forward expressions of the DAE system (1) and its system Jacobian. The function jacrob

makes use of the macro IJth discussed above. See §?? for detailed specifications of IDAResFn.
Similarly, the function grob defines the two functions, g0 and g1, whose roots are to be found.
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See §?? for a detailed description of the grob function.
The output generated by idaRoberts dns is shown below. It shows the output values at

the 12 preset values of tout. It also shows the two root locations found, first at a root of g1,
and then at a root of g0.

idaRoberts dns sample output

idaRoberts_dns: Robertson kinetics DAE serial example problem for IDA

Three equation chemical kinetics problem.

Linear solver: DENSE , with user -supplied Jacobian.

Tolerance parameters: rtol = 0.0001 atol = 1e-08 1e-06 1e-06

Initial conditions y0 = (1 0 0)

Constraints and id not used.

-----------------------------------------------------------------------

t y1 y2 y3 | nst k h

-----------------------------------------------------------------------

2.6402e-01 9.8997e-01 3.4706e-05 1.0000e-02 | 27 2 4.4012e-02

rootsfound [] = 0 1

4.0000e-01 9.8517e-01 3.3864e-05 1.4794e-02 | 29 3 8.8024e-02

4.0000e+00 9.0553e-01 2.2406e-05 9.4452e-02 | 43 4 6.3377e-01

4.0000e+01 7.1579e-01 9.1838e-06 2.8420e-01 | 68 4 3.1932e+00

4.0000e+02 4.5044e-01 3.2218e-06 5.4956e-01 | 95 4 3.3201e+01

4.0000e+03 1.8320e-01 8.9444e-07 8.1680e-01 | 126 3 3.1458e+02

4.0000e+04 3.8992e-02 1.6221e-07 9.6101e-01 | 161 5 2.5058e+03

4.0000e+05 4.9369e-03 1.9842e-08 9.9506e-01 | 202 3 2.6371e+04

4.0000e+06 5.1674e-04 2.0684e-09 9.9948e-01 | 250 3 1.7187e+05

2.0788e+07 1.0000e-04 4.0004e-10 9.9990e-01 | 280 5 1.0513e+06

rootsfound [] = -1 0

4.0000e+07 5.2009e-05 2.0805e-10 9.9995e-01 | 293 4 2.3655e+06

4.0000e+08 5.2012e-06 2.0805e-11 9.9999e-01 | 325 4 2.6808e+07

4.0000e+09 5.1850e-07 2.0740e-12 1.0000e+00 | 348 3 7.4305e+08

4.0000e+10 4.8641e-08 1.9456e-13 1.0000e+00 | 362 2 7.5480e+09

Final Statistics:

Current time = 41226212070.53522

Steps = 362

Error test fails = 15

NLS step fails = 0

Initial step size = 2.164955286048077e-05

Last step size = 7548045540.281308

Current step size = 7548045540.281308

Last method order = 2

Current method order = 2

Residual fn evals = 537

IC linesearch backtrack ops = 0

NLS iters = 537

NLS fails = 5

NLS iters per step = 1.483425414364641

LS setups = 60

Jac fn evals = 60

LS residual fn evals = 0

Prec setup evals = 0

Prec solves = 0

LS iters = 0

LS fails = 0

Jac -times setups = 0
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Jac -times evals = 0

LS iters per NLS iter = 0

Jac evals per NLS iter = 0.111731843575419

Prec evals per NLS iter = 0

Root fn evals = 404

2.2 A banded example: idaFoodWeb bnd

This example is a model of a multi-species food web [3], in which predator-prey relationships
with diffusion in a 2-D spatial domain are simulated. Here we consider a model with s = 2p
species: p predators and p prey. Species 1, . . . , p (the prey) satisfy rate equations, while
species p+ 1, . . . , s (the predators) have infinitely fast reaction rates. The coupled PDEs for
the species concentrations ci(x, y, t) are:{

∂ci/∂t = Ri(x, y, c) + di(c
i
xx + ciyy) i = 1, 2, . . . , p

0 = Ri(x, y, c) + di(c
i
xx + ciyy) i = p+ 1, . . . , s ,

(2)

with

Ri(x, y, c) = ci

bi +
s∑

j=1

aijc
j

 .

Here c denotes the vector {ci}. The interaction and diffusion coefficients (aij , bi, di) can be
functions of (x, y) in general. The choices made for this test problem are as follows:

aij =


−1 i = j

−0.5 · 10−6 i ≤ p, j > p

104 i > p, j ≤ p

0 all other (i, j) ,

bi = bi(x, y) =

{
(1 + αxy + β sin(4πx) sin(4πy)) i ≤ p

−(1 + αxy + β sin(4πx) sin(4πy)) i > p ,

and

di =

{
1 i ≤ p

0.5 i > p .

The spatial domain is the unit square 0 ≤ x, y ≤ 1, and the time interval is 0 ≤ t ≤
1. The boundary conditions are of homogeneous Neumann type (zero normal derivatives)
everywhere. The coefficients are such that a unique stable equilibrium is guaranteed to exist
when α = β = 0 [3]. Empirically, a stable equilibrium appears to exist for (2) when α
and β are positive, although it may not be unique. In this problem we take α = 50 and
β = 1000. For the initial conditions, we set each prey concentration to a simple polynomial
profile satisfying the boundary conditions, while the predator concentrations are all set to a
flat value:

ci(x, y, 0) =

{
10 + i[16x(1− x)y(1− y)]2 i ≤ p ,

105 i > p .

We discretize this PDE system (2) (plus boundary conditions) with central differencing
on an L × L mesh, so as to obtain a DAE system of size N = sL2. The dependent variable
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vector C consists of the values ci(xj , yk, t) grouped first by species index i, then by x, and
lastly by y. At each spatial mesh point, the system has a block of p ODE’s followed by a
block of p algebraic equations, all coupled. For this example, we take p = 1, s = 2, and
L = 20. The Jacobian is banded, with half-bandwidths mu = ml = sL = 40.

The idaFoodWeb bnd.c program includes the files sunmatrix band.h and sunlinsol band.h

in order to use the sunlinsol band linear solver. The former of these files contains the defini-
tion for the band matrix type sunmatrix band, and the SM COLUMN B and SM COLUMN ELEMENT B

macros for accessing matrix elements. See §??. The main ida header file ida.h is included
for the prototypes of the solver user-callable functions and ida constants, while the file
nvector serial.h is included for the definition of the serial N Vector type. The header file
sundials dense.h is included for the newDenseMat function used in allocating memory for
the user data structure.

The include lines at the top of the file are followed by definitions of problem constants
which include the x and y mesh dimensions, MX and MY, the number of equations NEQ, the
scalar relative and absolute tolerances RTOL and ATOL, and various parameters for the food-
web problem.

Spatial discretization of the PDE naturally produces a DAE system in which equations
are numbered by mesh coordinates (i, j). The user-defined macro IJth Vptr isolates the
translation for the mathematical two-dimensional index to the one-dimensional N Vector

index and allows the user to write clean, readable code to access components of the dependent
variable. IJ Vptr(v,i,j) returns a pointer to the location in v corresponding to the species
with index is = 0, x-index ix = i, and y-index jy = j.

The type UserData is a pointer to a structure containing problem data used in the resweb
function. This structure is allocated and initialized at the beginning of main. The pointer to
it, called webdata, is then passed to IDASetUserData and as a result it will be passed back
to the resweb function each time it is called.

The main program is straightforward and very similar to that for idaRoberts dns. The
differences come from the use of the sunlinsol band linear solver and from the use of
the consistent initial conditions algorithm in ida to correct the initial values. The call to
SUNBandMatrix includes the half-bandwidths ml and mu. IDACalcIC is called with the option
IDA YA YDP INIT, meaning that ida is to compute the algebraic components of y and differ-
ential components of y′, given the differential components of y. This option requires that the
N Vector id be set through a call to IDASetId specifying the differential and algebraic com-
ponents. In this example, id has components equal to 1 for the prey (indicating differential
variables) and 0 for the predators (algebraic variables).

Next, the IDASolve function is called in a loop over the output times, and the solution
for the species concentrations at the bottom-left and top-right corners is printed, along with
the cumulative number of time steps, current method order, and current step size.

Finally, the main program calls PrintFinalStats to get and print all of the relevant
statistical quantities. It then calls N VDestroy Serial to free the vectors cc, cp, and id, and
IDAFree to free the ida memory block.

The function PrintFinalStats used here is actually suitable for general use in applica-
tions of ida to any problem with a banded Jacobian. It calls various IDAGet*** functions
to obtain the relevant counters, and then prints them. Specifically, these are: the cumula-
tive number of steps (nst), the number of residual evaluations (nre) (excluding those for
difference-quotient Jacobian evaluations), the number of residual evaluations for Jacobian
evaluations (nreLS), the number of Jacobian evaluations (nje), the number of nonlinear
(Newton) iterations (nni), the number of local error test failures (netf), and the number of
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nonlinear convergence failures (ncfn). These optional outputs are described in §??.
The function resweb is a direct translation of the residual of (2). It first calls the private

function Fweb to initialize the residual vector with the right-hand side of (2) and then it
loops over all grid points, setting residual values appropriately for differential or algebraic
components. The calculation of the interaction terms Ri is done in the function WebRates.

Sample output from idaFoodWeb bnd follows.

idaFoodWeb bnd sample output

idaFoodWeb_bnd: Predator -prey DAE serial example problem for IDA

Number of species ns: 2 Mesh dimensions: 20 x 20 System size: 800

Tolerance parameters: rtol = 1e-05 atol = 1e-05

Linear solver: BAND , Band parameters mu = 40, ml = 40

CalcIC called to correct initial predator concentrations.

-----------------------------------------------------------

t bottom -left top -right | nst k h

-----------------------------------------------------------

0.00e+00 1.0000e+01 1.0000e+01 | 0 0 1.6310e-08

1.0000e+05 1.0000e+05 |

1.00e-03 1.0318e+01 1.0827e+01 | 32 4 1.0823e-04

1.0319e+05 1.0822e+05 |

1.00e-02 1.6188e+02 1.9735e+02 | 127 4 1.4203e-04

1.6189e+06 1.9734e+06 |

1.00e-01 2.4019e+02 2.7072e+02 | 235 1 3.9160e-02

2.4019e+06 2.7072e+06 |

4.00e-01 2.4019e+02 2.7072e+02 | 238 1 3.1328e-01

2.4019e+06 2.7072e+06 |

7.00e-01 2.4019e+02 2.7072e+02 | 239 1 6.2655e-01

2.4019e+06 2.7072e+06 |

1.00e+00 2.4019e+02 2.7072e+02 | 239 1 6.2655e-01

2.4019e+06 2.7072e+06 |

-----------------------------------------------------------

Final run statistics:

Number of steps = 239

Number of residual evaluations = 3339

Number of Jacobian evaluations = 36

Number of nonlinear iterations = 421

Number of error test failures = 3

Number of nonlinear conv. failures = 10

Number of step solver failures = 0

2.3 A Krylov example: idaHeat2D kry

This example solves a discretized 2D heat PDE problem. The DAE system arises from the
Dirichlet boundary condition u = 0, along with the differential equations arising from the

9



discretization of the interior of the region.
The domain is the unit square Ω = {0 ≤ x, y ≤ 1} and the equations solved are:{

∂u/∂t = uxx + uyy (x, y) ∈ Ω

u = 0 (x, y) ∈ ∂Ω .
(3)

The time interval is 0 ≤ t ≤ 10.24, and the initial conditions are u = 16x(1− x)y(1− y).
We discretize the PDE system (3) (plus boundary conditions) with central differencing

on a 10 × 10 mesh, so as to obtain a DAE system of size N = 100. The dependent variable
vector u consists of the values u(xj , yk, t) grouped first by x, and then by y. Each discrete
boundary condition becomes an algebraic equation within the DAE system.

In this case, sunlinsol spgmr.h is included for the definitions of constants and function
prototypes associated with the sunlinsol spgmr linear solver module.

After various initializations (including a vector of constraints with all components set
to 1, imposing all solution components to be non-negative), the main program creates and
initializes the ida memory block. It then creates the sunlinsol spgmr linear solver using
the default MODIFIED GS Gram-Scmidt orthogonalization algorithm, and updates the number
of allowed spgmr restarts to 5. It then attaches this linear solver module to ida with a call
to IDASetLinearSolver.

The user-supplied preconditioner setup and solve functions, PsetupHeat and PsolveHeat,
and the pointer to user data (data) are specified in a call to IDASetPreconditioner. In a
loop over the desired output times, IDASolve is called in IDA NORMAL mode and the maximum
solution norm is printed. Following this, three more counters are printed.

The main program then re-initializes the ida solver and the sunlinsol spgmr linear
solver and solves the problem again, this time using the CLASSICAL GS Gramm-Schmidt
orthogonalization algorithm. Finally, memory for the ida solver and for the various vectors
used is deallocated.

The user-supplied residual function resHeat, of type IDAResFn, loads the DAE residual
with the value of u on the boundary (representing the algebraic equations expressing the
boundary conditions of (3)) and with the spatial discretization of the PDE (using central
differences) in the rest of the domain.

The user-supplied functions PsetupHeat and PsolveHeat together define the left precon-
ditoner matrix P approximating the system Jacobian matrix J = ∂F/∂u+ α∂F/∂u′ (where
the DAE system is F (t, u, u′) = 0), and solve the linear systems Pz = r. Preconditioning is
done in this case by keeping only the diagonal elements of the J matrix above, storing them as
inverses in a vector pp, when computed in PsetupHeat, for subsequent use in PsolveHeat. In
this instance, only cj = α and data (the user data structure) are used from the PsetupHeat
argument list.

Sample output from idaHeat2D kry follows.

idaHeat2D kry sample output

idaHeat2D_kry: Heat equation , serial example problem for IDA

Discretized heat equation on 2D unit square.

Zero boundary conditions , polynomial initial conditions.

Mesh dimensions: 10 x 10 Total system size: 100

Tolerance parameters: rtol = 0 atol = 0.001

Constraints set to force all solution components >= 0.

Linear solver: SPGMR , preconditioner using diagonal elements.
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Case 1: gsytpe = SUN_MODIFIED_GS

Output Summary (umax = max -norm of solution)

time umax k nst nni nje nre nreLS h npe nps

----------------------------------------------------------------------

0.01 8.24106e-01 2 12 14 7 14 7 2.56e-03 8 21

0.02 6.88134e-01 3 15 18 12 18 12 5.12e-03 8 30

0.04 4.70711e-01 3 18 24 21 24 21 6.58e-03 9 45

0.08 2.16509e-01 3 22 29 30 29 30 1.32e-02 9 59

0.16 4.57687e-02 4 28 36 44 36 44 1.32e-02 9 80

0.32 2.09938e-03 4 35 44 67 44 67 2.63e-02 10 111

0.64 0.00000e+00 1 39 51 77 51 77 1.05e-01 12 128

1.28 0.00000e+00 1 41 53 77 53 77 4.21e-01 14 130

2.56 0.00000e+00 1 43 55 77 55 77 1.69e+00 16 132

5.12 0.00000e+00 1 44 56 77 56 77 3.37e+00 17 133

10.24 0.00000e+00 1 45 57 77 57 77 6.74e+00 18 134

Error test failures = 1

Nonlinear convergence failures = 0

Linear convergence failures = 0

Case 2: gstype = SUN_CLASSICAL_GS

Output Summary (umax = max -norm of solution)

time umax k nst nni nje nre nreLS h npe nps

----------------------------------------------------------------------

0.01 8.24106e-01 2 12 14 7 14 7 2.56e-03 8 21

0.02 6.88134e-01 3 15 18 12 18 12 5.12e-03 8 30

0.04 4.70711e-01 3 18 24 21 24 21 6.58e-03 9 45

0.08 2.16509e-01 3 22 29 30 29 30 1.32e-02 9 59

0.16 4.57687e-02 4 28 36 44 36 44 1.32e-02 9 80

0.32 2.09938e-03 4 35 44 67 44 67 2.63e-02 10 111

0.64 0.00000e+00 1 39 51 77 51 77 1.05e-01 12 128

1.28 0.00000e+00 1 41 53 77 53 77 4.21e-01 14 130

2.56 0.00000e+00 1 43 55 77 55 77 1.69e+00 16 132

5.12 0.00000e+00 1 44 56 77 56 77 3.37e+00 17 133

10.24 0.00000e+00 1 45 57 77 57 77 6.74e+00 18 134

Error test failures = 1

Nonlinear convergence failures = 0

Linear convergence failures = 0

2.4 A sparse direct example: idaHeat2D klu

We provide an example of using ida with the KLU sparse direct solver module sunlinsol klu
that solves the same 2D heat PDE problem as idaHeat2D kry with the same zero Dirichlet
boundary conditions and central differencing but with no preconditioner. This example is
mainly based off of the idaHeat2D bnd example program.

Due to the nature of the Jacobian matrix of the 2D heat PDE problem in column major
format, in order to store the Jacobian in compressed sparse column (CSC) format, it was
necessary to have two separate user-supplied Jacobian functions. The function jacHeat3
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sets up the Jacobian in the special case that MGRID, the number of node points used in the
central difference method, is 3. For MGRID ≥ 4, we use the function jacHeat.

The main program is written in the same way it was written in idaHeat2D kry and
idaHeat2D bnd but with a few exceptions. In order to use the sunlinsol klu solver and
associated sunmatrix sparse matrix type, the user must determine the number of non-zero
(nnz) variables and there is a conditional statement to check the size of MGRID in order to
determine which jacHeat function to use.

The user-supplied function jacHeat3 specifies the values of the Jacobian matrix for the
MGRID=3 case for each of the three datatypes needed for CSC format: column pointers
(colptrs), actual data values (data), and row value of the data stored (rowvals).

The user-supplied function jacHeat defines the structure of the Jacobian matrix for a
general MGRID size greater than or equal to 4 in CSC format and fills in the three datatypes
as needed. The system Jacobian matrix is defined as J = ∂F/∂u+ α∂F/∂u′ with cj = α as
before. The column-based structure, which was determined heuristically, was generalized for
any size in the allowable range and to allow for the appropriate number of repeats within the
structure of the Jacobian matrix. The structure’s pattern was found by splitting the matrix
into MGRID blocks and determining the pattern within each block separately for each of the
datatypes.

The ida package also includes support for SUPERLU MT, the parallel sparse direct solver.
The idaHeat2D sps example has been included to demonstrate SUPERLU MT. It is very similar
to idaHeat2D klu.

Sample output from idaHeat2D klu follows.

idaHeat2D klu sample output

idaHeat2D_klu: Heat equation , serial example problem for IDA

Discretized heat equation on 2D unit square.

Zero boundary conditions , polynomial initial conditions.

Mesh dimensions: 10 x 10 Total system size: 100

Tolerance parameters: rtol = 0 atol = 1e-08

Constraints set to force all solution components >= 0.

Linear solver: KLU , sparse direct solver

difference quotient Jacobian

IDACalcIC called with input boundary values = 0

Output Summary (umax = max -norm of solution)

time umax k nst nni nje nre h

. . . . . . . . . . . . . . . . . . .

0.00 9.75461e-01 0 0 0 2 2 5.15e-10

0.01 8.24056e-01 5 53 63 23 65 5.55e-04

0.02 6.88097e-01 5 69 81 24 83 9.99e-04

0.04 4.70961e-01 5 90 106 27 108 1.91e-03

0.08 2.16312e-01 5 113 130 27 132 1.72e-03

0.16 4.53210e-02 5 137 155 28 157 3.43e-03

0.32 1.98864e-03 5 173 193 29 195 6.18e-03

0.64 3.83238e-06 5 210 233 31 235 2.22e-02

1.28 0.00000e+00 1 227 255 34 257 1.78e-01

2.56 0.00000e+00 1 230 258 37 260 1.42e+00

5.12 0.00000e+00 1 231 259 38 261 2.85e+00

10.24 0.00000e+00 1 232 260 39 262 5.69e+00
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netf = 2, ncfn = 0

13



3 Parallel example problems

3.1 A user preconditioner example: idaHeat2D kry p

As an example of using ida with the parallel MPI nvector parallelmodule and the Krylov
linear solver sunlinsol spgmr with user-defined preconditioner, we provide the example
idaHeat2D kry p which solves the same 2-D heat PDE problem as idaHeat2D kry.

In the parallel setting, we can think of the processors as being laid out in a grid of size
NPEX × NPEY, with each processor computing a subset of the solution vector on a submesh
of size MXSUB × MYSUB. As a consequence, the computation of the residual vector requires
that each processor exchange boundary information (namely the components at all interior
subgrid boundaries) with its neighboring processors. The message-passing (implemented
in the function rescomm) uses blocking sends, non-blocking receives, and receive-waiting,
in routines BSend, BRecvPost, and BRecvWait, respectively. The data received from each
neighboring processor is then loaded into a work array, uext, which contains this ghost cell
data along with the local portion of the solution.

The local portion of the residual vector is then computed in the routine reslocal, which
assumes that all inter-processor communication of data needed to calculate rr has already
been done. Components at interior subgrid boundaries are assumed to be in the work array
uext. The local portion of the solution vector uu is first copied into uext. The diffusion terms
are evaluated in terms of the uext array, and the residuals are formed. The zero Dirichlet
boundary conditions are handled here by including the boundary components in the residual,
giving algebraic equations for the discrete boundary conditions.

The preconditioner (implemented in PsetupHeat and PsolveHeat) uses the diagonal el-
ements of the Jacobian only and therefore involves only local calculations.

The idaHeat2D kry p main program begins with MPI calls to initialize MPI and to
set multi-processor environment parameters npes (number of processes) and thispe (local
process index). Then the local and global vector lengths are set, the user-data structure
Userdata is created and initialized, and N Vector variables are created and initialized for
the initial conditions (uu and up), for constraints, for the vector id specifying the differential
and algebraic components of the solution vector, and for the preconditioner (pp). As in
idaHeat2D kry, constraints are passed to ida through the N Vector constraints and the
function IDASetConstraints, with all components set to 1.0 to impose non-negativity on
each solution component. A temporary N Vector res is also created here, for use only in
SetInitialProfiles. In addition, for illustration purposes, idaHeat2D kry p also excludes
the algebraic components of the solution (specified through the N Vector id) from the error
test by calling IDASetSuppressAlg with a flag SUNTRUE.

Sample output from idaHeat2D kry p follows.

idaHeat2D kry p sample output

idaHeat2D_kry_p: Heat equation , parallel example problem for IDA

Discretized heat equation on 2D unit square.

Zero boundary conditions , polynomial initial conditions.

Mesh dimensions: 10 x 10 Total system size: 100

Subgrid dimensions: 5 x 5 Processor array: 2 x 2

Tolerance parameters: rtol = 0 atol = 0.001

Constraints set to force all solution components >= 0.

SUPPRESSALG = SUNTRUE to suppress local error testing on all boundary components.

Linear solver: SUNLinSol_SPGMR Preconditioner: diagonal elements only.
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Output Summary (umax = max -norm of solution)

time umax k nst nni nli nre nreLS h npe nps

----------------------------------------------------------------------

0.00 9.75461e-01 0 0 0 0 0 0 0.00e+00 0 0

0.01 8.24106e-01 2 12 14 7 14 7 2.56e-03 8 21

0.02 6.88134e-01 3 15 18 12 18 12 5.12e-03 8 30

0.04 4.70711e-01 3 18 24 21 24 21 6.58e-03 9 45

0.08 2.16509e-01 3 22 29 30 29 30 1.32e-02 9 59

0.16 4.57687e-02 4 28 36 44 36 44 1.32e-02 9 80

0.32 2.09938e-03 4 35 44 67 44 67 2.63e-02 10 111

0.64 0.00000e+00 1 39 51 77 51 77 1.05e-01 12 128

1.28 0.00000e+00 1 41 53 77 53 77 4.21e-01 14 130

2.56 0.00000e+00 1 43 55 77 55 77 1.69e+00 16 132

5.12 0.00000e+00 1 44 56 77 56 77 3.37e+00 17 133

10.24 0.00000e+00 1 45 57 77 57 77 6.74e+00 18 134

Error test failures = 1

Nonlinear convergence failures = 0

Linear convergence failures = 0

3.2 An IDABBDPRE preconditioner example: idaFoodWeb kry bbd p

In this example, we solve the same food web problem as with idaFoodWeb bnd, but in par-
allel and with the sunlinsol spgmr linear solver and using the idabbdpre module, which
generates and uses a band-block-diagonal preconditioner.

As with idaHeat2D kry p, we use a NPEX × NPEY processor grid, with an MXSUB × MYSUB

submesh on each processor. Again, the residual evaluation begins with the communication of
ghost data (in rescomm), followed by computation using an extended local array, cext, in the
reslocal routine. The exterior Neumann boundary conditions are explicitly handled here
by copying data from the first interior mesh line to the ghost cell locations in cext. Then
the reaction and diffusion terms are evaluated in terms of the cext array, and the residuals
are formed.

The Jacobian block on each processor is banded, and the half-bandwidths of that block are
both equal to NUM SPECIES ·MXSUB. This is the value supplied as mudq and mldq in the call to
IDABBDPrecInit. But in order to reduce storage and computation costs for preconditioning,
we supply the values mukeep = mlkeep = 2 (= NUM SPECIES) as the half-bandwidths of the
retained band matrix blocks. This means that the Jacobian elements are computed with a
difference quotient scheme using the true bandwidth of the block, but only a narrow band
matrix (bandwidth 5) is kept as the preconditioner.

The function reslocal is also passed to the idabbdpre preconditioner as the Gres argu-
ment, while a NULL pointer is passed for the Gcomm argument (since all required communication
for the evaluation of Gres was already done for resweb).

In the idaFoodWeb kry bbd p main program, following MPI initializations and creation of
user data block webdata and N Vector variables, the initial profiles are set, the ida memory
block is created, the sunlinsol spgmr linear solver is created and attached to the ida solver,
and the idabbdpre preconditioner is initialized. The call to IDACalcIC corrects the initial
values so that they are consistent with the DAE algebraic constraints.

In a loop over the desired output times, the main solver function IDASolve is called, and
selected solution components (at the bottom-left and top-right corners of the computational
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domain) are collected on processor 0 and printed to stdout. The main program ends by
printing final solver statistics, freeing memory, and finalizing MPI.

Sample output from idaFoodWeb kry bbd p follows.

idaFoodWeb kry bbd p sample output

idaFoodWeb_kry_bbd_p: Predator -prey DAE parallel example problem for IDA

Number of species ns: 2 Mesh dimensions: 20 x 20 Total system size: 800

Subgrid dimensions: 10 x 10 Processor array: 2 x 2

Tolerance parameters: rtol = 1e-05 atol = 1e-05

Linear solver: SUNLinSol_SPGMR Max. Krylov dimension maxl: 16

Preconditioner: band -block -diagonal (IDABBDPRE), with parameters

mudq = 20, mldq = 20, mukeep = 2, mlkeep = 2

CalcIC called to correct initial predator concentrations

-----------------------------------------------------------

t bottom -left top -right | nst k h

-----------------------------------------------------------

0.00e+00 1.0000e+01 1.0000e+01 | 0 0 1.6310e-08

1.0000e+05 1.0000e+05 |

1.00e-03 1.0318e+01 1.0827e+01 | 33 4 9.7404e-05

1.0319e+05 1.0822e+05 |

1.00e-02 1.6189e+02 1.9735e+02 | 118 4 1.7533e-04

1.6189e+06 1.9735e+06 |

1.00e-01 2.4019e+02 2.7072e+02 | 175 1 3.0682e-02

2.4019e+06 2.7072e+06 |

4.00e-01 2.4019e+02 2.7072e+02 | 178 1 2.4545e-01

2.4019e+06 2.7072e+06 |

7.00e-01 2.4019e+02 2.7072e+02 | 179 1 4.9091e-01

2.4019e+06 2.7072e+06 |

1.00e+00 2.4019e+02 2.7072e+02 | 179 1 4.9091e-01

2.4019e+06 2.7072e+06 |

-----------------------------------------------------------

Final statistics:

Number of steps = 179

Number of residual evaluations = 946

Number of nonlinear iterations = 222

Number of error test failures = 0

Number of nonlinear conv. failures = 0

Number of linear iterations = 722

Number of linear conv. failures = 0

Number of preconditioner setups = 24

Number of preconditioner solves = 946

Number of local residual evals. = 1008
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4 petsc example problems

4.1 A nonstiff example: idaHeat2D kry petsc

This example is the same as the one in 3.1, except it uses petsc vector instead of sundials
native parallel vector implementation. The output of the two examples is identical. In the
following, we will describe only the implementation differences between the two.

Before petsc functions can be called, the library needs to be initialized. In this example
we use initialization without arguments:

PetscInitializeNoArguments();

Alternatively, a call that takes petsc command line arguments could be used. At the end
of the program, PetscFinalize() is called to clean up any objects that petsc may have
created automatically. We use petsc data management library (DM) to create 2D grid and
set the partitioning. In our implementation we follow Example 15 from petsc Time Stepping
component (TS) documentation [2]. We store a pointer to thus created petsc distributed
array object in user defined structure data.

ierr = DMDACreate2d(comm,

DM_BOUNDARY_NONE, /* NONE, PERIODIC, GHOSTED */

DM_BOUNDARY_NONE,

DMDA_STENCIL_STAR, /* STAR, BOX */

MX,

MY,

NPEX,

NPEY,

1, /* degrees of freedom per node */

1, /* stencil width */

NULL,

NULL,

&(data->da));

This call will create MX × MY grid on MPI communicator comm with Dirichlet boundary
conditions, using 5-point star stencil. Once the distributed array is created, we create petsc
vector by calling:

ierr = DMCreateGlobalVector(data->da, &uvec);

Template vector uu is created as a wrapper around petsc vector uvec using N_VMake_petsc

constructor. All other vectors are created by cloning the template to ensure the same parti-
tioning and 2D data mapping is used everywhere. One should note that the template vector
does not own the underlying petsc vector, and it is user’s responsibility to delete it after the
template vector is destroyed.

To use petsc vector wrapper in user supplied functions such as resHeat, one needs
first to extract petsc vector with N_VGetVector_petsc, and then use petsc methods to
access vector elements. Providing petsc tutorial is beyond the scope of this document, and
interested reader should consult [1]. Instead, we provide a brief description of functions used
in this example.
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• PetscFunctionBeginUser;

First executable line of user supplied petsc function. It should precede any other petsc
call in the user supplied function.

• DMGetLocalVector(da,&localU)

Allocates a local vector localU with space for ghost values, based on partitioning in
distributed array da. Vector localU is an object equivalent to array uext in function
reslocal in example in Section 4.1.

• DMDAGetInfo(da,...,&Mx, &My,...)

Function to get information about data array da. In this example it is used only to get
the grid size MX ×MY .

• DMGlobalToLocalBegin(da, U, INSERT VALUES, localU)

Moves data (including ghosts) from the global vector U to the local vector localU.

• DMGlobalToLocalEnd(da, U, INSERT VALUES, localU)

Barrier for DMGlobalToLocalBegin(...).

• DMDAVecGetArray(da, F, &f)

Gets a handle to data array f that shares data with vector F and is indexed using global
dimensions from distributed array object da. This is logically collective call.

• DMDAVecGetArrayRead(da, U, &u)

Gets a handle to data array u that shares data with vector U and is indexed using global
dimensions from distributed array object da. This is not a collective call. Elements
of the data array u are accessed by indexing u[i][j], where i ∈ 0, . . . ,MX and j ∈
0, . . . ,MY are global mesh indices.

• DMDAGetCorners(da, &xs, &ys, NULL, &xm, &ym, NULL)

Gets boundaries of grid defined in distributed array object da. Returns the global
indices of the lower left corner (xs, ys), and size of the local region xm × ym, excluding
ghost points.

• DMDAVecRestoreArray(da, F, &f)

“Restores” array f. This function needs to be called after reading/writing to f is done.
Similar holds for functions DMDAVecRestoreArrayRead and DMRestoreLocalVector.

• PetscFunctionReturn(0)

This function should be used instead of return call in user supplied petsc functions.
It is used for error handling.

Using petsc library when dealing with a structured grid problem like this allows one to use
global indices when implementing the model and thus separate the model from the paralleliza-
tion scheme. Also, note that petsc functions used here replace private functions rescomm,
reslocal, BSend, BRecvPost, BRecvWait and InitUserData from the idaHeat2D kry p ex-
ample in Section 3.1, and therefore simplify the implementation.
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Notes

• At this point interfaces to petsc solvers and preconditioners are not available. They!

will be added in subsequent sundials releases.
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5 Trilinos example problems

5.1 A nonstiff shared memory parallel example: idaHeat2D kry tpetra

This example is the same as 2.3, except it uses the Tpetra [7] vector from the Trilinos library
[5]. The Tpetra vector is built on top of the Kokkos framework [4], which provides different
shared memory parallelism options. The output of the two examples is identical. In the
following, we will describe only the implementation differences between the two. We assume
the user is familiar with the Trilinos packages Kokkos, Teuchos, and Tpetra.

Before Tpetra methods can be called, the Tpetra scope guard needs to be instantiated.

/* Start an MPI session */

Tpetra::ScopeGuard tpetraScope(&argc, &argv);

The scope guard will initialize an MPI session and create a Tpetra communicator within
the current scope. The scope guard will ensure the MPI session is finalized and all related
objects are destroyed upon leaving the scope. The user does not need to make any MPI
calls directly. If Tpetra is built without MPI support, the scope guard will create a dummy
(serial) communicator.

Once the Tpetra communicator is created, a mapping from global to local vectors needs
to be created:

/* Create Tpetra communicator */

auto comm = Tpetra::getDefaultComm();

/* Choose zero-based (C-style) indexing. */

const sunindextype index_base = 0;

/* Construct an MPI Map */

Teuchos::RCP<const map_type> mpiMap =

Teuchos::rcp(new map_type(global_length, index_base, comm,

Tpetra::GloballyDistributed));

The constructor above will create a map that will evenly partition the global vectors and
assign local vector lengths to each MPI rank. This example is designed to run in a shared
memory environment on a single MPI rank, so the partitioning is trivial. If Trilinos is built
without MPI support, the Tpetra serial communicator will be used and the MPI size will be
set to one rank. If Trilinos is built with MPI support, the user has to run the example with
one rank only, otherwise the example will exit with an error message. The advantage of this
approach is that this example can be linked to a Trilinos library built with or without MPI
support, without changing the example code. Once the communicator and map are set, a
Tpetra vector is created as:

/* Create a Tpetra vector and return refernce counting pointer to it. */

Teuchos::RCP<vector_type> rcpuu =

Teuchos::rcp(new vector_type(mpiMap));

With the Tpetra vector instantiated, the template N_Vector is created by invoking

uu = N_VMake_Trilinos(rcpuu);
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All other vectors are created by cloning the template vector uu to ensure they are all of the
same size and have the same partitioning. The rest of the main body of the example is the
same as in the corresponding serial example in 2.3.

User supplied functions resHeat and PsetupHeat are implemented using Kokkos kernels.
They will be executed on the default Kokkos node type. Available Kokkos node types in
Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and cuda. The default
node type is selected when building the Kokkos package.

5.2 A nonstiff MPI+X parallel example: idaHeat2D kry p tpetra

This example is the same as the one in 3.1, except it uses the Tpetra vector instead of the
native sundials parallel vector implementation. The output of the two examples is identical.
In the following, we describe only the implementation differences between the two.

The template N_Vector is created the same way as in 5.1. All other vectors are created by
cloning the template N_Vector. This example is hard-wired to use 4 MPI partitions, and will
return an error if it is not. Because of this, the sundials CMake system will build this exam-
ple only if the Trilinos library is built with MPI support. The Tpetra vector provides different
on-node (shared memory) parallelization options in addition to MPI (distributed memory)
parallelism. The N_Vector_Trilinos will use the Kokkos default on-node parallelism, which
is selected when building the Kokkos package.

This example uses Kokkos 1D views [4] as MPI buffers. The internal boundaries of the
four subgrids in the example are copied to the buffers using custom built Kokkos kernels.
Each buffer has its host mirror. The buffer data is passed from the host (CPU memory) to
MPI functions in the same way as described in 3.1. If the buffer is in CPU memory, the
buffer and its host mirror are views of the same data. If the buffer is on a GPU device, then
its host mirror is a copy of the buffer data in CPU memory. Before passing the buffer to
an MPI call, the host mirror is updated using Kokkos::deep_copy. If the buffer is on the
host, the Kokkos::deep_copy call to update the buffer host mirror will not do anything, and
therefore will not create unnecessary overhead.

Notes

• At this point interfaces to Trilinos solvers and preconditioners are not available. They !

will be added in subsequent sundials releases.
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6 Fortran example problems

The Fortran example problem programs supplied with the ida package are all written
in standard Fortran77 and use double precision arithmetic. Before running any of these
examples, the user should make sure that the Fortran data types for real and integer
variables appropriately match the C types. See §?? in the ida User Document for details.

6.1 A serial example: fidaRoberts dns

The fidaRoberts dns example is a Fortran equivalent of the idaRoberts dns example.
The main program begins with declarations and initializations. It calls the routines

FNVINITS, FIDAMALLOC, FIDAROOTINIT, FSUNDENSEMATINIT, FSUNDENSELINSOLINIT, FIDALSINIT,
and FIDADENSESETJAC, to initialize the nvector serial module, the main solver mem-
ory, the rootfinding module, the sunmatrix dense module, the sunlinsol dense module,
attach these to ida, and to specify user-supplied Jacobian routine, respectively. It calls
FIDASOLVE in a loop over TOUT values, with printing of the solution values and performance
data (current order and step count from the IOUT array, and current step size from the ROUT
array). In the case of a root return, an extra line is printed with the root information from
FIDAROOTINFO. At the end, it prints a number of performance counters, and frees memory
with calls to FIDAROOTFREE and FIDAFREE.

In fidaRoberts dns.f, the FIDARESFUN routine is a straghtforward implementation of
Eqns. (1). In FIDADJAC, the 3 × 3 system Jacobian is supplied. The FIDAROOTFN routine
defines the two root functions, which are set to determine the points at which y1 = 10−4 or
y3 = .01. The final two routines are for printing a header and the final run statistics.

The following is sample output from fidaRoberts dns. The performance of fida here is
similar to that of ida on the idaRoberts dns problem, with somewhat lower cost counters
owing to the larger absolute error tolerances.

fidaRoberts dns sample output

fidaRoberts_dns: Robertson kinetics DAE serial exampleproblem for IDA

Three equation chemicalkinetics problem.

Tolerance parameters: rtol = 0.10E-03 atol = 0.10E-05 0.10E-09 0.10E-05

Initial conditions y0 = ( 0.10E+01 0.00E+00 0.00E+00)

t y1 y2 y3 nst k h

0.2640E+00 0.9900E+00 0.3471E-04 0.1000E-01 75 2 0.5716E-01

Above is a root , INFO() = 0 1

0.4000E+00 0.9852E+00 0.3386E-04 0.1480E-01 77 3 0.1143E+00

0.4000E+01 0.9055E+00 0.2240E-04 0.9447E-01 91 4 0.3704E+00

0.4000E+02 0.7158E+00 0.9185E-05 0.2842E+00 127 4 0.2963E+01

0.4000E+03 0.4505E+00 0.3223E-05 0.5495E+00 177 3 0.1241E+02

0.4000E+04 0.1832E+00 0.8940E-06 0.8168E+00 228 3 0.2765E+03

0.4000E+05 0.3899E-01 0.1622E-06 0.9610E+00 278 5 0.2614E+04

0.4000E+06 0.4939E-02 0.1985E-07 0.9951E+00 324 5 0.2770E+05

0.4000E+07 0.5176E-03 0.2072E-08 0.9995E+00 355 4 0.3979E+06

0.2075E+08 0.1000E-03 0.4000E-09 0.9999E+00 374 4 0.1592E+07

Above is a root , INFO() = -1 0

0.4000E+08 0.5191E-04 0.2076E-09 0.9999E+00 380 3 0.6366E+07

0.4000E+09 0.5882E-05 0.2353E-10 0.1000E+01 394 1 0.9167E+08

0.4000E+10 0.7054E-06 0.2822E-11 0.1000E+01 402 1 0.1467E+10

0.4000E+11 -0.7300E-06 -0.2920E-11 0.1000E+01 407 1 0.2347E+11
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Final Run Statistics:

Number of steps = 407

Number of residual evaluations = 557

Number of Jacobian evaluations = 65

Number of nonlinear iterations = 557

Number of error test failures = 6

Number of nonlinear conv. failures = 0

Number of root function evals. = 437

6.2 A parallel example: fidaHeat2D kry bbd p

This example, fidaHeat2D kry bbd p, is the Fortran equivalent of idaHeat2D kry bbd p.
The heat equation problem is described under the idaHeat2D kry example above, but here
it is solved in parallel, using the idabbdpre (band-block-diagonal) preconditioner mod-
ule. The decomposition of the problem onto a processor array is identical to that in the
idaHeat2D kry p example above.

The problem is solved twice — once with half-bandwidths of 5 in the difference-quotient
banded preconditioner blocks, and once with half-bandwidths of 1 (which results in lumping
of Jacobian values). In both cases, the retained banded blocks are tridiagonal, even though
the true Jacobian is not.

The main program begins with initializations, including MPI calls, a call to FNVINITP to
initialize nvector parallel, and a call to SETINITPROFILE to initialize the UU, UP, ID, and
CONSTR arrays (containing the solution vector, solution derivative vector, the differential/al-
gebraic bit vector, and the contraint specification vector, respectively). A call to FIDASETIIN
and two calls to FIDASETVIN are made to suppress error control on the algebraic variables, and
to supply the ID array and constraints array (making the computed solution non-negative).
The call to FIDAMALLOC initializes the fida main memory. The calls to FSUNSPGMRINIT,
FSUNSPGMRSETMAXRS, FIDALSINIT and FIDABBDINIT create and initialize the spgmr solver
and fidabbd module.

In the first loop over TOUT values, the main program calls FIDASOLVE and prints the max-
norm of the solution and selected counters. When finished, it calls PRNTFINALSTATS to print
a few more counters.

The second solution is initialized by resetting mudq and mldq, followed by a second call
to SETINITPROFILE, and by calls to FIDAREINIT and FIDABBDREINIT. After completing the
second solution, the program frees memory and terminates MPI.

The FIDARESFUN routine simply calls two other routines: FIDACOMMFN, to communicate
needed boundary data from U to an extension of it called UEXT; and FIDAGLOCFN, to compute
the residuals in terms of UEXT and UP.

The following is a sample output from fidaHeat2D kry bbd p, with a 10× 10 mesh and
NPES = 4 processors. The performance is similar for the two solutions. The second case
requires more linear iterations, as expected, but their cost is offset by the much cheaper
preconditioner evaluations.

fidaHeat2D kry bbd p sample output

fidaHeat2D_kry_bbd_p: Heat equation , parallel example for FIDA

Discretized heat equation on 2D unit square.

Zero boundary conditions , polynomial conditions.
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Mesh dimensions: 10 x 10 Total system size: 100

Subgrid dimensions: 5 x 5 Processor array: 2 x 2

Tolerance parameters: rtol = 0.00E+00 atol = 0.10E-02

Constraints set to force all solution components >= 0.

SUPPRESSALG = SUNTRUE to remove boundary components from the error test.

Linear solver: SPGMR. Preconditioner: BBDPRE - Banded -block -diagonal.

Case 1

Difference quotient half -bandwidths = 5

Retained matrix half -bandwidths = 1

Output Summary

umax = max -norm of solution

nre = nre + nreLS (total number of RES evals.)

time umax k nst nni nli nre nge h npe nps

--------------------------------------------------------------------------

0.1000E-01 0.82411E+00 2 12 14 7 14+ 7 96 0.26E-02 8 21

0.2000E-01 0.68812E+00 3 15 18 12 18+12 96 0.51E-02 8 30

0.4000E-01 0.47075E+00 3 18 24 22 24+22 108 0.66E-02 9 46

0.8000E-01 0.21660E+00 3 22 29 30 29+30 108 0.13E-01 9 59

0.1600E+00 0.45659E-01 4 28 37 43 37+43 120 0.26E-01 10 80

0.3200E+00 0.21095E-02 4 35 45 59 45+59 120 0.24E-01 10 104

0.6400E+00 0.34044E-04 1 40 54 71 54+71 156 0.19E+00 13 125

0.1280E+01 0.36151E-18 1 42 56 71 56+71 180 0.76E+00 15 127

0.2560E+01 0.81974E-20 1 43 57 71 57+71 192 0.15E+01 16 128

0.5120E+01 0.17133E-19 1 44 58 71 58+71 204 0.30E+01 17 129

0.1024E+02 0.36660E-19 1 45 59 71 59+71 216 0.61E+01 18 130

Error test failures = 1

Nonlinear convergence failures = 0

Linear convergence failures = 0

Case 2

Difference quotient half -bandwidths = 1

Retained matrix half -bandwidths = 1

Output Summary

umax = max -norm of solution

nre = nre + nreLS (total number of RES evals.)

time umax k nst nni nli nre nge h npe nps

--------------------------------------------------------------------------

0.1000E-01 0.82411E+00 2 12 14 7 14+ 7 32 0.26E-02 8 21

0.2000E-01 0.68812E+00 3 15 18 12 18+12 32 0.51E-02 8 30

0.4000E-01 0.47093E+00 3 19 23 20 23+20 36 0.10E-01 9 43

0.8000E-01 0.21655E+00 3 23 27 32 27+32 36 0.10E-01 9 59

0.1600E+00 0.45225E-01 4 27 33 44 33+44 40 0.20E-01 10 77

0.3200E+00 0.21868E-02 3 34 41 67 41+67 44 0.41E-01 11 108

0.6400E+00 0.79056E-20 1 39 49 86 49+86 52 0.16E+00 13 135

0.1280E+01 0.18819E-19 1 41 51 86 51+86 60 0.66E+00 15 137

0.2560E+01 0.20662E-18 1 42 52 86 52+86 64 0.13E+01 16 138

0.5120E+01 0.20095E-17 1 43 53 86 53+86 68 0.26E+01 17 139

0.1024E+02 0.12941E-16 1 44 54 86 54+86 72 0.52E+01 18 140

Error test failures = 0
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Nonlinear convergence failures = 0

Linear convergence failures = 0
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